Gait Phase Classification of Lower Limb Exoskeleton Based on a Compound Network Model
<p>Block diagram of the gait acquisition system.</p> "> Figure 2
<p>Relationship between the foot and ground of the lower limb exoskeleton robot: foot lift (L), foot hang (H), and foot support (S).</p> "> Figure 3
<p>Time-varying curve of gait phase at 6 km/h.</p> "> Figure 4
<p>Positions of optical markers and inertial measurement units (IMUs).</p> "> Figure 5
<p>Overall Structure of the Network Model.</p> "> Figure 6
<p>Structure diagram of long short-term memory (LSTM) cycle unit.</p> "> Figure 7
<p>Bidirectional long short-term memory (BiLSTM) neural network.</p> "> Figure 8
<p>Classification accuracy under CNN-BiLSTM network model.</p> "> Figure 9
<p>Classification accuracy under LSTM network model.</p> "> Figure 10
<p>Classification accuracy under gated recurrent unit (GRU) network model.</p> "> Figure 11
<p>Sample size of each gait phase.</p> "> Figure 12
<p>Classification accuracy at 50 Hz.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Processing
2.2. CNN-BiLSTM Network Model for Gait Phase Classification
2.2.1. CNN Layer
2.2.2. BiLSTM Layer
2.3. Model Training Loss Function
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, Y.; Wu, X.; Yi, J.; Wang, C.; Chen, C. A Review on Human-Exoskeleton Coordination towards Lower Limb Robotic Exoskeleton Systems. Int. J. Robot. Autom. 2019, 34, 431–451. [Google Scholar] [CrossRef] [Green Version]
- Kazerooni, H.; Racine, J.L.; Huang, L.; Steger, R. On the Control of the Berkeley Lower Extremity Exoskeleton (BLEEX). In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2006; pp. 4353–4360. [Google Scholar] [CrossRef]
- Bogue, R. Exoskeletons and robotic prosthetics: A review of recent developments. Ind. Robot. Int. J. 2009, 36, 421–427. [Google Scholar] [CrossRef]
- Kawamoto, H.; Kandone, H.; Sakurai, T.; Ariyasu, R.; Ueno, Y.; Eguchi, K.; Sankai, Y. Development of an assist controller with robot suit HAL for hemiplegic patients using motion data on the unaffected side. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; Volume 2014, pp. 3077–3080. [Google Scholar] [CrossRef]
- Quintero, H.A.; Farris, R.J.; Goldfarb, M. Control and implementation of a powered lower limb orthosis to aid walking in paraplegic individuals. In Proceedings of the International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; Volume 2011, p. 5975481. [Google Scholar] [CrossRef] [Green Version]
- Talaty, M.; Esquenazi, A.; Briceno, J.E. Differentiating ability in users of the ReWalk(TM) powered exoskeleton: An analysis of walking kinematics. In Proceedings of the International Conference on Rehabilitation Robotics, Seattle, WA, USA, 20–24 June 2013; Volume 2013, p. 6650469. [Google Scholar] [CrossRef]
- Rifai, H.; Mohammed, S.; Djouani, K.; Amirat, Y. Toward Lower Limbs Functional Rehabilitation Through a Knee-Joint Exoskeleton. IEEE Trans. Control Syst. Technol. 2017, 25, 712–719. [Google Scholar] [CrossRef]
- Lim, D.-H.; Kim, W.-S.; Kim, H.-J.; Han, C.-S. Development of real-time gait phase detection system for a lower extremity exoskeleton robot. Int. J. Precis. Eng. Manuf. 2017, 18, 681–687. [Google Scholar] [CrossRef]
- Liu, Z.J.; Lin, W.; Geng, Y.L.; Yang, P. Intent Pattern Recognition of Lower-limb Motion Based on Mechanical Sensors. IEEE-CAA J. Autom. Sin. 2017, 4, 651–660. [Google Scholar] [CrossRef]
- Nguyen, N.D.; Bui, D.T.; Truong, P.H.; Jeong, G.M. Classification of Five Ambulatory Activities Regarding Stair and Incline Walking Using Smart Shoes. IEEE Sens. J. 2018, 18, 5422–5428. [Google Scholar] [CrossRef]
- Hsu, Y.L.; Yang, S.C.; Chang, H.C.; Lai, H.C. Human Daily and Sport Activity Recognition Using a Wearable inertial Sensor Network. IEEE Access 2018, 6, 31715–31728. [Google Scholar] [CrossRef]
- Wu, X.; Ma, Y.; Yong, X.; Wang, C.; He, Y.; Li, N. Locomotion Mode Identification and Gait Phase Estimation for Exoskeletons During Continuous Multilocomotion Tasks. IEEE Trans. Cogn. Dev. Syst. 2021, 13, 45–56. [Google Scholar] [CrossRef]
- Qian, Y.P.; Wang, Y.N.; Chen, C.H.; Xiong, J.F.; Leng, Y.Q.; Yu, H.Y.; Fu, C.L. Predictive Locomotion Mode Recognition and Accurate Gait Phase Estimation for Hip Exoskeleton on Various Terrains. IEEE Robot. Autom. Lett. 2022, 7, 6439–6446. [Google Scholar] [CrossRef]
- Wei, P.N.; Zhang, J.H.; Tian, F.F.; Hong, J. A comparison of neural networks algorithms for EEG and sEMG features based gait phases recognition. Biomed. Signal Proc. Control 2021, 68, 102587. [Google Scholar] [CrossRef]
- Qin, T.; Yang, Y.; Wen, B.; Chen, Z.X.; Bao, Z.; Dong, H.; Dou, K.; Yang, C.M. Research on human gait prediction and recognition algorithm of lower limb-assisted exoskeleton robot. Intell. Serv. Robot. 2021, 14, 445–457. [Google Scholar] [CrossRef]
- Yun, Y.; Kim, H.C.; Shin, S.Y.; Lee, J.; Deshpande, A.D.; Kim, C. Statistical method for prediction of gait kinematics with Gaussian process regression. J. Biomech. 2014, 47, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.Z.; Qu, C.X.; Ma, T.; Qu, S.G.; Yin, P.; Zhao, N.; Xia, Y.M. Research on a gait detection system and recognition algorithm for lower limb exoskeleton robot. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 298. [Google Scholar] [CrossRef]
- Lee, T.H.; Kim, I.; Lee, S.H. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network. Sensors 2021, 21, 2807. [Google Scholar] [CrossRef]
- Qiu, J.; Liu, H.X. Gait Recognition for Human-Exoskeleton System in Locomotion Based on Ensemble Empirical Mode Decomposition. Math. Probl. Eng. 2021, 2021, 5039285. [Google Scholar] [CrossRef]
- Lu, Y.Z.; Wang, H.; Hu, F.; Zhou, B.; Xi, H.L. Effective recognition of human lower limb jump locomotion phases based on multi-sensor information fusion and machine learning. Med. Biol. Eng. Comput. 2021, 59, 883–899. [Google Scholar] [CrossRef]
- Lu, Y.Z.; Wang, H.; Qi, Y.Y.; Xi, H.L. Evaluation of classification performance in human lower limb jump phases of signal correlation information and LSTM models. Biomed. Signal Proc. Control 2021, 64, 102279. [Google Scholar] [CrossRef]
- Huang, L.P.; Zheng, J.B.; Hu, H.C. Online Gait Phase Detection in Complex Environment Based on Distance and Multi-Sensors Information Fusion Using Inertial Measurement Units. Int. J. Soc. Robot. 2022, 14, 413–428. [Google Scholar] [CrossRef]
- Yunas, S.U.; Ozanyan, K.B. Gait Activity Classification Using Multi-Modality Sensor Fusion: A Deep Learning Approach. IEEE Sens. J. 2021, 21, 16870–16879. [Google Scholar] [CrossRef]
- Wang, X.J.; Dong, D.P.; Chi, X.K.; Wang, S.P.; Miao, Y.N.; An, M.L.; Gavrilov, A.I. sEMG-based consecutive estimation of human lower limb movement by using multi-branch neural network. Biomed. Signal Proc. Control 2021, 68, 102781. [Google Scholar] [CrossRef]
- Kang, I.; Molinaro, D.D.; Duggal, S.; Chen, Y.; Kunapuli, P.; Young, A.J. Real-Time Gait Phase Estimation for Robotic Hip Exoskeleton Control During Multimodal Locomotion. IEEE Robot. Autom. Lett. 2021, 6, 3491–3497. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yuan, Y.; Zhang, X.; Wang, C.; Xu, T.; Tao, D. Gait Phase Classification for a Lower Limb Exoskeleton System Based on a Graph Convolutional Network Model. IEEE Trans. Ind. Electron. 2022, 69, 4999–5008. [Google Scholar] [CrossRef]
- Gronley, J.K.; Perry, J. Gait Analysis Techniques—Rancho-Los-Amigos-Hospital Gait-Laboratory. Phys. Ther. 1984, 64, 1831–1838. [Google Scholar] [CrossRef]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Proc. 1997, 45, 2673–2681. [Google Scholar] [CrossRef]
Item | Value |
---|---|
Weight | 5.3 kg |
Adjusted scope of the wears | 165–185 cm |
Angle range of hip joint | −90°–140° |
Angle range of hip joint | 0°–135° |
Angle range of hip joint | −75°–75° |
NO | Height (cm) | Weight (kg) | Gender |
---|---|---|---|
1 | 160 | 50 | female |
2 | 170 | 79 | male |
3 | 180 | 88 | male |
4 | 173 | 84.3 | male |
5 | 171 | 65 | male |
6 | 180 | 92 | male |
7 | 175 | 58 | male |
Long- and Short-Term Formal Definition Description | Formalized Definition |
---|---|
Input of the gait data is expressed as matrix | |
Output of the CNN layer is expressed as matrix | |
Output of the BiLSTM layer is expressed as matrix |
Accuracy | CNN-BiLSTM | LSTM | GRU |
---|---|---|---|
1 | 91.24% | 91.08% | 90.94% |
2 | 92.32% | 91.56% | 91.74% |
3 | 93.53% | 93.27% | 92.79% |
4 | 93.81% | 93.68% | 93.37% |
5 | 95.09% | 94.13% | 94.31% |
6 | 92.29% | 92.01% | 91.96% |
7 | 92.64% | 92.27% | 91.64% |
Accuracy | CNN-BiLSTM | LSTM | GRU |
---|---|---|---|
LH | 69% | 68% | 70% |
LS | 96% | 94% | 95% |
HL | 82% | 76% | 82% |
HS | 97% | 96% | 96% |
SL | 94% | 94% | 92% |
SH | 98% | 98% | 98% |
SS | 81% | 23% | 17% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Li, J.; Yang, D.; Wei, W. Gait Phase Classification of Lower Limb Exoskeleton Based on a Compound Network Model. Symmetry 2023, 15, 163. https://doi.org/10.3390/sym15010163
Xia Y, Li J, Yang D, Wei W. Gait Phase Classification of Lower Limb Exoskeleton Based on a Compound Network Model. Symmetry. 2023; 15(1):163. https://doi.org/10.3390/sym15010163
Chicago/Turabian StyleXia, Yuxuan, Jiaqian Li, Dong Yang, and Wei Wei. 2023. "Gait Phase Classification of Lower Limb Exoskeleton Based on a Compound Network Model" Symmetry 15, no. 1: 163. https://doi.org/10.3390/sym15010163
APA StyleXia, Y., Li, J., Yang, D., & Wei, W. (2023). Gait Phase Classification of Lower Limb Exoskeleton Based on a Compound Network Model. Symmetry, 15(1), 163. https://doi.org/10.3390/sym15010163