Anomalous Small-Angle X-ray Scattering and Its Application in the Dynamic Reconstruction of Electrochemical CO2 Reduction Catalysts
<p>SAXS investigates the microstructures of catalysts in CO<sub>2</sub>RR. (<b>a</b>) SEM images of the Zn-MOFs. (<b>b</b>) SAXS curve. The mass fractions of ZnCl<sub>2</sub> (x) in the C<sub>12</sub>mimCl + glycerol + ZnCl<sub>2</sub> system were 0.38. Reprinted with permission from [<a href="#B65-symmetry-15-01034" class="html-bibr">65</a>]. Copyright 2016 The Royal Society of Chemistry. (<b>c</b>) SAXS patterns of the calcined SBA-15, 15Ni10Ce/SBA-15, and 15Ni10Ce10Y/SBA-15. Reprinted with permission from [<a href="#B68-symmetry-15-01034" class="html-bibr">68</a>]. Copyright 2021 Elsevier. (<b>d</b>) Double-logarithmic plot via SAXS of the Au-Bi<sub>2</sub>O<sub>3</sub> film on a glass substrate. Reprinted with permission from [<a href="#B69-symmetry-15-01034" class="html-bibr">69</a>]. Copyright 2020 The Royal Society of Chemistry.</p> "> Figure 2
<p>(<b>a</b>) 16-nm NiCu SAXS curve (black circles) fitted with a core-shell-shell model (red line). (<b>b</b>) SAXS data of NiCu NPs prepared with different amounts of OAm. The data are fitted with a Schulz-Zimm fit (blue line). (<b>c</b>) Impact of OAm amounts on the diameter of the NPs; particle diameters were derived from SAXS. (<b>d</b>) ASAXS curves of 5NiCu-17 obtained at different energy compared with the resonant curve (red). (<b>e</b>) Two different structural model fits approximated on the ASAXS resonant curves. (<b>f</b>) Catalytic reaction of CO<sub>2</sub>/nanoparticle diameter dependent-selectivity for CO (squares) and CH<sub>4</sub> (circles). Reprinted with permission from [<a href="#B54-symmetry-15-01034" class="html-bibr">54</a>]. Copyright 2022 Wiley-VCH GmbH.</p> "> Figure 3
<p>(<b>a</b>) The Pt ASAXS data fitted with their log-normal functions. (<b>b</b>) Evolution of particle size distribution over the duration of the experiments for the square at 1.1 V. Reprinted with permission from [<a href="#B35-symmetry-15-01034" class="html-bibr">35</a>]. Copyright 2012 American Chemical Society. (<b>c</b>) Area-weighted Pt particle size distributions and net Pt scattering curves for Pt/ATO catalyst at different stages of the degradation protocol. Reprinted with permission from [<a href="#B51-symmetry-15-01034" class="html-bibr">51</a>]. Copyright 2017 American Chemical Society. Element-specific mean particle size evolution during electrode potential cycling of (<b>d</b>) the PtNi<sub>6</sub> catalyst and (<b>e</b>) the PtNi<sub>3</sub> catalyst measured using in situ ASAXS. (<b>f</b>) Schematic representation of Pt-Ni alloy nanoparticle evolution during electrocatalysis of (<b>i</b>) PtNi<sub>6</sub> catalyst and (<b>ii</b>) PtNi<sub>3</sub>. Reprinted with permission from [<a href="#B53-symmetry-15-01034" class="html-bibr">53</a>]. Copyright 2013 American Chemical Society.</p> "> Figure 4
<p>(<b>a</b>) ASAXS curve of Ni/SiO<sub>2</sub> sample (open circles) and the best fits obtained using a free-form distribution of spherical particles (full line) and via a log-normal distribution (dotted line). (<b>b</b>) Normalized number-density size distribution (full line with circles). The dashed line is the lognormal distribution. Reprinted with permission from [<a href="#B55-symmetry-15-01034" class="html-bibr">55</a>]. Copyright 2000 by Academic Press. (<b>c</b>) Separated Ni ASAXS of the fresh (○) and reduced (Δ) catalyst particles and the best fits (red curves). Inset: HRTEM micrographs of Ni/NiO core-shell particle on the MgAl<sub>2</sub>O<sub>4</sub> support; the schematic of the fresh catalyst was reduced from a Ni/NiO core-shell structure to pure Ni due to the reduction of the NiO shell. Reprinted with permission from [<a href="#B57-symmetry-15-01034" class="html-bibr">57</a>]. Copyright 2014 American Chemical Society.</p> "> Figure 5
<p>(<b>a</b>) ASAXS intensities of AgNO<sub>3</sub>(0.35)-HAuCl<sub>4</sub>(0.7)@PS<sub>111</sub>-b-P4VP<sub>96</sub> at <span class="html-italic">E</span><sub>1</sub> = 11,557 eV (black curve) and <span class="html-italic">E</span><sub>3</sub> = 11,915 eV (red curve) and resulting curve of their subtraction (orange curve). (<b>b</b>) The subtracted ASAXS curve fits with a core–shell model. Reprinted with permission from [<a href="#B58-symmetry-15-01034" class="html-bibr">58</a>]. Copyright 2016 American Chemical Society.</p> "> Figure 6
<p>(<b>a</b>) ASAXS intensities of CuO(Cl)/SiO<sub>2</sub> catalyst. (<b>b</b>) The ASAXS curve subtracted with a Porod scattering background. (<b>c</b>) The scattering curve measured 127 eV below Cu-edge with three components. Reprinted with permission from [<a href="#B60-symmetry-15-01034" class="html-bibr">60</a>]. Copyright 2019 Elsevier Ltd.</p> "> Figure 7
<p>(<b>a</b>) Fit of the experimental ASAXS data of the Co<sub>3</sub>O<sub>4</sub> oxide. Reprinted with permission from [<a href="#B61-symmetry-15-01034" class="html-bibr">61</a>]. Copyright 2018 Elsevier Inc. (<b>b</b>) Three structural elements could be identified. Their sum models the measured scattering intensities. (<b>c</b>) Partial scattering contribution for sample RuSex/C calculated using the five energies close to the Ru-K absorption edge. Reprinted with permission from [<a href="#B46-symmetry-15-01034" class="html-bibr">46</a>]. Copyright 2010 American Chemical Society. (<b>d</b>) Volume-weighted size distributions of three structural components. (<b>e</b>) The structural model derived from ASAXS and small-angle neutron scattering. Reprinted with permission from [<a href="#B62-symmetry-15-01034" class="html-bibr">62</a>]. Copyright 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim for (<b>b</b>,<b>d</b>,<b>e</b>). The CeO<sub>2</sub> ASAXS data(dots) was obtained via a subtraction method. The data were measured (<b>f</b>) before and (<b>g</b>) after annealing. Reprinted with permission from [<a href="#B63-symmetry-15-01034" class="html-bibr">63</a>]. Copyright 2017 The Royal Society of Chemistry.</p> ">
Abstract
:1. Introduction
2. Anomalous Small-Angle X-ray Scattering (ASAXS): Theory
2.1. Subtraction Method
2.2. Decomposition Method
3. ASAXS Applications in Catalysts
3.1. CO2 Reduction
3.2. ASAXS Applications in Other Catalyst Fields
3.2.1. Pt Element
3.2.2. Ni Element
3.2.3. Au Element
3.2.4. Cu Element
3.2.5. Co, Se, Mo, Ru, Rh, Pd, Ce Elements
4. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karl, T.R.; Trenberth, K.E. Modern global climate change. Science 2003, 302, 1719–1723. [Google Scholar] [CrossRef] [PubMed]
- Friedlingstein, P.; Andrew, R.M.; Rogelj, J.; Peters, G.P.; Canadell, J.G.; Knutti, R.; Luderer, G.; Raupach, M.R.; Schaeffer, M.; van Vuuren, D.P.; et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci. 2014, 7, 709–715. [Google Scholar] [CrossRef]
- He, M.; Sun, Y.; Han, B. Green carbon science: Scientific basis for integrating carbon resource processing, utilization, and recycling. Angew. Chem. Int. Ed. 2013, 52, 9620–9633. [Google Scholar] [CrossRef] [PubMed]
- Bushuyev, O.S.; De Luna, P.; Dinh, C.-T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S.O.; Sargent, E.H. What should we make with CO2 and how can we make it? Joule 2018, 2, 825–832. [Google Scholar] [CrossRef]
- Goeppert, A.; Czaun, M.; Prakash, G.S.; Olah, G.A. Air as the renewable carbon source of the future: An over view of CO2 capture from the atmosphere. Energy Environ. Sci. 2012, 5, 7833–7853. [Google Scholar] [CrossRef]
- Appel, A.M.; Bercaw, J.E.; Bocarsly, A.B.; Dobbek, H.; DuBois, D.L.; Dupuis, M.; Ferry, J.G.; Fujita, E.; Hille, R.; Kenis, P.J.A.; et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 2013, 113, 6621–6658. [Google Scholar] [CrossRef]
- Furler, P.; Scheffe, J.; Gorbar, M.; Moes, L.; Vogt, U.; Steinfeld, A. Solar thermochemical CO2 splitting utilizing a reticulated porous ceria redox system. Energy Fuels 2012, 26, 7051–7059. [Google Scholar] [CrossRef]
- Chen, W.P.; Liao, P.Q.; Jin, P.B.; Zhang, L.; Ling, B.K.; Wang, S.C.; Chan, Y.T.; Chen, X.M.; Zheng, Y.Z. The giantic {Ni36Gd102} hexagon: A sulfate-templated “Star-of-David” for photocatalytic CO2 reduction and magnetic cooling. J. Am. Chem. Soc. 2020, 142, 4663–4670. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, P.; Kang, X.; Zheng, L.; Mo, G.; Wu, R.; Tai, J.; Han, B. Efficient electrocatalytic reduction of CO2 to ethane over nitrogen-doped Fe2O3. J. Am. Chem. Soc. 2022, 144, 14769–14777. [Google Scholar] [CrossRef]
- Nitopi, S.; Bertheussen, E.; Scott, S.B.; Liu, X.; Engstfeld, A.K.; Horch, S.; Seger, B.; Stephens, I.E.L.; Chan, K.; Hahn, C.; et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672. [Google Scholar] [CrossRef]
- Li, H.; Zhao, J.; Luo, L.; Du, J.; Zeng, J. Symmetry-breaking sites for activating linear carbon dioxide molecules. Acc. Chem. Res. 2021, 54, 1454–1464. [Google Scholar] [CrossRef]
- Deng, B.; Huang, M.; Zhao, X.; Mou, S.; Dong, F. Interfacial electrolyte effects on electrocatalytic CO2 reduction. ACS Catal. 2022, 12, 331–362. [Google Scholar] [CrossRef]
- Zhang, X.; Han, S.; Zhu, B.; Zhang, G.; Li, X.; Gao, Y.; Wu, Z.; Yang, B.; Liu, Y.; Baaziz, W.; et al. Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 2020, 3, 411–417. [Google Scholar] [CrossRef]
- Kim, Y.G.; Baricuatro, J.H.; Javier, A.; Gregoire, J.M.; Soriaga, M.P. The evolution of the polycrystalline copper surface, first to Cu(111) and then to Cu(100), at a fixed CO2RR potential: A study by operando EC-STM. Langmuir 2014, 30, 15053–15056. [Google Scholar] [CrossRef]
- Liu, X.; Meng, J.; Zhu, J.; Huang, M.; Wen, B.; Guo, R.; Mai, L. Comprehensive understandings into complete reconstruction of precatalysts: Synthesis, applications, and characterizations. Adv. Mater. 2021, 33, 2007344. [Google Scholar] [CrossRef]
- Jiang, H.; He, Q.; Zhang, Y.; Song, L. Structural self-reconstruction of catalysts in electrocatalysis. Acc. Chem. Res. 2018, 51, 2968–2977. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, Y.; Tang, Y.; Gao, Q. In-situ reconstruction of catalysts in cathodic electrocatalysis: New insights into active-site structures and working mechanisms. J. Energy Chem. 2022, 70, 414–436. [Google Scholar] [CrossRef]
- Xie, C.; Niu, Z.; Kim, D.; Li, M.; Yang, P. Surface and interface control in nanoparticle catalysis. Chem. Rev. 2020, 120, 1184–1249. [Google Scholar] [CrossRef]
- Wang, W.; Duan, J.; Liu, Y.; Zhai, T. Structural reconstruction of catalysts in electroreduction reaction: Identifying, understanding, and manipulating. Adv. Mater. 2022, 34, 2110699. [Google Scholar] [CrossRef]
- An, H.; Wu, L.; Mandemaker, L.D.; Yang, S.; de Ruiter, J.; Wijten, J.H.; Janssens, J.C.L.; Hartman, T.; van der Stam, W.; Weckhuysen, B.M. Sub-second time-resolved surface-enhanced Raman spectroscopy reveals dynamic CO intermediates during electrochemical CO2 reduction on copper. Angew. Chem. Int. Ed. 2021, 60, 16576–16584. [Google Scholar] [CrossRef]
- Dutta, A.; Rahaman, M.; Hecker, B.; Drnec, J.; Kiran, K.; Montiel, I.Z.; Weber, D.J.; Zanetti, A.; López, A.C.; Martens, I.; et al. CO2 electrolysis—Complementary operando XRD, XAS and Raman spectroscopy study on the stability of CuxO foam catalysts. J. Catal. 2020, 389, 592–603. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Li, L.; Sun, Y.; Xie, Y. Progress and perspective for in situ studies of CO2 reduction. J. Am. Chem. Soc. 2020, 142, 9567–9581. [Google Scholar] [CrossRef] [PubMed]
- Handoko, A.D.; Wei, F.; Jenndy; Yeo, B.S.; Seh, Z.W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 2018, 1, 922–934. [Google Scholar] [CrossRef]
- Jin, L.; Seifitokaldani, A. In situ spectroscopic methods for electrocatalytic CO2 reduction. Catalysts 2020, 10, 481. [Google Scholar] [CrossRef]
- Yang, Y.; Xiong, Y.; Zeng, R.; Lu, X.; Krumov, M.; Huang, X.; Xu, W.; Wang, H.; DiSalvo, F.J.; Brock, J.D.; et al. Operando Methods in electrocatalysis. ACS Catal. 2021, 11, 1136–1178. [Google Scholar] [CrossRef]
- Ye, K.; Zhou, Z.; Shao, J.; Lin, L.; Gao, D.; Ta, N.; Si, R.; Wang, G.X.; Bao, X.H. In situ reconstruction of a hierarchical Sn-Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction. Angew. Chem. Int. Ed. 2020, 59, 4814–4821. [Google Scholar] [CrossRef]
- Li, T.; Senesi, A.J.; Lee, B. Small angle X-ray scattering for nanoparticle research. Chem. Rev. 2016, 116, 11128–11180. [Google Scholar] [CrossRef]
- Wu, Z.; Xing, X. Synchrotron Radiation Applications: Small Angle X-ray Scattering and Its Applications; World Scientific Publishing: Hackensack, NJ, USA, 2018; pp. 225–285. [Google Scholar] [CrossRef]
- Wang, M.; Park, J.H.; Kabir, S.; Neyerlin, K.C.; Kariuki, N.N.; Lv, H.; Stamenkovic, V.R.; Myers, D.J.; Ulsh, M.; Mauger, S.A. Impact of catalyst ink dispersing methodology on fuel cell performance using in-situ x-ray scattering. ACS Appl. Energy Mater. 2019, 2, 6417–6427. [Google Scholar] [CrossRef]
- Gao, D.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G.; Wang, J.; Bao, X. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 2015, 137, 4288–4291. [Google Scholar] [CrossRef]
- Song, R.; Zhu, W.; Fu, J.; Chen, Y.; Liu, L.; Zhang, J.; Lin, Y.; Zhu, J. Electrode materials engineering in electrocatalytic CO2 Reduction: Energy input and conversion efficiency. Adv. Mater. 2020, 32, 1903796. [Google Scholar] [CrossRef]
- Tomboc, G.M.; Choi, S.; Kwon, T.; Hwang, Y.J.; Lee, K. Potential link between Cu surface and selective CO2 electroreduction: Perspective on future electrocatalyst designs. Adv. Mater. 2020, 32, e1908398. [Google Scholar] [CrossRef]
- Sun, Y. Anomalous small-angle X-ray scattering for materials chemistry. Trends Chem. 2021, 3, 1045–1060. [Google Scholar] [CrossRef]
- Yu, C.; Koh, S.; Leisch, J.E.; Toney, M.F.; Strasser, P. Size and composition distribution dynamics of alloy nanoparticle electro-catalysts probed by anomalous small angle X-ray scattering (ASAXS). Faraday Discuss. 2008, 140, 283–296. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Kariuki, N.N.; Subbaraman, R.; Kropf, A.J.; Smith, M.C.; Holby, E.F.; Morgan, D.; Myers, D.J. In situ anomalous small-angle X-ray scattering studies of platinum nanoparticle fuel cell electrocatalyst degradation. J. Am. Chem. Soc. 2012, 134, 14823–14833. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Kropf, A.J.; Kariuki, N.N.; DeCrane, S.; Wang, X.; Rasouli, S.; Yu, K.; Ferreira, P.J.; Morgan, D.; Myers, D.J. In-operando anomalous small-angle X-ray scattering investigation of Pt3Co catalyst degradation in aqueous and fuel cell environments. J. Electrochem. Soc. 2015, 162, F1487–F1497. [Google Scholar] [CrossRef]
- Goerigk, G.; Haubold, H.J.; Lyonc, O.; Simon, J.P. Anomalous small-angle X-ray scattering in materials science. J. Appl. Cryst. 2003, 36, 425–429. [Google Scholar] [CrossRef]
- Humbert, S.; Devers, E.; Lesage, C.; Legens, C.; Lemaitre, L.; Sorbier, L.; De Geuser, F.; Briois, V. ASAXS study of the influence of sulfidation conditions and organic additives on sulfide slabs multiscale organization. J. Catal. 2021, 395, 412–424. [Google Scholar] [CrossRef]
- Chantler, C.T. Theoretical form factor, attenuation and scattering tabulation for Z = 1–92 from E = 1–10 eV to E = 0.4–1.0 MeV. J. Phys. Chem. Ref. Data 1995, 24, 71–643. [Google Scholar] [CrossRef]
- Chantler, C.T. Detailed tabulation of atomic form factors, photoelectric absorption and scattering cross section, and mass attenuation coefficients in the vicinity of absorption edges in the soft X-ray (Z = 30–36, Z = 60–89, E = 0.1 keV–10 keV), addressing convergence issues of earlier work. J. Phys. Chem. Ref. Data 2000, 29, 597–1048. [Google Scholar]
- Polizzi, S.; Riello, P.; Goerigk, G.; Benedetti, A. Quantitative investigations of supported metal catalysts by ASAXS. J. Synchrotron Radiat. 2002, 9, 65–70. [Google Scholar] [CrossRef]
- Haubold, H.-G.; Wang, X. ASAXS studies of carbon supported electrocatalysts. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1995, 97, 50–54. [Google Scholar] [CrossRef]
- Haubold, H.-G.; Wang, X.; Jungbluth, H.; Goerigk, G.; Schilling, W. In situ anomalous small-angle X-ray scattering and X-ray absorption near-edge structure investigation of catalyst structures and reactions. J. Mol. Struct. 1996, 383, 283–289. [Google Scholar] [CrossRef]
- Haubold, H.G.; Wang, X.H.; Goerigk, G.; Schilling, W. In situ anomalous small-angle X-ray scattering investigation of car-bon-supported eleetroeatalysts. J. Appl. Crystallogr. 1997, 30, 653–658. [Google Scholar] [CrossRef]
- Binninger, T.; Garganourakis, M.; Han, J.; Patru, A.; Fabbri, E.; Sereda, O.; Kötz, R.; Menzel, A.; Schmidt, T.J. Particle-support inter-ferences in small-angle X-ray scattering from supported-catalyst materials. Phys. Rev. Appl. 2015, 3, 024012. [Google Scholar] [CrossRef]
- Haas, S.; Zehl, G.; Dorbandt, I.; Manke, I.; Bogdanoff, P.; Fiechter, S.; Hoell, A. Direct accessing the nanostructure of carbon sup-ported Ru-Se based catalysts by ASAXS. J. Phys. Chem. C 2010, 114, 22375–22384. [Google Scholar] [CrossRef]
- Vogtt, K.; Goerigk, G.; Ballauff, M.; Gläser, R.; Dingenouts, N. Anomalous small-angle x-ray scattering from mesoporous noble metal catalysts. Colloid Polym. Sci. 2013, 291, 2163–2171. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Kariuki, N.N.; Wang, X.; Kropf, A.J.; Yu, K.; Groom, D.J.; Ferreira, P.J.; Morgan, D.; Myers, D.J. Pt catalyst degradation in aqueous and fuel cell environments studied via in-operando anomalous small-angle X-ray scattering. Electrochim. Acta 2015, 173, 223–234. [Google Scholar] [CrossRef]
- Brumberger, H.; Hagrman, D.; Goodisman, J.; Finkelstein, K.D. In situ anomalous small-angle X-ray scattering from metal particles in supported-metal catalysts. II. Results. J. Appl. Crystallogr. 2005, 38, 324–332. [Google Scholar] [CrossRef]
- Mohamed, R.; Binninger, T.; Kooyman, P.J.; Hoell, A.; Fabbri, E.; Patru, A.; Heinritz, A.; Schmidt, T.J.; Levecque, P. Facile deposition of Pt nanoparticles on Sb-doped SnO2 support with outstanding active surface area for the oxygen reduction reaction. Catal. Sci. Technol. 2018, 8, 2672–2685. [Google Scholar] [CrossRef]
- Binninger, T.; Mohamed, R.; Patru, A.; Waltar, K.; Gericke, E.; Tuaev, X.; Fabbri, E.; Levecque, P.; Hoell, A.; Schmidt, T.J. Stabilization of Pt nanoparticles due to electrochemical transistor switching of oxide support conductivity. Chem. Mater. 2017, 29, 2831–2843. [Google Scholar] [CrossRef]
- Georgieva, J.; Valova, E.; Mintsouli, I.; Sotiropoulos, S.; Tatchev, D.; Armyanov, S.; Hubin, A.; Dille, J.; Hoell, A.; Raghuwanshi, V.; et al. Pt(Ni) electrocatalysts for methanol oxidation prepared by galvanic replacement on TiO2 and TiO2–C powder supports. J. Electroanal. Chem. 2015, 754, 65–74. [Google Scholar] [CrossRef]
- Tuaev, X.; Rudi, S.; Petkov, V.; Hoell, A.; Strasser, P. In situ study of atomic structure transformations of Pt–Ni nanoparticle catalysts during electrochemical potential cycling. ACS Nano 2013, 7, 5666–5674. [Google Scholar] [CrossRef]
- Heilmann, M.; Prinz, C.; Bienert, R.; Wendt, R.; Kunkel, B.; Radnik, J.; Hoell, A.; Wohlrab, S.; Buzanich, A.G.; Emmerling, F. Size-tunable Ni-Cu core-shell nanoparticles-structure, composition, and catalytic activity for the reverse water-gas shift reaction. Adv. Eng. Mater. 2022, 24, 2101308. [Google Scholar] [CrossRef]
- Rasmussen, F.; Molenbroek, A.; Clausen, B.; Feidenhans, R. Particle size distribution of an Ni/SiO2 catalyst determined by ASAXS. J. Catal. 2000, 190, 205–208. [Google Scholar] [CrossRef]
- Bóta, A.; Varga, Z.; Goerigk, G. Structural description of the nickel part of a raney-type catalyst by using anomalous small-angle X-ray scattering. J. Phys. Chem. C 2008, 112, 4427–4429. [Google Scholar] [CrossRef]
- Kehres, J.; Andreasen, J.W.; Fløystad, J.B.; Liu, H.; Molenbroek, A.; Jakobsen, J.G.; Chorkendorff, I.; Nielsen, J.H.; Høydalsvik, K.; Breiby, D.W.; et al. Reduction of a Ni/Spinel catalyst for methane reforming. J. Phys. Chem. C 2015, 119, 1424–1432. [Google Scholar] [CrossRef]
- Guiet, A.; Unmüssig, T.; Göbel, C.; Vainio, U.; Wollgarten, M.; Driess, M.; Schlaad, H.; Polte, J.; Fischer, A. Yolk@Shell nanoarchitectures with bimetallic nanocores–Synthesis and electrocatalytic applications. ACS Appl. Mater. Interfaces 2016, 8, 28019–28029. [Google Scholar] [CrossRef]
- Vainio, U.; Pirkkalainen, K.; Kisko, K.; Goerigk, G.; Kotelnikova, N.E.; Serimaa, R. Copper and copper oxide nanoparticles in a cellulose support studied using anomalous small-angle X-ray scattering. Eur. Phys. J. D 2007, 42, 93–101. [Google Scholar] [CrossRef]
- Kreft, S.; Radnik, J.; Rabeah, J.; Agostini, G.; Pohl, M.-M.; Gericke, E.; Hoell, A.; Beller, M.; Junge, H.; Wohlrab, S. Dye activation of heterogeneous Copper(II)-Species for visible light driven hydrogen generation. Int. J. Hydrogen Energy 2019, 44, 28409–28420. [Google Scholar] [CrossRef]
- Humbert, S.; Desjouis, G.; Bizien, T.; Lemaitre, L.; Taleb, A.; Dalverny, C.; Sorbier, L.; Gay, A. Effect of reduction on Co catalyst active phase highlighted by an original approach coupling ASAXS and electron tomography. J. Catal. 2018, 366, 202–212. [Google Scholar] [CrossRef]
- Zehl, G.; Schmithals, G.; Hoell, A.; Haas, S.; Hartnig, C.; Dorbandt, I.; Bogdanoff, P.; Fiechter, S. On the Structure of carbon-supported selenium-modified ruthenium nanoparticles as electrocatalysts for oxygen reduction in fuel cells. Angew. Chem. Int. Ed. 2007, 46, 7311–7314. [Google Scholar] [CrossRef] [PubMed]
- Rumancev, C.; von Gundlach, A.R.; Baier, S.; Wittstock, A.; Shi, J.; Benzi, F.; Senkbeil, T.; Stuhr, S.; Garamusx, V.M.; Grunwaldt, J.-D.; et al. Morphological analysis of cerium oxide stabilized nanoporous gold catalysts by soft X-ray ASAXS. RSC Adv. 2017, 7, 45344–45350. [Google Scholar] [CrossRef]
- Xiao, C.; Zhang, J. Architectural design for enhanced C2 product selectivity in electrochemical CO2 reduction using Cu-based catalysts: A review. ACS Nano 2021, 15, 7975–8000. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Zhu, Q.; Sun, X.; Hu, J.; Zhang, J.; Liu, Z.; Han, B. Highly efficient electrochemical reduction of CO2 to CH4 in an ionic liquid using a metal-organic framework cathode. Chem. Sci. 2016, 7, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Ma, J.; Kang, X.; Sun, X.; Liu, H.; Hu, J.; Liu, Z.; Han, B. Efficient reduction of CO2 into formic acid on a lead or tin electrode using an ionic liquid catholyte mixture. Angew. Chem. Int. Ed. 2016, 55, 1–6. [Google Scholar] [CrossRef]
- Rowiński, P.; Bilewicz, R.; Stébé, M.J.; Rogalska, E. A concept for immobilizing catalytic complexes on electrodes: Cubic phase layers for carbon dioxide sensing. Anal. Chem. 2002, 74, 1554–1559. [Google Scholar] [CrossRef]
- Sun, C.; Świrk, K.; Wang, Y.; Scheidl, K.S.; Breiby, D.W.; Rønning, M.; Hu, C.; Da Costa, P. Tailoring the yttrium content in Ni-Ce-Y/SBA-15 mesoporous silicas for CO2 methanation. Catal. Today 2021, 382, 104–119. [Google Scholar] [CrossRef]
- Tran-Phu, T.; Daiyan, R.; Fusco, Z.; Ma, Z.; Abd Rahim, L.R.; Kiy, A.; Kluth, P.; Guo, X.Y.; Zhu, Y.; Chen, H.J.; et al. Multi-functional nanostructures of Au-Bi2O3 fractals for CO2 reduction and optical sensing. J. Mater. Chem. A 2020, 8, 11233–11245. [Google Scholar] [CrossRef]
- Jeng, U.-S.; Lai, Y.-H.; Sheu, H.-S.; Lee, J.-F.; Sun, Y.-S.; Chuang, W.-T.; Huang, Y.-S.; Liu, D.-G. Anomalous small- and wide-angle X-ray scattering and X-ray absorption spectroscopy for Pt and Pt–Ru nanoparticles. J. Appl. Crystallogr. 2007, 40, s418–s422. [Google Scholar] [CrossRef]
- Toney, M.; Koh, S.; Yu, C.; Strasser, P. Use of anomalous X-ray scattering for probing the structure, composition and size of binary alloy nanoparticle electrocatalysts. ECS Trans. 2008, 16, 595–601. [Google Scholar] [CrossRef]
- Chen, M.; Goodman, D. Structure–activity relationships in supported Au catalysts. Catal. Today 2006, 111, 22–33. [Google Scholar] [CrossRef]
- Benedetti, A.; Polizzi, S.; Riello, P.; Pinna, F.; Goerigk, G. ASAXS Investigation of a Au/C Catalyst. J. Catal. 1997, 171, 345–348. [Google Scholar] [CrossRef]
- Benedetti, A.; Bertoldo, L.; Canton, P.; Goerigk, G.; Pinna, F.; Riello, P.; Polizzi, S. ASAXS study of Au, Pd and Pd-Au catalysts supported on active carbon. Catal. Today 1999, 49, 485–489. [Google Scholar] [CrossRef]
- Martelli, S.; Di Nunzio, P.E. Particle size distribution of nanospheres by Monte Carlo fitting of small angle X-ray scattering curves. Part. Part. Syst. Charact. 2002, 19, 247–255. [Google Scholar] [CrossRef]
Elements | Catalysts | Types | Structure Information | Ref. |
---|---|---|---|---|
Pt (L3-edge: 11,564 eV) | Pt25Cu75 | Fuel cell | Pt-Cu core/Pt shell structure; Cu dissolution. | [34] |
Pt/carbon Pt3Co Pt/carbon black | Polymer electrolyte fuel cell | Dissolved smaller particles promote the growth of larger particles; Co size distribution. | [35] [36] [48] | |
Pt/carbon | Fuel cell | Pt particle size distribution; Pt core/oxide shell structure. | [43] | |
Pt/ordered mesoporous silica Pt/LZ-M-5 | Catalytic application | The ASAXS subtraction method. | [47] [49] | |
Pt/ATO (Sb-SnO2 nanopowder) | Oxygen reduction reaction (ORR) | Pt size distribution; Particle coarsening and Ostwald ripening. | [50] [51] | |
Pt (Ni)/TiO2 Pt (Ni)/TiO2-C | Direct methanol fuel cell | Small Pt particle size; Ni particle size. | [52] | |
PtNix (x = 3, 6) | Polymer electrolyte membrane fuel cell | Particle size evolution; Surface Ni dissolution; PtNi core/Pt shell structure. | [53] | |
Ni (K-edge: 8333 eV) | 5NiCu-17 | CO2 reduction | NiCu core–shell–shell structure. | [54] |
Ni/SiO2 | Catalytic application | Ni particle size distribution. | [55] | |
Raney-type Ni | Industrial fields | Ni particle size distribution. | [56] | |
Ni/MgAl2O4 | Synthesis gas | The ASAXS decomposition method; Ni core/NiO shell structure. | [57] | |
Au (L3-edge: 11,919 eV) | Au/C | Fuel cell | Au particle sizes. | [30] |
Au/C | The ASAXS subtraction method. | [41] | ||
AgAuNP@tin-rich ITO | Glucose oxidation | Au spatial distribution inside core. | [58] | |
Cu (K-edge: 8979 eV) | Cu-microcrystalline cellulose | Generation of hydrogen | Cu2+ particle volume distribution. | [59] |
CuO(Cl0.1)/SiO2 | Photocatalytic hydrogen generation | The ASAXS decomposition method; Cu size distribution. | [60] | |
Co (K-edge: 7709 eV) | CoMoP/Al2O3 | Hydrotreatment | Two analytic methods for ASAXS; shape parameter. | [38] |
Co, Co3O4 | Fischer–Tropsch Synthesis | Size distribution of two kinds of Co particle sizes; the ASAXS subtraction method. | [61] | |
Ru (K-edge: 22,117 eV) Se (K-dege: 12,658 eV) | RuSex/C | ORR | Ru and Se mean sizes; their size distributions; the ASAXS decomposition method. | [46] [62] |
Ce (M-edge: 884 eV) | CeO2, CeO2/Au | Oxidation reaction | Bimodal distribution of Ce particle size. | [63] |
8330 eV | R Core [nm] | Shell 1 [nm] | Shell 2 [nm] | R Total [nm] |
---|---|---|---|---|
5NiCu-17 | 5.40 | 1.53 | 2.46 | 9.39 |
3NiCu-17 | 5.63 | 1.94 | 2.56 | 10.24 |
1NiCu-19 | 7.00 | 0.96 | 2.49 | 10.45 |
1NiCu-15 | 6.66 | 0.41 | 1.66 | 8.73 |
6NiCu-13 | 4.24 | 1.23 | 1.27 | 6.74 |
15NiCu-8 | 3.17 | 0.40 | 1.20 | 4.77 |
2NiCu-8 | 2.27 | 0.70 | 1.47 | 4.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, W.; Chen, Z.; Wu, X.; Wu, Z.; Wang, X.; Zhao, M.; Liu, H.; Jia, H.; Wang, C.; Wang, X.; et al. Anomalous Small-Angle X-ray Scattering and Its Application in the Dynamic Reconstruction of Electrochemical CO2 Reduction Catalysts. Symmetry 2023, 15, 1034. https://doi.org/10.3390/sym15051034
Cheng W, Chen Z, Wu X, Wu Z, Wang X, Zhao M, Liu H, Jia H, Wang C, Wang X, et al. Anomalous Small-Angle X-ray Scattering and Its Application in the Dynamic Reconstruction of Electrochemical CO2 Reduction Catalysts. Symmetry. 2023; 15(5):1034. https://doi.org/10.3390/sym15051034
Chicago/Turabian StyleCheng, Weidong, Zhongjun Chen, Xuehui Wu, Zhaojun Wu, Xin Wang, Mengyuan Zhao, Huanyan Liu, Hongge Jia, Chaohui Wang, Xuefeng Wang, and et al. 2023. "Anomalous Small-Angle X-ray Scattering and Its Application in the Dynamic Reconstruction of Electrochemical CO2 Reduction Catalysts" Symmetry 15, no. 5: 1034. https://doi.org/10.3390/sym15051034