HyproBert: A Fake News Detection Model Based on Deep Hypercontext
<p>The proposed <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>y</mi> <mi>p</mi> <mi>r</mi> <mi>o</mi> <mi>B</mi> <mi>e</mi> <mi>r</mi> <mi>t</mi> </mrow> </semantics></math> model.</p> "> Figure 2
<p>Structure of a BiGRU network.</p> "> Figure 3
<p>Structure of a self-attention mechanism.</p> "> Figure 4
<p>Structure of a capsule network.</p> "> Figure 5
<p>Evaluations based on filter size of CNN.</p> "> Figure 6
<p>Evaluations based on activation function.</p> "> Figure 7
<p>Evaluations based on number of Epochs.</p> "> Figure 8
<p>Evaluations based on number of neurons.</p> "> Figure 9
<p>Evaluations based on Bi-GRU layers, number of iterations, and training time.</p> "> Figure 10
<p>Evaluations based on number of capsules.</p> "> Figure 11
<p>Evaluations based on dimensions of capsules.</p> "> Figure 12
<p>Evaluations based on number of routing iterations.</p> "> Figure 13
<p>ROC curve.</p> ">
Abstract
:1. Introduction
- i.
- The introduction of a novel deep neural network model, , for fake news detection;
- ii.
- Extraction and evaluation of content attributes at multiple orientations based on deep hypercontext;
- iii.
- Analysis of the developments in hyperparameter optimization on .
2. Literature Review
Current Status and Limitations
3. Methodology
3.1. Data Preprocessing
3.2. The Proposed HyproBert Model
3.2.1. Input Layer
3.2.2. Embedding Layer
3.2.3. Convolutional Layer
3.2.4. Bigru Layer
3.2.5. Attention Layer
3.2.6. Capsule Network Layer
3.2.7. Dense and Output Layer
Algorithm 1 |
|
4. Experiments and Results
4.1. Dataset
4.2. Experimental Settings
4.3. Hyperparameter Settings
4.4. Comparison Models
4.5. Results
5. Discussions
5.1. Convolutional Layer Optimization
5.2. Bigru Optimization
5.3. Capsnet Optimization
5.4. Imbalanced Data Study
5.5. Ablation Study
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
API | Application Programming Interface |
NLP | Natural Language Processing |
ML | Machine Learning |
DL | Deep Learning |
Conv | Convolutional Layer |
GRU | Gated Recurrent Units |
BERT | Bidirectional Encoder Representations from Transformers |
BiGRU | Bidirectional GRU |
BiLSTM | Bidirectional Long Short-Term Memory |
CapsNet | Capsule Neural Network |
References
- Kumar, S.; West, R.; Leskovec, J. Disinformation on the web: Impact, characteristics, and detection of wikipedia hoaxes. In Proceedings of the 25th international conference on world wide web, Montreal, Canada, 11–15 April 2016; pp. 591–602. [Google Scholar]
- Ratkiewicz, J.; Conover, M.; Meiss, M.; Gonçalves, B.; Patil, S.; Flammini, A.; Menczer, F. Truthy: Mapping the spread of astroturf in microblog streams. In Proceedings of the 20th international conference companion on world wide web, Hyderabad, India, 28 March–1 April 2011; pp. 249–252. [Google Scholar]
- Ozbay, F.A.; Alatas, B. Fake news detection within online social media using supervised artificial intelligence algorithms. Phys. Stat. Mech. Its Appl. 2020, 540, 123174. [Google Scholar] [CrossRef]
- Faustini, P.H.A.; Covões, T.F. Fake news detection in multiple platforms and languages. Expert Syst. Appl. 2020, 158, 113503. [Google Scholar] [CrossRef]
- Guo, B.; Ding, Y.; Yao, L.; Liang, Y.; Yu, Z. The Future of False Information Detection on Social Media: New Perspectives and Trends. Acm Comput. Surv. (Csur) 2020, 53, 1–36. [Google Scholar] [CrossRef]
- Ozbay, F.A.; Alatas, B. A novel approach for detection of fake news on social media using metaheuristic optimization algorithms. Elektron. Elektrotechnika 2019, 25, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Rosas, V.; Kleinberg, B.; Lefevre, A.; Mihalcea, R. Automatic detection of fake news. arXiv 2017, arXiv:1708.07104. [Google Scholar]
- Ahmed, H.; Traore, I.; Saad, S. Detection of online fake news using n-gram analysis and machine learning techniques. In International Conference on Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments; Springer: Cham, Switzerland, 2017; pp. 127–138. [Google Scholar]
- Kumar, A.; Sangwan, S.R.; Nayyar, A. Rumour veracity detection on twitter using particle swarm optimized shallow classifers. Multimed. Tools Appl. 2019, 78, 24083–24101. [Google Scholar] [CrossRef]
- Akyol, K.; Sen, B. Modeling and predicting of news popularity in social media sources. Cmccomputers Mater. Contin. 2019, 61, 69–80. [Google Scholar] [CrossRef]
- Asghar, M.Z.; Habib, A.; Habib, A.; Khan, A.; Ali, R.; Khattak, A. Exploring deep neural networks for rumor detection. J. Ambient Intell Human Comput. 2019, 12, 4315–4333. [Google Scholar] [CrossRef]
- Chen, T.; Li, X.; Yin, H.; Zhang, J. Call attention to rumors: Deep attention based recurrent neural networks for early rumor detection. In Proceedings of the Pacifc-Asia Conference on Knowledge Discovery and Data Mining, Melbourne, VIC, Australia, 3–6 June 2018; Springer: Cham, Switzerland, 2018; pp. 40–52. [Google Scholar]
- Kaliyar, R.K.; Goswami, A.; Narang, P. FakeBERT: Fake news detection in social media with a BERT-based deep learning approach. Multimed. Tools Appl. 2021, 80, 11765–11788. [Google Scholar] [CrossRef]
- Ma, J.; Gao, W.; Mitra, P.; Kwon, S.; Jansen, B.J.; Wong, K.F.; Cha, M. Detecting rumors from microblogs with recurrent neural networks 2016. In Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI 2016), New York, NY, USA, 9–15 July 2016. [Google Scholar]
- Shu, K.; Cui, L.; Wang, S.; Lee, D.; Liu, H. Defend: Explainable fake news detection. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 95–405. [Google Scholar]
- Wang, W.Y. Liar, liar pants on fre: A new benchmark dataset for fake news detection. arXiv 2017, arXiv:1705.00648. [Google Scholar]
- Yin, L.; Meng, X.; Li, J.; Sun, J. Relation extraction for massive news texts. Comput. Mater Contin. 2019, 58, 275–285. [Google Scholar] [CrossRef]
- Yu, F.; Liu, Q.; Wu, S.; Wang, L.; Tan, T. A convolutional approach for misinformation identification. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 3901–3907. [Google Scholar]
- Goldani, M.H.; Safabakhsh, R.; Momtazi, S. Convolutional neural network with margin loss for fake news detection. Inf. Process. Manag. 2021, 58, 102418. [Google Scholar] [CrossRef]
- Li, D.; Guo, H.; Wang, Z.; Zheng, Z. Unsupervised fake news detection based on autoencoder. IEEE Access 2021, 9, 29356–29365. [Google Scholar] [CrossRef]
- Kavatagi, S.; Rachh, R. A Context Aware Embedding for the Detection of Hate Speech in Social Media Networks. In Proceedings of the 2021 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON), Pune, India, 29–30 October 2021; pp. 1–4. [Google Scholar]
- Jain, D.; Kumar, A.; Garg, G. Sarcasm detection in mash-up language using soft-attention based bidirectional LSTM and feature-rich CNN. Appl. Soft Comput. 2020, 91, 106198. [Google Scholar] [CrossRef]
- Kumar, A.; Sangwan, S.R.; Arora, A.; Nayyar, A.; Abdel-Basset, M. Sarcasm detection using soft attention-based bidirectional long short-term memory model with convolution network. IEEE Access 2019, 7, 23319–23328. [Google Scholar]
- Nadeem, M.I.; Ahmed, K.; Li, D.; Zheng, Z.; Alkahtani, H.K.; Mostafa, S.M.; Mamyrbayev, O.; Abdel Hameed, H. EFND: A Semantic, Visual, and Socially Augmented Deep Framework for Extreme Fake News Detection. Sustainability 2023, 15, 133. [Google Scholar] [CrossRef]
- Zheng, W.; Xun, Y.; Wu, X.; Deng, Z.; Chen, X.; Sui, Y. A Comparative Study of Class Rebalancing Methods for Security Bug Report Classification. IEEE Trans. Reliab. 2021, 70, 1–13. [Google Scholar] [CrossRef]
- Wang, H.; Gao, Q.; Li, H.; Wang, H.; Yan, L.; Liu, G. A Structural Evolution-Based Anomaly Detection Method for Generalized Evolving Social Networks. Comput. J. 2022, 65, 1189–1199. [Google Scholar] [CrossRef]
- Zheng, W.; Yin, L.; Chen, X.; Ma, Z.; Liu, S.; Yang, B. Knowledge base graph embedding module design for Visual question answering model. Pattern Recognit. 2021, 120, 108153. [Google Scholar] [CrossRef]
- Li, D.; Ahmed, K.; Zheng, Z.; Mohsan, S.A.H.; Alsharif, M.H.; Hadjouni, M.; Jamjoom, M.M.; Mostafa, S.M. Roman Urdu Sentiment Analysis Using Transfer Learning. Appl. Sci. 2022, 12, 10344. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, X.; Ni, X.; Yin, L.; Yang, B. Improving Visual Reasoning Through Semantic Representation. IEEE Access 2021, 9, 91476–91486. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, X.; Yin, L. Sentence Representation Method Based on Multi-Layer Semantic Network. Appl. Sci. 2021, 11, 1316. [Google Scholar] [CrossRef]
- Liang, X.; Luo, L.; Hu, S.; Li, Y. Mapping the knowledge frontiers and evolution of decision making based on agent-based modeling. Knowl.-Based Syst. 2022, 250, 108982. [Google Scholar] [CrossRef]
- Li, J.; Xu, K.; Chaudhuri, S.; Yumer, E.; Zhang, H.; Guibas, L. GRASS: Generative recursive autoencoders for shape structures. ACM Trans. Graph. 2017, 36, 1–14. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, C.; Zheng, L.; Xu, K. ROSEFusion: Random optimization for online dense reconstruction under fast camera motion. ACM Trans. Graph. 2021, 40, 1–17. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, X.; Xi, J.; Hu, X.; Hu, D.; Xu, K. Learning to Detect 3D Symmetry From Single-View RGB-D Images With Weak Supervision. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 1–15. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, Y.; Wang, H.; Xu, K. ASRO-DIO: Active Subspace Random Optimization Based Depth Inertial Odometry. IEEE Trans. Robot. 2002, 1–13. [Google Scholar] [CrossRef]
- She, Q.; Hu, R.; Xu, J.; Liu, M.; Xu, K.; Huang, H. Learning High-DOF Reaching-and-Grasping via Dynamic Representation of Gripper-Object Interaction. ACM Trans. Graph. 2022, 41, 1–14. [Google Scholar] [CrossRef]
- Xie, L.; Zhu, Y.; Yin, M.; Wang, Z.; Ou, D.; Zheng, H.; Yin, G. Self-feature-based point cloud registration method with a novel convolutional Siamese point net for optical measurement of blade profile. Mech. Syst. Signal Process. 2022, 178, 109243. [Google Scholar] [CrossRef]
- Shen, Y.; Ding, N.; Zheng, H.; Li, Y.; Yang, M. Modeling Relation Paths for Knowledge Graph Completion. IEEE Trans. Knowl. Data Eng. 2021, 33, 3607–3617. [Google Scholar] [CrossRef]
- Wahid, J.A.; Shi, L.; Gao, Y.; Yang, B.; Wei, L.; Tao, Y.; Yagoub, I. Topic2Labels: A framework to annotate and classify the social media data through LDA topics and deep learning models for crisis response. Expert Syst. Appl. 2022, 195, 116562. [Google Scholar] [CrossRef]
- Wahid, J.A.; Shi, L.; Gao, Y.; Yang, B.; Tao, Y.; Wei, L.; Hussain, S. Identifying and characterizing the propagation scale of COVID-19 situational information on Twitter: A hybrid text analytic approach. Appl. Sci. 2021, 11, 6526. [Google Scholar] [CrossRef]
- Nadeem, M.I.; Ahmed, K.; Li, D.; Zheng, Z.; Naheed, H.; Muaad, A.Y.; Alqarafi, A.; Abdel Hameed, H. SHO-CNN: A Metaheuristic Optimization of a Convolutional Neural Network for Multi-Label News Classification. Electronics 2023, 12, 113. [Google Scholar] [CrossRef]
- Toumi; Chahrazad; Bouramoul, A. Ensemble learning-based model for fake news detection. In Proceedings of the 2022 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS), Bouaghi, Algeria, 12–13 October 2022; pp. 1–8. [Google Scholar]
- Nasir, J.A.; Khan, O.S.; Varlamis, I. Fake news detection: A hybrid CNN-RNN based deep learning approach. Int. Inf. Manag. Data Insights 2021, 1, 100007. [Google Scholar] [CrossRef]
- Okunoye, B.O.; Ibor, A.E. Hybrid fake news detection technique with genetic search and deep learning. Comput. Electr. Eng. 2022, 103, 108344. [Google Scholar] [CrossRef]
- Hinton, G.E.; Sabour, S.; Frosst, N. Matrix capsules with em routing. In Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3May 2018; pp. 44–51. [Google Scholar]
- Jain, D.K.; Jain, R.; Upadhyay, Y.; Kathuria, A.; Lan, X. Deep refinement: Capsule network with attention mechanism-based system for text classification. Neural Comput. Appl. 2020, 32, 1839–1856. [Google Scholar] [CrossRef]
- Bhattacharjee, U. Capsule network on social media text: An application to automatic detection of clickbaits. In Proceedings of the 2019 11th International Conference on Communication Systems & Networks (COMSNETS), Bengaluru, India, 7–11 January 2019; pp. 473–476. [Google Scholar]
- Du, Y.; Zhao, X.; He, M.; Guo, W. A novel capsule based hybrid neural network for sentiment classification. IEEE Access 2019, 7, 39321–39328. [Google Scholar] [CrossRef]
- Wang, B.; Ding, H. YNU NLP at SemEval-2019 task 5: Attention and capsule ensemble for identifying hate speech. In Proceedings of the 13th International Workshop on Semantic Evaluation, Minneapolis, MN, USA, 6–7 June 2019; pp. 529–534. [Google Scholar]
- Ding, Y.; Zhou, X.; Zhang, X. YNU_DYX at SemEval-2019 task 5: A stacked BiGRU model based on capsule network in detection of hate. In Proceedings of the 13th International Workshop on Semantic Evaluation, Minneapolis, MN, USA, 6–7 June 2019; pp. 535–539. [Google Scholar]
- Ahmed, K.; Nadeem, M.I.; Li, D.; Zheng, Z.; Ghadi, Y.Y.; Assam, M.; Mohamed, H.G. Exploiting Stacked Autoencoders for Improved Sentiment Analysis. Appl. Sci. 2022, 12, 12380. [Google Scholar] [CrossRef]
- Hinton, G.E.; Krizhevsky, A.; Wang, S.D. Transforming autoencoders. In Artificial Neural Networks and Machine Learning; Honkela, T., Duch, W., Girolami, M., Kaski, S., Eds.; Springer: Cham, Switzerland, 2011; pp. 44–51. [Google Scholar]
- Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic routing between capsules. Adv. Neural Inf. Process. Syst. 2017, 30, 3856–3866. [Google Scholar]
- Abu Salem, F.K.; Al Feel, R.; Elbassuoni, S.; Jaber, M.; Farah, M. FA-KES: A Fake News Dataset around the Syrian War. Proc. Int. Aaai Conf. Web Soc. Media 2019, 13, 573–582. [Google Scholar] [CrossRef]
- Ahmed, H.; Traore, I.; Saad, S. Detecting opinion spams and fake news using text classification. J. Secur. Priv. 2018, 1, e9. [Google Scholar] [CrossRef] [Green Version]
- Hossin, M.; Sulaiman, M.N. A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process 2015, 5, 1. [Google Scholar]
- Elhadad, K.M.; Li, F.K.; Gebali, F. A novel approach for selecting hybrid features from online news textual metadata for fake news detection. In Proceedings of the International conference on p2p, parallel, grid, cloud and internet computing 2019, Antwerp, Belgium, 7–9 November 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 914–925. [Google Scholar]
- Drummond, C.; Holte, R.C. C4. 5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling. In Workshop on Learning from Imbalanced Datasets II; ICML: Washington DC, USA, 2003; Volume 11. [Google Scholar]
- Li, J.; Wu, Y.; Fong, S.; Tallón-Ballesteros, A.J.; Yang, X.; Wu, F. A binary PSO-based ensemble under-sampling model for rebalancing imbalanced training data. J. Supercomput. 2022, 78, 7428–7463. [Google Scholar] [CrossRef]
- Mirmorsal, M.; Motameni, H.; Mohamadi, H. KNNGAN: An oversampling technique for textual imbalanced datasets. J. Supercomput. 2022, 1–36. [Google Scholar] [CrossRef]
- Lewis, D.D.; Yang, Y.; Rose, T.G.; Li, F. RCV1: A new benchmark collection for text categorization research. J. Mach. Learn. Res. 2004, 5, 361–397. [Google Scholar]
- Ferri, C.; Hernández-Orallo, J.; Modroiu, R. An experimental comparison of performance measures for classifcation. Pattern Recognit. Lett. 2009, 30, 27–38. [Google Scholar] [CrossRef]
- Haibo, H.; Yunqian, M. Imbalanced Learning: Foundations, Algorithms, and Applications, 1st ed.; Wiley-IEEE Press: Hoboken, NJ, USA, 2013. [Google Scholar]
- García, V.; Mollineda, R.A.; Sánchez, J.S. Index of balanced accuracy: A performance measure for skewed class distributions. In Pattern Recognition and Image Analysis; Araujo, H., Mendonça, A.M., Pinho, A.J., Torres, M.I., Eds.; IbPRIA 2009; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5524. [Google Scholar] [CrossRef] [Green Version]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefcient (MCC) over F1 score and accuracy in binary classifcation evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef] [Green Version]
- Branco, P.; Torgo, L.; Ribeiro, R. A survey of predictive modelling under imbalanced distributions. Acm Comput. Surv (Csur) 2015, 49, 1–50. [Google Scholar] [CrossRef] [Green Version]
- Andrew, P.B. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit 1997, 30, 1145–1159. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.M.; Khoshgoftaar, T.M. Survey on deep learning with class imbalance. J. Big Data 2019, 6, 27. [Google Scholar] [CrossRef]
Dataset | Total | Topic | # Of Articles | Class |
---|---|---|---|---|
FA-KES | 804 | miscellaneous | 378 | Fake |
miscellaneous | 426 | True | ||
ISOT | 44898 | government news | 1570 | Fake |
Middle East | 778 | Fake | ||
US news | 783 | Fake | ||
left news | 4459 | Fake | ||
politics | 6841 | Fake | ||
news | 9050 | Fake | ||
world news | 10,145 | True | ||
politics news | 11,272 | True |
Dataset | Accuracy | Precision | Recall | F_Measure |
---|---|---|---|---|
LR | 49.82 | 50.46 | 49.65 | 49.27 |
RF | 53.92 | 56.39 | 53.42 | 54.14 |
MNB | 38.88 | 39.40 | 38.74 | 32.86 |
KNNs | 57.62 | 58.53 | 57.17 | 57.30 |
AB | 47.57 | 49.12 | 47.27 | 47.12 |
DT(Elhadad et al. [57]) | 58.63 | 63.35 | 58.21 | 50.85 |
CNN | 50.68 | 55.74 | 50.35 | 48.83 |
RNN | 50.75 | 51.27 | 50.53 | 50.43 |
LSTM | 59.66 | 58.24 | 59.17 | 58.92 |
BiLSTM | 59.75 | 53.42 | 59.45 | 58.92 |
BiGRU | 60.85 | 57.97 | 60.28 | 60.44 |
BiLSTM-CNN+task-specific word embedding [11] | 60.9 | 61.48 | 58.69 | 60.19 |
CALLATRUMORS [12] | 60.45 | 61.52 | 59.84 | 60.12 |
FakeBERT [13] | 60.95 | 61.87 | 59.89 | 60.43 |
Ensemble model [42] | 54.74 | 55.25 | 54.18 | 54.27 |
Hybrid CNN-RNN [43] | 60 | 59 | 60 | 59 |
HyproBert | 61.15 | 60.40 | 61.07 | 61.09 |
Dataset | Accuracy | Precision | Recall | F_Measure |
---|---|---|---|---|
LR | 52.38 | 50.15 | 52.34 | 42.92 |
RF | 92.42 | 92.25 | 92.04 | 92.18 |
MNB | 60.25 | 60.34 | 60.35 | 60.47 |
KNNs | 60.14 | 67.35 | 61.57 | 56.39 |
AB | 92.29 | 91.49 | 91.34 | 91.25 |
DT(Elhadad et al. [57]) | 100 | – | – | – |
CNN | 99.24 | 98.45 | 98.72 | 98.44 |
RNN | 98.74 | 98.21 | 98.42 | 98.19 |
LSTM | 98.33 | 98.44 | 97.25 | 97.64 |
BiLSTM | 98.43 | 98.61 | 97.11 | 98.75 |
BiGRU | 98.68 | 98.17 | 96.73 | 98.21 |
BiLSTM-CNN+task-specific word embedding [11] | 98.82 | 98.26 | 97.28 | 98.24 |
CALLATRUMORS [12] | 97.47 | 96.59 | 97.17 | 97.28 |
FakeBERT [13] | 99.12 | 98.8 99 | 98.93 | |
Ensemble model [42] | 87.17 | 89.47 | 86.50 | 86.53 |
Hybrid CNN-RNN [43] | 99 | 99 | 99 | 99 |
HyproBert | 99.30 | 99.12 | 99.14 | 99.20 |
# of Layers | Accuracy | Precision | Recall | F_Measure |
---|---|---|---|---|
1 | 59.97 | 59.98 | 59.62 | 59.74 |
2 | 61.10 | 60.89 | 60.60 | 59.97 |
3 | 61.14 | 59.86 | 59.63 | 59.74 |
4 | 61.15 | 60.40 | 61.07 | 61.09 |
# of Layers | Accuracy | Precision | Recall | F_Measure |
---|---|---|---|---|
1 | 99.07 | 98.63 | 97.62 | 98.74 |
2 | 99.10 | 98.93 | 97.60 | 98.96 |
3 | 99.11 | 98.61 | 97.63 | 98.99 |
4 | 99.30 | 99.12 | 99.14 | 99.20 |
Dataset | Accuracy | Precision | Sensitivity | Specificity | AUC |
---|---|---|---|---|---|
LR | 44.72 | 48.98 | 44.37 | 41.62 | 42.38 |
RF | 82.64 | 82.91 | 82.14 | 77.52 | 80.91 |
MNB | 48.92 | 50.41 | 49.34 | 46.28 | 45.22 |
KNNs | 49.25 | 47.85 | 49.92 | 47.56 | 47.02 |
AB | 72.96 | 76.61 | 73.88 | 70.36 | 70.07 |
DT(Elhadad et al. [57]) | 84.39 | 85.41 | 85.21 | 81.01 | 82.78 |
CNN | 69.89 | 68.36 | 71.58 | 67.29 | 67.36 |
RNN | 77 | 78 | 77 | 70 | 73.5 |
LSTM | 88.34 | 91.23 | 90.51 | 84.52 | 86.37 |
BiLSTM | 89.23 | 90.74 | 89.75 | 87.37 | 87.64 |
BiGRU | 93.91 | 95.35 | 95.04 | 93.14 | 91.98 |
BiLSTM-CNN+task-specific word embedding [11] | 93.83 | 95.82 | 95.11 | 93.27 | 92.13 |
CALLATRUMORS [12] | 92.26 | 95.93 | 93.21 | 88.26 | 91.59 |
FakeBERT [13] | 93.28 | 94.81 | 94.21 | 90.36 | 90.86 |
Ensemble model [42] | 69.37 | 74.34 | 72.19 | 67.59 | 68.44 |
Hybrid CNN-RNN [43] | 92.96 | 94.78 | 92.17 | 88.40 | 89.69 |
HyproBert | 95.67 | 97.12 | 95.88 | 92.94 | 94.14 |
Dataset | Accuracy | Precision | Sensitivity | Specificity | AUC |
---|---|---|---|---|---|
ISOT | 99.30 | 99.12 | 99.07 | 99.03 | 99.20 |
ISOT-R10 | 95.67 | 97.13 | 95.88 | 92.94 | 94.14 |
ISOT-R20 | 94.73 | 95.98 | 93.91 | 91.48 | 93.58 |
ISOT-R30 | 92.18 | 93.46 | 90.78 | 90.12 | 92.04 |
Datasets | BiGRU + CapsNet | BiLSTM + CapsNet | Conv + BiLSTM | Conv + BiGRU |
---|---|---|---|---|
+Conv | +Attention + CapsNet | +Attention + CapsNet | ||
FA-KES | 52.67 | 51.83 | 54.03 | 61.15 |
ISOT | 72.10 | 69.35 | 83.89 | 99.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadeem, M.I.; Mohsan, S.A.H.; Ahmed, K.; Li, D.; Zheng, Z.; Shafiq, M.; Karim, F.K.; Mostafa, S.M. HyproBert: A Fake News Detection Model Based on Deep Hypercontext. Symmetry 2023, 15, 296. https://doi.org/10.3390/sym15020296
Nadeem MI, Mohsan SAH, Ahmed K, Li D, Zheng Z, Shafiq M, Karim FK, Mostafa SM. HyproBert: A Fake News Detection Model Based on Deep Hypercontext. Symmetry. 2023; 15(2):296. https://doi.org/10.3390/sym15020296
Chicago/Turabian StyleNadeem, Muhammad Imran, Syed Agha Hassnain Mohsan, Kanwal Ahmed, Dun Li, Zhiyun Zheng, Muhammad Shafiq, Faten Khalid Karim, and Samih M. Mostafa. 2023. "HyproBert: A Fake News Detection Model Based on Deep Hypercontext" Symmetry 15, no. 2: 296. https://doi.org/10.3390/sym15020296
APA StyleNadeem, M. I., Mohsan, S. A. H., Ahmed, K., Li, D., Zheng, Z., Shafiq, M., Karim, F. K., & Mostafa, S. M. (2023). HyproBert: A Fake News Detection Model Based on Deep Hypercontext. Symmetry, 15(2), 296. https://doi.org/10.3390/sym15020296