Theoretical Simulation of the High–Order Harmonic Generated from Neon Atom Irradiated by the Intense Laser Pulse
<p>(<b>a</b>) The near–field HHG spectra generated by an intense laser pulse at 800 nm. (<b>b</b>) The spatial distribution of the divergence angles of the far–field harmonics at different positions along and off the axis.</p> "> Figure 2
<p>The relationship between the propagation position and the harmonic intensity distribution of various harmonic orders.</p> "> Figure 3
<p>(<b>a</b>) Spatial evolution of the laser field. (<b>b</b>) Radial distribution of the electric field intensity before (black solid line) and after (red dotted line) the propagation.</p> "> Figure 4
<p>(<b>a</b>) Evolution of electricfield with time at different propagation locations; (<b>b</b>) partially enlarged details of (<b>a</b>).</p> "> Figure 5
<p>Variation of laser frequency amplitude with frequency at different propagation positions (<b>a</b>) <span class="html-italic">r</span> = 0 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m, (<b>b</b>) <span class="html-italic">r</span> = 10 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m.</p> "> Figure 6
<p>The harmonic spectra of single–atom response at <span class="html-italic">r</span> = 4 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m for propagation positions of (<b>a</b>) <span class="html-italic">z</span> = −0.5 mm, (<b>b</b>) <span class="html-italic">z</span> = 0 mm, and (<b>c</b>) <span class="html-italic">z</span> = 0.5 mm.</p> "> Figure 7
<p>Macroscopic high–order harmonic spectra of 800 nm NIR laser pulses simulated by varying the focal length and pressure. (<b>a</b>) Harmonic spectra at different pressures on the gas target position of −0.5–0.5 mm; (<b>b</b>) harmonic spectra at different focal lengths of the air pressure on 20 Torr.</p> "> Figure 8
<p>The harmonic emission spectrum at the propagation distance of 3 mm changing with the propagation position.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, Y.Y.; Li, S.Y.; Wei, S.S.; Guo, F.M.; Zeng, S.L.; Chen, J.G.; Yang, Y.J. Investigation on the influence of atomic potentials on the above threshold ionization. Chin. Phys. B 2014, 23, 053202. [Google Scholar] [CrossRef]
- Chen, J.; Luan, Z.; Zhou, Q.; Alzahrani, A.K.; Biswas, A.; Liu, W. Periodic soliton interactions for higher–order nonlinear Schrödinger equation in optical fibers. Nonlinear Dyn. 2020, 100, 2817–2821. [Google Scholar] [CrossRef]
- Chen, J.; Liu, M.; Liu, X.; Ouyang, Y.; Liu, W.; Wei, Z. The SnSSe SA with high modulation depth for passively Q–switched fiber laser. Nanophotonics 2020, 9, 2549–2555. [Google Scholar] [CrossRef]
- Yuan, H.; Yang, Y.; Guo, F.; Wang, J.; Cui, Z. Influence of multiphoton resonance excitation on the above–threshold ionization of a hydrogen atom. Opt. Express 2022, 30, 19745–19756. [Google Scholar] [CrossRef]
- Yan, J.Z.; Zhao, S.S.; Lan, W.D.; Li, S.Y.; Zhou, S.S.; Chen, J.G.; Zhang, J.Y.; Yang, Y.J. Calculation of high–order harmonic generation of atoms and molecules by combining time series prediction and neural networks. Opt. Express 2022, 30, 35444–35456. [Google Scholar] [CrossRef]
- Yang, Y.J.; Chen, J.G.; Chi, F.P.; Zhu, Q.R.; Zhang, H.X.; Sun, J.Z. Ultrahigh harmonic generation from an atom with superposition of ground state and highly excited states. Chin. Phys. Lett. 2007, 24, 1537–1540. [Google Scholar]
- Harris, S.; Macklin, J.; Hänsch, T. Atomic scale temporal structure inherent to high–order harmonic generation. Opt. Commun. 1993, 100, 487–490. [Google Scholar] [CrossRef]
- Minemoto, S.; Umegaki, T.; Oguchi, Y.; Morishita, T.; Le, A.T.; Watanabe, S.; Sakai, H. Retrieving photorecombination cross sections of atoms from high–order harmonic spectra. Phys. Rev. A 2008, 78, 061402. [Google Scholar] [CrossRef] [Green Version]
- Baggesen, J.C.; Madsen, L.B. On the dipole, velocity and acceleration forms in high–order harmonic generation from a single atom or molecule. J. Phys. B At. Mol. Opt. Phys. 2011, 44, 115601. [Google Scholar] [CrossRef]
- Yu-Jun, Y.; Gao, C.; Ji-Gen, C.; Qi-Ren, Z. A time–distinguished analysis of the harmonic structure from a model molecular ion. Chin. Phys. Lett. 2004, 21, 652. [Google Scholar] [CrossRef]
- Qiao, Y.; Wu, D.; Chen, J.G.; Wang, J.; Guo, F.M.; Yang, Y.J. High–order harmonic generation from H 2+ irradiated by a co–rotating two–color circularly polarized laser field. Phys. Rev. A 2019, 100, 063428. [Google Scholar] [CrossRef]
- Torres, R.; Kajumba, N.; Underwood, J.G.; Robinson, J.; Baker, S.; Tisch, J.; De Nalda, R.; Bryan, W.; Velotta, R.; Altucci, C.; et al. Probing orbital structure of polyatomic molecules by high–order harmonic generation. Phys. Rev. Lett. 2007, 98, 203007. [Google Scholar] [CrossRef] [Green Version]
- Levesque, J.; Mairesse, Y.; Dudovich, N.; Pépin, H.; Kieffer, J.C.; Corkum, P.; Villeneuve, D. Polarization state of high–order harmonic emission from aligned molecules. Phys. Rev. Lett. 2007, 99, 243001. [Google Scholar] [CrossRef] [Green Version]
- Qiao, Y.; Huo, Y.; Liang, H.; Chen, J.; Liu, W.; Yang, Y.; Jiang, S. Robust retrieval method of crystal transition dipole moments by high–order harmonic spectrum. Phys. Rev. B 2023, 107, 075201. [Google Scholar] [CrossRef]
- Jiang, S.; Yu, C.; Chen, J.; Huang, Y.; Lu, R.; Lin, C. Smooth periodic gauge satisfying crystal symmetry and periodicity to study high–harmonic generation in solids. Phys. Rev. B 2020, 102, 155201. [Google Scholar] [CrossRef]
- Qiao, Y.; Chen, J.; Huo, Y.; Liang, H.; Yu, R.; Yu, R.; Yang, Y. Effect of the interference between interband currents on the crystal harmonic spectra. Phys. Rev. A 2023, 107, 023523. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, X.; Jiang, S.; Zhao, X.; Chen, J.; Yang, Y. Cooper minimum of high–order harmonic spectra from an MgO crystal in an ultrashort laser pulse. Phys. Rev. A 2020, 101, 033413. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.T.; Ma, S.y.; Jiang, S.C.; Yang, Y.J.; Zhao, X.; Chen, J.G. All–optical reconstruction of k–dependent transition dipole moment by solid harmonic spectra from ultrashort laser pulses. Opt. Express 2019, 27, 34392–34404. [Google Scholar] [CrossRef]
- Qiao, Y.; Chen, J.; Chen, J. Review on the Reconstruction of Transition Dipole Moments by Solid Harmonic Spectrum. Symmetry 2022, 14, 2646. [Google Scholar] [CrossRef]
- Qiao, Y.; Huo, Y.Q.; Jiang, S.C.; Yang, Y.J.; Chen, J.G. All–optical reconstruction of three–band transition dipole moments by the crystal harmonic spectrum from a two–color laser pulse. Opt. Express 2022, 30, 9971–9982. [Google Scholar] [CrossRef]
- Krause, J.L.; Schafer, K.J.; Kulander, K.C. High–order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 1992, 68, 3535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, P.M.; Toma, E.S.; Breger, P.; Mullot, G.; Augé, F.; Balcou, P.; Muller, H.G.; Agostini, P. Observation of a train of attosecond pulses from high harmonic generation. Science 2001, 292, 1689–1692. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Guo, F.; Yang, Y.; Ding, D. Effect of laser intensity on quantum trajectories in the macroscopic high–order harmonic generation. Chin. Phys. B 2019, 28, 113201. [Google Scholar] [CrossRef]
- Han, J.X.; Wang, J.; Qiao, Y.; Liu, A.H.; Guo, F.M.; Yang, Y.J. Significantly enhanced conversion efficiency of high–order harmonic generation by introducing chirped laser pulses into scheme of spatially inhomogeneous field. Opt. Express 2019, 27, 8768–8776. [Google Scholar] [CrossRef] [PubMed]
- Czwartos, J.; Zaszczyńska, A.; Nowak-Stępniowska, A.; Fok, T.; Budner, B.; Bartnik, A.; Wachulak, P.; Kołbuk, D.; Sajkiewicz, P.; Fiedorowicz, H. The novel approach to physico–chemical modification and cytocompatibility enhancement of fibrous polycaprolactone (PCL) scaffolds using soft X–ray/extreme ultraviolet (SXR/EUV) radiation and low–temperature, SXR/EUV induced, nitrogen and oxygen plasmas. Appl. Surf. Sci. 2022, 606, 154779. [Google Scholar] [CrossRef]
- Attwood, D.T.; Naulleau, P.; Goldberg, K.A.; Tejnil, E.; Chang, C.; Beguiristain, R.; Batson, P.; Bokor, J.; Gullikson, E.M.; Koike, M.; et al. Tunable coherent radiation in the soft X–ray and extreme ultraviolet spectral regions. IEEE J. Quantum Electron. 1999, 35, 709–720. [Google Scholar] [CrossRef]
- Rego, L.; Brooks, N.J.; Nguyen, Q.L.; Román, J.S.; Binnie, I.; Plaja, L.; Kapteyn, H.C.; Murnane, M.M.; Hernández–García, C. Necklace–structured high–harmonic generation for low–divergence, soft X-ray harmonic combs with tunable line spacing. Sci. Adv. 2022, 8, eabj7380. [Google Scholar] [CrossRef]
- Fan, T.; Grychtol, P.; Knut, R.; Hernández–García, C.; Hickstein, D.D.; Zusin, D.; Gentry, C.; Dollar, F.J.; Mancuso, C.A.; Hogle, C.W.; et al. Bright circularly polarized soft X–ray high harmonics for X–ray magnetic circular dichroism. Proc. Natl. Acad. Sci. USA 2015, 112, 14206–14211. [Google Scholar] [CrossRef] [Green Version]
- Chini, M.; Zhao, K.; Chang, Z. The generation, characterization and applications of broadband isolated attosecond pulses. Nat. Photonics 2014, 8, 178–186. [Google Scholar] [CrossRef]
- Park, I.Y.; Kim, S.; Choi, J.; Lee, D.H.; Kim, Y.J.; Kling, M.F.; Stockman, M.I.; Kim, S.W. Plasmonic generation of ultrashort extreme–ultraviolet light pulses. Nat. Photonics 2011, 5, 677–681. [Google Scholar] [CrossRef]
- Kim, S.; Jin, J.; Kim, Y.J.; Park, I.Y.; Kim, Y.; Kim, S.W. High–harmonic generation by resonant plasmon field enhancement. Nature 2008, 453, 757–760. [Google Scholar] [CrossRef]
- Heslar, J.; Telnov, D.A.; Chu, S.I. Enhancement of VUV and EUV generation by field–controlled resonance structures of diatomic molecules. Phys. Rev. A 2016, 93, 063401. [Google Scholar] [CrossRef] [Green Version]
- Rundquist, A.; Durfee III, C.G.; Chang, Z.; Herne, C.; Backus, S.; Murnane, M.M.; Kapteyn, H.C. Phase–matched generation of coherent soft X–rays. Science 1998, 280, 1412–1415. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.S.; Lan, W.D.; Chen, J.G.; Wang, J.; Guo, F.M.; Yang, Y.J. High–order harmonic generation of 1–nonene under linearly polarized laser pulses. Phys. Rev. A 2022, 106, 023510. [Google Scholar] [CrossRef]
- Jiang, S.; Dorfman, K. Detecting electronic coherences by time–domain high–harmonic spectroscopy. Proc. Natl. Acad. Sci. USA 2020, 117, 9776–9781. [Google Scholar] [CrossRef]
- Zhou, S.S.; Yang, Y.J.; Yang, Y.; Suo, M.Y.; Li, D.Y.; Qiao, Y.; Yuan, H.Y.; Lan, W.D.; Hu, M.H. High–order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse. Chin. Phys. B 2023, 32, 013201. [Google Scholar] [CrossRef]
- Popmintchev, T.; Chen, M.C.; Popmintchev, D.; Arpin, P.; Brown, S.; Ališauskas, S.; Andriukaitis, G.; Balčiunas, T.; Mücke, O.D.; Pugzlys, A.; et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid–infrared femtosecond lasers. Science 2012, 336, 1287–1291. [Google Scholar] [CrossRef]
- Gaumnitz, T.; Jain, A.; Pertot, Y.; Huppert, M.; Jordan, I.; Ardana-Lamas, F.; Wörner, H.J. Streaking of 43–attosecond soft–X–ray pulses generated by a passively CEP–stable mid–infrared driver. Opt. Express 2017, 25, 27506–27518. [Google Scholar] [CrossRef]
- Watanabe, S.; Kondo, K.; Nabekawa, Y.; Sagisaka, A.; Kobayashi, Y. Two–color phase control in tunneling ionization and harmonic generation by a strong laser field and its third harmonic. Phys. Rev. Lett. 1994, 73, 2692. [Google Scholar] [CrossRef]
- Tong, X.M.; Chu, S.I. Generation of circularly polarized multiple high–order harmonic emission from two–color crossed laser beams. Phys. Rev. A 1998, 58, R2656. [Google Scholar] [CrossRef] [Green Version]
- Lan, P.; Lu, P.; Cao, W.; Li, Y.; Wang, X. Attosecond ionization gating for isolated attosecond electron wave packet and broadband attosecond xuv pulses. Phys. Rev. A 2007, 76, 051801. [Google Scholar] [CrossRef]
- Hong, W.; Li, Y.; Lu, P.; Lan, P.; Zhang, Q.; Wang, X. Control of quantum paths in the multicycle regime and efficient broadband attosecond pulse generation. JOSA B 2008, 25, 1684–1689. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Li, Y.; Wang, Z.; He, L.; Zhang, Q.; Lan, P.; Lu, P. Efficient supercontinuum generation by UV–assisted midinfrared plasmonic fields. Phys. Rev. A 2014, 89, 023405. [Google Scholar] [CrossRef]
- Takahashi, E.J.; Kanai, T.; Ishikawa, K.L.; Nabekawa, Y.; Midorikawa, K. Coherent water window x ray by phase–matched high–order harmonic generation in neutral media. Phys. Rev. Lett. 2008, 101, 253901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Zeng, P.; Zhou, H. Phase–matching quantum key distribution. Phys. Rev. X 2018, 8, 031043. [Google Scholar] [CrossRef] [Green Version]
- Hareli, L.; Shoulga, G.; Bahabad, A. Phase matching and quasi–phase matching of high–order harmonic generation—A tutorial. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 233001. [Google Scholar] [CrossRef]
- Balcou, P.; Salieres, P.; L’Huillier, A.; Lewenstein, M. Generalized phase–matching conditions for high harmonics: The role of field–gradient forces. Phys. Rev. A 1997, 55, 3204. [Google Scholar] [CrossRef]
- Jianxin, C.; Yuanqin, X.; Qin, Y. High Harmonic Generation in N~ 2 Using Intense fs Laser Pulses. Acta Opt. Sin. 2002, 22, 650–653. [Google Scholar]
- Pan, Y.; Guo, F.; Jin, C.; Yang, Y.; Ding, D. Selection of electron quantum trajectories in the macroscopic high–order harmonics generated by near–infrared lasers. Phys. Rev. A 2019, 99, 033411. [Google Scholar] [CrossRef]
- Wahlström, C.G.; Larsson, J.; Persson, A.; Starczewski, T.; Svanberg, S.; Salieres, P.; Balcou, P.; L’Huillier, A. High–order harmonic generation in rare gases with an intense short–pulse laser. Phys. Rev. A 1993, 48, 4709. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.J.; Lee, D.G.; Cha, Y.H.; Hong, K.H.; Nam, C.H. Generation of nonadiabatic blueshift of high harmonics in an intense femtosecond laser field. Phys. Rev. Lett. 1999, 83, 2544. [Google Scholar] [CrossRef] [Green Version]
- Kan, C.; Capjack, C.; Rankin, R.; Burnett, N. Spectral and temporal structure in high harmonic emission from ionizing atomic gases. Phys. Rev. A 1995, 52, R4336. [Google Scholar] [CrossRef]
- Altucci, C.; Bruzzese, R.; De Lisio, C.; Nisoli, M.; Stagira, S.; De Silvestri, S.; Svelto, O.; Boscolo, A.; Ceccherini, P.; Poletto, L.; et al. Tunable soft–xray radiation by high–order harmonic generation. Phys. Rev. A 1999, 61, 021801. [Google Scholar] [CrossRef]
- Lu, F.M.; Xia, Y.Q.; Zhang, S.; Chen, D.Y. Investigation of tunable coherent XUV light source by high harmonics generation using intense femtosecond laser pulses in Ne. Acta Phys. Sin 2013, 62, 024212. [Google Scholar]
- Reitze, D.H.; Kazamias, S.; Weihe, F.; Mullot, G.; Douillet, D.; Augé, F.; Albert, O.; Ramanathan, V.; Chambaret, J.P.; Hulin, D.; et al. Enhancement of high–order harmonic generation at tuned wavelengths through adaptive control. Opt. Lett. 2004, 29, 86–88. [Google Scholar] [CrossRef]
- Nefedova, V.; Ciappina, M.; Finke, O.; Albrecht, M.; Vábek, J.; Kozlová, M.; Suárez, N.; Pisanty, E.; Lewenstein, M.; Nejdl, J. Determination of the spectral variation origin in high–order harmonic generation in noble gases. Phys. Rev. A 2018, 98, 033414. [Google Scholar] [CrossRef] [Green Version]
- Lewenstein, M.; Balcou, P.; Ivanov, M.Y.; L’huillier, A.; Corkum, P.B. Theory of high–harmonic generation by low–frequency laser fields. Phys. Rev. A 1994, 49, 2117. [Google Scholar] [CrossRef]
- Esarey, E.; Sprangle, P.; Krall, J.; Ting, A. Self–focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quantum Electron. 1997, 33, 1879–1914. [Google Scholar] [CrossRef]
- Takahashi, E.; Tosa, V.; Nabekawa, Y.; Midorikawa, K. Experimental and theoretical analyses of a correlation between pump–pulse propagation and harmonic yield in a long–interaction medium. Phys. Rev. A 2003, 68, 023808. [Google Scholar] [CrossRef]
- Geissler, M.; Tempea, G.; Scrinzi, A.; Schnürer, M.; Krausz, F.; Brabec, T. Light propagation in field–ionizing media: Extreme nonlinear optics. Phys. Rev. Lett. 1999, 83, 2930. [Google Scholar] [CrossRef]
- Siegman, A. Lasers (University Science, Mill Valley, CA, 1986). Chap 1991, 29, 1129–1170. [Google Scholar]
- L’Huillier, A.; Balcou, P.; Candel, S.; Schafer, K.J.; Kulander, K.C. Calculations of high–order harmonic–generation processes in xenon at 1064 nm. Phys. Rev. A 1992, 46, 2778. [Google Scholar] [CrossRef] [PubMed]
- Tosa, V.; Kim, K.T.; Nam, C.H. Macroscopic generation of attosecond–pulse trains in strongly ionized media. Phys. Rev. A 2009, 79, 043828. [Google Scholar] [CrossRef]
- Shang, B.; Qi, P.; Guo, J.; Zhang, Z.; Guo, L.; Chu, C.; Liu, J.; Kosareva, O.G.; Zhang, N.; Lin, L.; et al. Manipulation of Long–Distance femtosecond laser Filamentation: From physical model to acoustic diagnosis. Opt. Laser Technol. 2023, 157, 108636. [Google Scholar] [CrossRef]
- Guo, H.; Wang, T.J.; Zhang, X.; Liu, C.; Chen, N.; Liu, Y.; Sun, H.; Shen, B.; Jin, Y.; Leng, Y.; et al. Direct measurement of radial fluence distribution inside a femtosecond laser filament core. Opt. Express 2020, 28, 15529–15541. [Google Scholar] [CrossRef]
- Zheng, H.; Yin, F.; Wang, T.J.; Liu, Y.; Wei, Y.; Zhu, B.; Zhou, K.; Leng, Y. Time–resolved measurements of electron density and plasma diameter of 1 kHz femtosecond laser filament in air. Chin. Opt. Lett. 2022, 20, 093201. [Google Scholar] [CrossRef]
- Major, B.; Kovács, K.; Svirplys, E.; Anus, M.; Ghafur, O.; Varjú, K.; Vrakking, M.; Tosa, V.; Schütte, B. High–harmonic generation in a strongly overdriven regime. arXiv 2022, arXiv:2203.11021. [Google Scholar] [CrossRef]
- Jin, C.; Chen, M.C.; Sun, H.W.; Lin, C. Extension of water–window harmonic cutoff by laser defocusing–assisted phase matching. Opt. Lett. 2018, 43, 4433–4436. [Google Scholar] [CrossRef]
- Csizmadia, T.; Oldal, L.G.; Ye, P.; Majorosi, S.; Tzallas, P.; Sansone, G.; Tosa, V.; Varjú, K.; Major, B.; Kahaly, S. Detailed study of quantum path interferences in high harmonic generation driven by chirped laser pulses. New J. Phys. 2021, 23, 123012. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, S.; Pan, Y.; Qiao, Y.; Zhou, S.; Yuan, H.; Wang, J.; Guo, F.; Yang, Y. Theoretical Simulation of the High–Order Harmonic Generated from Neon Atom Irradiated by the Intense Laser Pulse. Symmetry 2023, 15, 636. https://doi.org/10.3390/sym15030636
Wei S, Pan Y, Qiao Y, Zhou S, Yuan H, Wang J, Guo F, Yang Y. Theoretical Simulation of the High–Order Harmonic Generated from Neon Atom Irradiated by the Intense Laser Pulse. Symmetry. 2023; 15(3):636. https://doi.org/10.3390/sym15030636
Chicago/Turabian StyleWei, Siqi, Yun Pan, Yue Qiao, Shushan Zhou, Haiying Yuan, Jun Wang, Fuming Guo, and Yujun Yang. 2023. "Theoretical Simulation of the High–Order Harmonic Generated from Neon Atom Irradiated by the Intense Laser Pulse" Symmetry 15, no. 3: 636. https://doi.org/10.3390/sym15030636
APA StyleWei, S., Pan, Y., Qiao, Y., Zhou, S., Yuan, H., Wang, J., Guo, F., & Yang, Y. (2023). Theoretical Simulation of the High–Order Harmonic Generated from Neon Atom Irradiated by the Intense Laser Pulse. Symmetry, 15(3), 636. https://doi.org/10.3390/sym15030636