Solving a System of Integral Equations in Rectangular Menger Probabilistic Metric Spaces and Rectangular Menger Probabilistic b-Metric Spaces
Abstract
:1. Introduction and Background
- (i)
- if ,
- (ii)
- for all ,
- (iii)
- there exists a real number such that for all .
- (i)
- if ,
- (ii)
- ,
- (iii)
- .
- (i)
- if ,
- (ii)
- ,
- (iii)
- .
- (i)
- Associative and commutative properties;
- (ii)
- Continuity;
- (iii)
- for all ;
- (iv)
- when , and , for each
- (i)
- for all ;
- (ii)
- for all and ;
- (iii)
- for all and .
- (i)
- if ;
- (ii)
- ;
- (iii)
- .
- (i)
- if ;
- (ii)
- is strictly monotone non-decreasing and ;
- (iii)
- φ is left-continuous in ;
- (iv)
- φ is continuous at 0.
2. New Fixed-Point Theorem for Single-Valued Operators in Space
- if ;
- ;
- .
3. New Coupled-Fixed-Point Theorem in Space
- if ,
- )
- ,
- .
4. An Application to a System of Integral Equations
- (i)
- ;
- (ii)
- For every and all , we obtain
- (iii)
- .
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karapınar, E.; Kumari, P.S.; Lateef, D. A new approach to the solution of the Fredholm integral equation via a fixed point on extended b-metric spaces. Symmetry 2018, 10, 512. [Google Scholar] [CrossRef] [Green Version]
- Micula, S. Numerical Solution of Two-Dimensional Fredholm–Volterra Integral Equations of the Second Kind. Symmetry 2021, 13, 1326. [Google Scholar] [CrossRef]
- Bazighifan, O.; Ali, A.H.; Mofarreh, F.; Raffoul, Y.N. Extended Approach to the Asymptotic Behavior and Symmetric Solutions of Advanced Differential Equations. Symmetry 2022, 14, 686. [Google Scholar] [CrossRef]
- Leuch, A.; Papariello, L.; Zilberberg, O.; Degen, C.L.; Chitra, R.; Eichler, A. Parametric symmetry breaking in a nonlinear resonator. Phys. Rev. Lett. 2016, 117, 214101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shtern, V.; Hussain, F. Collapse, symmetry breaking, and hysteresis in swirling flows. Annu. Rev. Fluid Mech. 1999, 31, 537–566. [Google Scholar] [CrossRef] [Green Version]
- Bakhtin, I. The contraction mapping in almost metric spaces. Funct. Ana. Gos. Ped. Inst. Unianowsk 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Chaharpashlou, R.; Saadati, R. Best approximation of a nonlinear fractional Volterra integro-differential equation in matrix MB-space. Adv. Differ. Equ. 2021, 2021, 118. [Google Scholar] [CrossRef]
- Chaharpashlou, R.; O’Regan, D.; Park, C.; Saadati, R. C*-Algebra valued fuzzy normed spaces with application of Hyers–Ulam stability of a random integral equation. Adv. Differ. Equ. 2020, 2020, 326. [Google Scholar] [CrossRef]
- Chaharpashlou, R.; Saadati, R.; Atangana, A. Ulam–Hyers–Rassias stability for nonlinear Ψ-Hilfer stochastic fractional differential equation with uncertainty. Adv. Differ. Equ. 2020, 2020, 339. [Google Scholar] [CrossRef]
- Lotfali Ghasab, E.; Majani, H.; De la Sen, M.; Soleimani Rad, G. e-Distance in Menger PGM Spaces with an Application. Axioms 2020, 10, 3. [Google Scholar] [CrossRef]
- Lotfali, G.E.; Hamid, M.; Soleimani, R.G. Fixed Points of Set-valued F-contraction Operators in Quasi-ordered Metric Spaces with an Application to Integral Equations. J. Sib. Fed. Univ. Math. Phys. 2021, 14, 150–158. [Google Scholar]
- Lotfali Ghasab, E.; Majani, H.; Soleimani Rad, G. Integral type contraction and coupled fixed point theorems in ordered G-metric spaces. J. Linear Topol. Algebra (JLTA) 2020, 9, 113–120. [Google Scholar]
- Ghasab, E.L.; Majani, H.; Karapinar, E.; Rad, G.S. New fixed point results in-quasi-metric spaces and an application. Adv. Math. Phys. 2020, 2020, 9452350. [Google Scholar] [CrossRef]
- Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Rahimi, H.; Rad, G.S. Fixed Point Theory in Various Spaces: Comparison Between Various Contractions; LAP Lambert Academic Publishing: Saarbrucken, Germany, 2013. [Google Scholar]
- Rossafi, M.; Kari, A.; Park, C.; Lee, J.R. New fixed point theorems for θ-ϕ-contraction on b-metric spaces. J. Math. Comput. Sci. 2023, 29, 12–27. [Google Scholar] [CrossRef]
- Abusalim, S.M.; Fadail, Z.M. New coupled and common coupled fixed point results with generalized c-distance on cone b-metric spaces. J. Math. Comput. Sci. 2022, 25, 209–218. [Google Scholar] [CrossRef]
- Mishra, L.N.; Dewangan, V.; Mishra, V.N.; Karateke, S. Best proximity points of admissible almost generalized weakly contractive mappings with rational expressions on b-metric spaces. J. Math. Comput. Sci. 2021, 22, 97–109. [Google Scholar] [CrossRef]
- Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. 2000, 57, 31–37. [Google Scholar] [CrossRef]
- George, R.; Radenovic, S.; Reshma, K.; Shukla, S. Rectangular b-metric space and contraction principles. J. Nonlinear Sci. Appl. 2015, 8, 1005–1013. [Google Scholar] [CrossRef]
- Menger, K. Statistical Metrics. Proc. Natl. Acad. Sci. USA 1942, 28, 535–537. [Google Scholar] [CrossRef] [Green Version]
- Bharucha-Raid, A.; Sehgal, V. Fixed point of contraction mappings on PM-spaces. Math. Syst. Theory 1972, 6, 97–100. [Google Scholar]
- Schweizer, B.; Sklar, A. Probabilistic Metric Spaces; Courier Corporation: Washington, DC, USA, 2011. [Google Scholar]
- Ćirić, L.B.; Miheţ, D.; Saadati, R. Monotone generalized contractions in partially ordered probabilistic metric spaces. Topol. Appl. 2009, 156, 2838–2844. [Google Scholar] [CrossRef] [Green Version]
- Ćirić, L. Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces. Nonlinear Anal. Theory Methods Appl. 2010, 72, 2009–2018. [Google Scholar] [CrossRef]
- Gopal, D.; Abbas, M.; Vetro, C. Some new fixed point theorems in Menger PM-spaces with application to Volterra type integral equation. Appl. Math. Comput. 2014, 232, 955–967. [Google Scholar] [CrossRef]
- Mihet, D. Multivalued generalisations of probabilistic contractions. J. Math. Anal. Appl. 2005, 304, 464–472. [Google Scholar] [CrossRef]
- Sadeghi, Z.; Vaezpour, S. Fixed point theorems for multivalued and single-valued contractive mappings on Menger PM spaces with applications. J. Fixed Point Theory Appl. 2018, 20, 114. [Google Scholar] [CrossRef]
- Stephen, T.; Rohen, Y.; Singh, M.K.; Devi, K.S. Some rational F-contractions in b-metric spaces and fixed points. Nonlinear Funct. Anal. Appl. 2022, 27, 309–322. [Google Scholar]
- Mostefaoui, Z.; Bousselsal, M.; Kim, J.K. Some results in fixed point theory concerning rectangular b-metric spaces. Nonlinear Funct. Anal. Appl. 2019, 24, 49–59. [Google Scholar]
- Rossafi, M.; Massit, H. Some fixed point theorems for generalized Kannan type mappings in rectangular b-metric spaces. Nonlinear Funct. Anal. Appl. 2022, 27, 663–677. [Google Scholar]
- Hadžić, O.; Pap, E. Fixed Point Theory in Probabilistic Metric Spaces; Springer: Berlin/Heidelberg, Germany, 2001; Volume 536. [Google Scholar]
- Jachymski, J. On probabilistic φ-contractions on Menger spaces. Nonlinear Anal. Theory Methods Appl. 2010, 73, 2199–2203. [Google Scholar] [CrossRef]
- Hasanvand, F.; Khanehgir, M. Some fixed point theorems in Menger PbM-spaces with an application. Fixed Point Theory Appl. 2015, 2015, 81. [Google Scholar] [CrossRef] [Green Version]
- Gunter, C.A. Semantics of Programming Languages: Structures and Techniques; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Choudhury, B.S.; Das, K. A new contraction principle in Menger spaces. Acta Math. Sin. Engl. Ser. 2008, 24, 1379–1386. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghasab, E.L.; Chaharpashlou, R.; Lopes, A.M. Solving a System of Integral Equations in Rectangular Menger Probabilistic Metric Spaces and Rectangular Menger Probabilistic b-Metric Spaces. Symmetry 2023, 15, 70. https://doi.org/10.3390/sym15010070
Ghasab EL, Chaharpashlou R, Lopes AM. Solving a System of Integral Equations in Rectangular Menger Probabilistic Metric Spaces and Rectangular Menger Probabilistic b-Metric Spaces. Symmetry. 2023; 15(1):70. https://doi.org/10.3390/sym15010070
Chicago/Turabian StyleGhasab, Ehsan Lotfali, Reza Chaharpashlou, and António M. Lopes. 2023. "Solving a System of Integral Equations in Rectangular Menger Probabilistic Metric Spaces and Rectangular Menger Probabilistic b-Metric Spaces" Symmetry 15, no. 1: 70. https://doi.org/10.3390/sym15010070
APA StyleGhasab, E. L., Chaharpashlou, R., & Lopes, A. M. (2023). Solving a System of Integral Equations in Rectangular Menger Probabilistic Metric Spaces and Rectangular Menger Probabilistic b-Metric Spaces. Symmetry, 15(1), 70. https://doi.org/10.3390/sym15010070