A Proposal for a Novel Formulation Based on the Hyperbolic Cattaneo’s Equation to Describe the Mechano-Transduction Process Occurring in Bone Remodeling
<p>The rate of bone remodeling <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>(</mo> <mi>S</mi> <mo>)</mo> </mrow> </semantics></math>, and the specific surface function <math display="inline"><semantics> <mrow> <mi>H</mi> <mo>(</mo> <mi>ϕ</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 2
<p>The mechanical load used to excite a wide range of frequencies.</p> "> Figure 3
<p>Stimulus generated from the mechanical load of <a href="#symmetry-14-02436-f002" class="html-fig">Figure 2</a>, with Cattaneo’s correction.</p> "> Figure 4
<p>Frequency response function (FRF) of the sample linking the mechanical excitation and the stimulus.</p> "> Figure 5
<p>Stimulus generated from the mechanical load of <a href="#symmetry-14-02436-f002" class="html-fig">Figure 2</a> without Cattaneo’s correction.</p> "> Figure 6
<p>Displacement, <math display="inline"><semantics> <msub> <mi>u</mi> <mn>1</mn> </msub> </semantics></math>, in the direction of the mechanical load of <a href="#symmetry-14-02436-f002" class="html-fig">Figure 2</a>, with Cattaneo’s correction at the probe point <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0.5</mn> <mi>L</mi> <mo>,</mo> <mn>0.25</mn> <mi>L</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 7
<p>Time−history plots during the evolution at the resonance.</p> "> Figure 8
<p>Time−history plots during the evolution at a low frequency.</p> "> Figure 9
<p>Time−history plots during the evolution at a high frequency.</p> "> Figure 10
<p>Time−history plots during the evolution for a static load case.</p> ">
Abstract
:1. Introduction
2. Modeling the Functional Adaptation of Bone
3. Poro-Mechanical Model
- The displacement ;
- The Lagrangian porosity .
- the Infinitesimal Lagrangian strain tensor, , in terms of its components,
- The change of the Lagrangian porosity
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RMS | root mean square |
PDE | partial differential equation |
c.p.t. | cycles per |
FRF | frequency response function |
FFT | fast Fourier transform |
References
- Lekszycki, T.; Dell’Isola, F. A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. Z. Angew. Math. Mech 2012, 92, 426–444. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Lekszycki, T. Modeling of an initial stage of bone fracture healing. Contin. Mech. Thermodyn. 2015, 27, 851–859. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Lekszycki, T. Modelling of bone fracture healing: Influence of gap size and angiogenesis into bioresorbable bone substitute. Math. Mech. Solids 2017, 22, 1997–2010. [Google Scholar] [CrossRef]
- Bednarczyk, E.; Lekszycki, T. A novel mathematical model for growth of capillaries and nutrient supply with application to prediction of osteophyte onset. Z. Angew. Math. Phys. 2016, 67, 94. [Google Scholar] [CrossRef]
- Brady, R.T.; O’Brien, F.J.; Hoey, D.A. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation. Biochem. Biophys. Res. Commun. 2015, 459, 118–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frost, H.M. Bone “mass” and the “mechanostat”: A proposal. Anat. Rec. 1987, 219, 1–9. [Google Scholar] [CrossRef]
- George, D.; Allena, R.; Remond, Y. A multiphysics stimulus for continuum mechanics bone remodeling. Math. Mech. Complex Syst. 2018, 6, 307–319. [Google Scholar] [CrossRef]
- George, D.; Allena, R.; Remond, Y. Integrating molecular and cellular kinetics into a coupled continuum mechanobiological stimulus for bone reconstruction. Contin. Mech. Thermodyn. 2019, 31, 725–740. [Google Scholar] [CrossRef] [Green Version]
- George, D.; Allena, R.; Bourzac, C.; Pallu, S.; Bensidhoum, M.; Portier, H.; Rémond, Y. A new comprehensive approach for bone remodeling under medium and high mechanical load based on cellular activity. Math. Mech. Complex Syst. 2020, 8, 287–306. [Google Scholar] [CrossRef]
- Giorgio, I.; Dell’Isola, F.; Andreaus, U.; Alzahrani, F.; Hayat, T.; Lekszycki, T. On mechanically driven biological stimulus for bone remodeling as a diffusive phenomenon. Biomech. Model. Mechanobiol. 2019, 18, 1639–1663. [Google Scholar] [CrossRef]
- Giorgio, I.; Spagnuolo, M.; Andreaus, U.; Scerrato, D.; Bersani, A.M. In-depth gaze at the astonishing mechanical behavior of bone: A review for designing bio-inspired hierarchical metamaterials. Math. Mech. Solids 2020, 26, 1074–1103. [Google Scholar] [CrossRef]
- Kumar, C.; Jasiuk, I.; Dantzig, J. Dissipation energy as a stimulus for cortical bone adaptation. J. Mech. Mater. Struct. 2011, 6, 303–319. [Google Scholar] [CrossRef] [Green Version]
- García-López, S.; Villanueva, R.E.; Massó-Rojas, F.; Páez-Arenas, A.; Meikle, M.C. Micro-vibrations at 30 Hz on bone cells cultivated in vitro produce soluble factors for osteoclast inhibition and osteoblast activity. Arch. Oral Biol. 2020, 110, 104594. [Google Scholar] [CrossRef] [PubMed]
- Kaspar, D.; Seidl, W.; Neidlinger-Wilke, C.; Beck, A.; Claes, L.; Ignatius, A. Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain. J. Biomech. 2002, 35, 873–880. [Google Scholar] [CrossRef]
- Fritton, S.P.; McLeod, K.J.; Rubin, C.T. Quantifying the strain history of bone: Spatial uniformity and self-similarity of low-magnitude strains. J. Biomech. 2000, 33, 317–325. [Google Scholar] [CrossRef]
- Minematsu, A.; Nishii, Y.; Imagita, H.; Sakata, S. Possible effects of whole body vibration on bone properties in growing rats. Osteoporos. Sarcopenia 2019, 5, 78–83. [Google Scholar] [CrossRef]
- Rosenberg, N.; Rosenberg, O.; Politch, J.H.; Abramovich, H. Optimal parameters for the enhancement of human osteoblast-like cell proliferation in vitro via shear stress induced by high-frequency mechanical vibration. Iberoam. J. Med. 2021, 3, 204–211. [Google Scholar] [CrossRef]
- Thompson, W.R.; Yen, S.S.; Rubin, J. Vibration therapy: Clinical applications in bone. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 447. [Google Scholar] [CrossRef] [Green Version]
- Lambers, F.M.; Koch, K.; Kuhn, G.; Ruffoni, D.; Weigt, C.; Schulte, F.A.; Müller, R. Trabecular bone adapts to long-term cyclic loading by increasing stiffness and normalization of dynamic morphometric rates. Bone 2013, 55, 325–334. [Google Scholar] [CrossRef]
- Turner, C.H. Three rules for bone adaptation to mechanical stimuli. Bone 1998, 23, 399–407. [Google Scholar] [CrossRef]
- Giorgio, I.; Andreaus, U.; Scerrato, D.; Braidotti, P. Modeling of a non-local stimulus for bone remodeling process under cyclic load: Application to a dental implant using a bioresorbable porous material. Math. Mech. Solids 2017, 22, 1790–1805. [Google Scholar] [CrossRef] [Green Version]
- Pawlikowski, M.; Klasztorny, M.; Skalski, K. Studies on constitutive equation that models bone tissue. Acta Bioeng. Biomech. 2008, 10, 39–47. [Google Scholar] [PubMed]
- Cattaneo, C. Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 1948, 3, 83–101. [Google Scholar]
- Fock, V.A. The solution of a problem of diffusion theory by the method of finite differences and its application to the diffusion of light. Trans. Opt. Inst. Leningr. 1926, 4, 1–31. [Google Scholar]
- Bakunin, O.G. Mysteries of diffusion and labyrinths of destiny. Physics-Uspekhi 2003, 46, 309. [Google Scholar] [CrossRef]
- Beaupré, G.S.; Orr, T.E.; Carter, D.R. An approach for time-dependent bone modeling and remodeling–theoretical development. J. Orthop. Res. 1990, 8, 651–661. [Google Scholar] [CrossRef]
- Giorgio, I.; Andreaus, U.; Scerrato, D.; Dell’Isola, F. A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech. Model. Mechanobiol. 2016, 15, 1325–1343. [Google Scholar] [CrossRef] [Green Version]
- Hambli, R.; Kourta, A. A theory for internal bone remodeling based on interstitial fluid velocity stimulus function. Appl. Math. Model. 2015, 39, 3525–3534. [Google Scholar] [CrossRef]
- Hambli, R.; Katerchi, H.; Benhamou, C.L. Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation. Biomech. Model. Mechanobiol. 2011, 10, 133–145. [Google Scholar] [CrossRef]
- Goda, I.; Rahouadj, R.; Ganghoffer, J.F. Size dependent static and dynamic behavior of trabecular bone based on micromechanical models of the trabecular architecture. Int. J. Eng. Sci. 2013, 72, 53–77. [Google Scholar] [CrossRef]
- Amar, M.; Andreucci, D.; Bisegna, P.; Gianni, R. Homogenization limit and asymptotic decay for electrical conduction in biological tissues in the high radiofrequency range. Commun. Pure Appl. Anal. 2010, 9, 1131. [Google Scholar] [CrossRef]
- Amar, M.; Andreucci, D.; Bisegna, P.; Gianni, R. Stability and memory effects in a homogenized model governing the electrical conduction in biological tissues. J. Mech. Mater. Struct. 2009, 4, 211–223. [Google Scholar] [CrossRef]
- Amar, M.; Andreucci, D.; Bisegna, P.; Gianni, R. Homogenization limit for electrical conduction in biological tissues in the radio-frequency range. C. R. Mec. 2003, 331, 503–508. [Google Scholar] [CrossRef]
- Abali, B.E.; Barchiesi, E. Additive manufacturing introduced substructure and computational determination of metamaterials parameters by means of the asymptotic homogenization. Contin. Mech. Thermodyn. 2021, 33, 993–1009. [Google Scholar] [CrossRef]
- Yang, H.; Abali, B.E.; Timofeev, D.; Müller, W.H. Determination of metamaterial parameters by means of a homogenization approach based on asymptotic analysis. Contin. Mech. Thermodyn. 2020, 32, 1251–1270. [Google Scholar] [CrossRef] [Green Version]
- Barchiesi, E.; Khakalo, S. Variational asymptotic homogenization of beam-like square lattice structures. Math. Mech. Solids 2019, 24, 3295–3318. [Google Scholar] [CrossRef]
- Eremeyev, V.A.; Pietraszkiewicz, W. Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids Struct. 2012, 49, 1993–2005. [Google Scholar] [CrossRef] [Green Version]
- Eremeyev, V.A.; Pietraszkiewicz, W. Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids 2016, 21, 210–221. [Google Scholar] [CrossRef]
- Eremeyev, V.A.; Skrzat, A.; Vinakurava, A. Application of the micropolar theory to the strength analysis of bioceramic materials for bone reconstruction. Strength Mater. 2016, 48, 573–582. [Google Scholar] [CrossRef]
- La Valle, G. A new deformation measure for the nonlinear micropolar continuum. Z. Angew. Math. Phys. 2022, 73, 1–26. [Google Scholar] [CrossRef]
- La Valle, G.; Massoumi, S. A new deformation measure for micropolar plates subjected to in-plane loads. Contin. Mech. Thermodyn. 2022, 34, 243–257. [Google Scholar] [CrossRef]
- Turco, E.; Dell’Isola, F.; Misra, A. A nonlinear Lagrangian particle model for grains assemblies including grain relative rotations. Int. J. Numer. Anal. Methods Geomech. 2019, 43, 1051–1079. [Google Scholar] [CrossRef]
- Barchiesi, E.; Misra, A.; Placidi, L.; Turco, E. Granular micromechanics-based identification of isotropic strain gradient parameters for elastic geometrically nonlinear deformations. Zamm-Z. Angew. Math. Mech. 2021, 101, e202100059. [Google Scholar] [CrossRef]
- Misra, A.; Placidi, L.; Turco, E. Variational methods for discrete models of granular materials. In Encyclopedia of Continuum Mechanics; Springer: Berlin/Heidelberg, Germany, 2020; pp. 2621–2634. [Google Scholar]
- Misra, A.; Placidi, L.; Dell’Isola, F.; Barchiesi, E. Identification of a geometrically nonlinear micromorphic continuum via granular micromechanics. Z. Angew. Math. Phys. 2021, 72, 157. [Google Scholar] [CrossRef]
- Aretusi, G.; Ciallella, A. An Application of Coulomb-Friction Model to Predict Internal Dissipation in Concrete. In Mathematical Applications in Continuum and Structural Mechanics; Springer: Berlin/Heidelberg, Germany; pp. 73–86.
- Placidi, L.; Dell’Isola, F.; Ianiro, N.; Sciarra, G. Variational formulation of pre-stressed solid–fluid mixture theory, with an application to wave phenomena. Eur. J. Mech.-A/Solids 2008, 27, 582–606. [Google Scholar] [CrossRef] [Green Version]
- Madeo, A.; Dell’Isola, F.; Darve, F. A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J. Mech. Phys. Solids 2013, 61, 2196–2211. [Google Scholar] [CrossRef] [Green Version]
- Ieşan, D. Method of potentials in elastostatics of solids with double porosity. Int. J. Eng. Sci. 2015, 88, 118–127. [Google Scholar] [CrossRef]
- Eugster, S.R.; Dell’Isola, F.; Fedele, R.; Seppecher, P. Piola transformations in second-gradient continua. Mech. Res. Commun. 2022, 120, 103836. [Google Scholar] [CrossRef]
- Dell’Isola, F.; Eugster, S.R.; Fedele, R.; Seppecher, P. Second-gradient continua: From Lagrangian to Eulerian and back. Math. Mech. Solids 2022, 27, 2715–2750. [Google Scholar] [CrossRef]
- Sciarra, G.; Dell’Isola, F.; Coussy, O. Second gradient poromechanics. Int. J. Solids Struct. 2007, 44, 6607–6629. [Google Scholar] [CrossRef] [Green Version]
- Dell’Isola, F.; Seppecher, P.; Della Corte, A. The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: A review of existing results. Proc. R. Soc. Math. Phys. Eng. Sci. 2015, 471, 20150415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auffray, N.; Dell’Isola, F.; Eremeyev, V.A.; Madeo, A.; Rosi, G. Analytical continuum mechanics à la Hamilton–Piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 2015, 20, 375–417. [Google Scholar] [CrossRef]
- Battista, A.; Rosa, L.; Dell’Erba, R.; Greco, L. Numerical investigation of a particle system compared with first and second gradient continua: Deformation and fracture phenomena. Math. Mech. Solids 2017, 22, 2120–2134. [Google Scholar] [CrossRef] [Green Version]
- Madeo, A.; George, D.; Lekszycki, T.; Nierenberger, M.; Rémond, Y. A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling. C. R. Mec. 2012, 340, 575–589. [Google Scholar] [CrossRef]
- Louna, Z.; Goda, I.; Ganghoffer, J.F. Homogenized strain gradient remodeling model for trabecular bone microstructures. Contin. Mech. Thermodyn. 2019, 31, 1339–1367. [Google Scholar] [CrossRef]
- Cowin, S.C.; Nunziato, J.W. Linear elastic materials with voids. J. Elast. 1983, 13, 125–147. [Google Scholar] [CrossRef]
- Biot, M.A. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 1962, 33, 1482–1498. [Google Scholar] [CrossRef]
- Cowin, S.C. Bone poroelasticity. J. Biomech. 1999, 32, 217–238. [Google Scholar] [CrossRef]
- Fedele, R. Simultaneous assessment of mechanical properties and boundary conditions based on digital image correlation. Exp. Mech. 2015, 55, 139–153. [Google Scholar] [CrossRef]
- Auger, P.; Lavigne, T.; Smaniotto, B.; Spagnuolo, M.; Dell’Isola, F.; Hild, F. Poynting effects in pantographic metamaterial captured via multiscale DVC. J. Strain Anal. Eng. Des. 2021, 56, 462–477. [Google Scholar] [CrossRef]
- Valmalle, M.; Vintache, A.; Smaniotto, B.; Gutmann, F.; Spagnuolo, M.; Ciallella, A.; Hild, F. Local-global DVC analyses confirm theoretical predictions for deformation and damage onset in torsion of pantographic metamaterial. Mech. Mater. 2022, 172, 104379. [Google Scholar] [CrossRef]
- Yildizdag, M.E.; Tran, C.A.; Barchiesi, E.; Spagnuolo, M.; Dell’Isola, F.; Hild, F. A multi-disciplinary approach for mechanical metamaterial synthesis: A hierarchical modular multiscale cellular structure paradigm. In State of the Art and Future Trends in Material Modeling; Springer: Berlin/Heidelberg, Germany, 2019; pp. 485–505. [Google Scholar]
- Sansalone, V.; Martin, M.; Haïat, G.; Pivonka, P.; Lemaire, T. A new model of bone remodeling and turnover set up in the framework of generalized continuum mechanics. Math. Mech. Solids 2021, 26, 1376–1393. [Google Scholar] [CrossRef]
- Allena, R.; Cluzel, C. Heterogeneous directions of orthotropy in three-dimensional structures: Finite element description based on diffusion equations. Math. Mech. Complex Syst. 2018, 6, 339–351. [Google Scholar] [CrossRef]
- Cluzel, C.; Allena, R. A general method for the determination of the local orthotropic directions of heterogeneous materials: Application to bone structures using μCT images. Math. Mech. Complex Syst. 2018, 6, 353–367. [Google Scholar] [CrossRef]
- Branecka, N.; Yildizdag, M.E.; Ciallella, A.; Giorgio, I. Bone Remodeling Process Based on Hydrostatic and Deviatoric Strain Mechano-Sensing. Biomimetics 2022, 7, 59. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Bai, J.; Zeng, X.; Zhou, Y. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med. Eng. Phys. 2006, 28, 227–233. [Google Scholar] [CrossRef]
- Weiner, S.; Traub, W. Bone structure: From ångstroms to microns. Faseb J. 1992, 6, 879–885. [Google Scholar] [CrossRef]
- Heinemann, P.; Kasperski, M. Damping Induced by Walking and Running. Procedia Eng. 2017, 199, 2826–2831. [Google Scholar] [CrossRef]
- Eriksen, E.F. Cellular mechanisms of bone remodeling. Rev. Endocr. Metab. Disord. 2010, 11, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Lanyon, L.E.; Rubin, C.T. Static vs dynamic loads as an influence on bone remodelling. J. Biomech. 1984, 17, 897–905. [Google Scholar] [CrossRef]
- Rubin, C.T.; Lanyon, L.E. Osteoregulatory nature of mechanical stimuli: Function as a determinant for adaptive remodeling in bone. J. Orthop. Res. 1987, 5, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Bersani, A.M.; Dell’Acqua, G. Is there anything left to say on enzyme kinetic constants and quasi-steady state approximation? J. Math. Chem. 2012, 50, 335–344. [Google Scholar] [CrossRef]
- Bersani, A.M.; Bersani, E.; Dell’Acqua, G.; Pedersen, M.G. New trends and perspectives in nonlinear intracellular dynamics: One century from Michaelis–Menten paper. Contin. Mech. Thermodyn. 2015, 27, 659–684. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scerrato, D.; Giorgio, I.; Bersani, A.M.; Andreucci, D. A Proposal for a Novel Formulation Based on the Hyperbolic Cattaneo’s Equation to Describe the Mechano-Transduction Process Occurring in Bone Remodeling. Symmetry 2022, 14, 2436. https://doi.org/10.3390/sym14112436
Scerrato D, Giorgio I, Bersani AM, Andreucci D. A Proposal for a Novel Formulation Based on the Hyperbolic Cattaneo’s Equation to Describe the Mechano-Transduction Process Occurring in Bone Remodeling. Symmetry. 2022; 14(11):2436. https://doi.org/10.3390/sym14112436
Chicago/Turabian StyleScerrato, Daria, Ivan Giorgio, Alberto Maria Bersani, and Daniele Andreucci. 2022. "A Proposal for a Novel Formulation Based on the Hyperbolic Cattaneo’s Equation to Describe the Mechano-Transduction Process Occurring in Bone Remodeling" Symmetry 14, no. 11: 2436. https://doi.org/10.3390/sym14112436
APA StyleScerrato, D., Giorgio, I., Bersani, A. M., & Andreucci, D. (2022). A Proposal for a Novel Formulation Based on the Hyperbolic Cattaneo’s Equation to Describe the Mechano-Transduction Process Occurring in Bone Remodeling. Symmetry, 14(11), 2436. https://doi.org/10.3390/sym14112436