Numerical Investigation of Nonlinear Shock Wave Equations with Fractional Order in Propagating Disturbance
<p>The surface solutions of <math display="inline"><semantics> <mrow> <mi>u</mi> <mo>(</mo> <mo>ℑ</mo> <mo>,</mo> <mo>℘</mo> <mo>)</mo> </mrow> </semantics></math> with respect to <span class="html-italic">ℑ</span> and <span class="html-italic">℘</span> for distinct values of <math display="inline"><semantics> <mi>α</mi> </semantics></math>. (<b>a</b>) Surface solution of <math display="inline"><semantics> <mrow> <mi>ϑ</mi> <mo>(</mo> <mo>ℑ</mo> <mo>,</mo> <mo>℘</mo> <mo>)</mo> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math>. (<b>b</b>) Surface solution of <math display="inline"><semantics> <mrow> <mi>ϑ</mi> <mo>(</mo> <mo>ℑ</mo> <mo>,</mo> <mo>℘</mo> <mo>)</mo> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.50</mn> </mrow> </semantics></math>. (<b>c</b>) Surface solution of <math display="inline"><semantics> <mrow> <mi>ϑ</mi> <mo>(</mo> <mo>ℑ</mo> <mo>,</mo> <mo>℘</mo> <mo>)</mo> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.75</mn> </mrow> </semantics></math>. (<b>d</b>) Surface solution of <math display="inline"><semantics> <mrow> <mi>ϑ</mi> <mo>(</mo> <mo>ℑ</mo> <mo>,</mo> <mo>℘</mo> <mo>)</mo> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>The surface solutions of <math display="inline"><semantics> <mrow> <mi>ϑ</mi> <mo>(</mo> <mo>ℑ</mo> <mo>,</mo> <mo>℘</mo> <mo>)</mo> </mrow> </semantics></math> with respect to <span class="html-italic">ℑ</span> and <span class="html-italic">℘</span> for different values of <math display="inline"><semantics> <mi>α</mi> </semantics></math>. (<b>a</b>) Surface solution of <math display="inline"><semantics> <mrow> <mi>ϑ</mi> <mo>(</mo> <mo>ℑ</mo> <mo>,</mo> <mo>℘</mo> <mo>)</mo> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math>. (<b>b</b>) Surface solution of <math display="inline"><semantics> <mrow> <mi>ϑ</mi> <mo>(</mo> <mo>ℑ</mo> <mo>,</mo> <mo>℘</mo> <mo>)</mo> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.50</mn> </mrow> </semantics></math>. (<b>c</b>) Surface solution of <math display="inline"><semantics> <mrow> <mi>ϑ</mi> <mo>(</mo> <mo>ℑ</mo> <mo>,</mo> <mo>℘</mo> <mo>)</mo> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.75</mn> </mrow> </semantics></math>. (<b>d</b>) Surface solution of <math display="inline"><semantics> <mrow> <mi>ϑ</mi> <mo>(</mo> <mo>ℑ</mo> <mo>,</mo> <mo>℘</mo> <mo>)</mo> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Preliminary Concepts
- (a)
- ;
- (b)
- ;
- (c)
- .
3. Idea of MHPT
4. Numerical Examples
4.1. Example 1
4.2. Example 2
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gharechahi, R.; Arab Ameri, M.; Bisheh-Niasar, M. High order compact finite difference schemes for solving Bratu-type equations. J. Appl. Comput. Mech. 2019, 5, 91–102. [Google Scholar]
- Sharma, J.R.; Kumar, S.; Cesarano, C. An efficient derivative free one-point method with memory for solving nonlinear equations. Mathematics 2019, 7, 604. [Google Scholar] [CrossRef] [Green Version]
- He, J.H.; Wu, X.H. Variational iteration method: New development and applications. Comput. Math. Appl. 2007, 54, 881–894. [Google Scholar] [CrossRef] [Green Version]
- Singh, J. Analysis of fractional blood alcohol model with composite fractional derivative. Chaos Solitons Fractals 2020, 140, 110127. [Google Scholar] [CrossRef]
- Singh, J.; Ganbari, B.; Kumar, D.; Baleanu, D. Analysis of fractional model of guava for biological pest control with memory effect. J. Adv. Res. 2021, 32, 99–108. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, J.; Kumar, S.; Singh, B. Numerical computation of nonlinear shock wave equation of fractional order. Ain Shams Eng. J. 2015, 6, 605–611. [Google Scholar] [CrossRef] [Green Version]
- Goswami, A.; Rathore, S.; Singh, J.; Kumar, D. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discret. Contin. Dyn. Syst.-S 2021, 14, 3589–3610. [Google Scholar] [CrossRef]
- Singh, M.; Gupta, P.K. Homotopy perturbation method for time-fractional shock wave equation. Adv. Appl. Math. Mech. 2011, 3, 774–783. [Google Scholar] [CrossRef]
- Allan, F.M.; Al-Khaled, K. An approximation of the analytic solution of the shock wave equation. J. Comput. Appl. Math. 2006, 192, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Kumar, R. Approximate analytical solutions of fractional gas dynamic equations. Appl. Math. Comput. 2011, 217, 9905–9915. [Google Scholar] [CrossRef]
- Khalid, N.; Abbas, M.; Iqbal, M.K.; Singh, J.; Ismail, A.I.M. A computational approach for solving time fractional differential equation via spline functions. Alex. Eng. J. 2020, 59, 3061–3078. [Google Scholar] [CrossRef]
- Khatami, I.; Tolou, N.; Mahmoudi, J.; Rezvani, M. Application of homotopy analysis method and variational iteration method for shock wave equation. J. Appl. Sci. 2008, 8, 848–853. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Kumar, D.; Kumar, S. A new fractional model of nonlinear shock wave equation arising in flow of gases. Nonlinear Eng. 2014, 3, 43–50. [Google Scholar] [CrossRef]
- Berberler, M.E.; Yildirim, A. He’s homotopy perturbation method for solving the shock wave equation. Appl. Anal. 2009, 88, 997–1004. [Google Scholar] [CrossRef]
- Phuong, N.D.; Tuan, N.A.; Kumar, D.; Tuan, N.H. Initial value problem for fractional Volterra integrodifferential pseudo-parabolic equations. Math. Model. Nat. Phenom. 2021, 16, 27. [Google Scholar] [CrossRef]
- Alam, M.N. Exact solutions to the foam drainage equation by using the new generalized (G′/G)-expansion method. Results Phys. 2015, 5, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Dai, P.; Yu, X. An Artificial Neural Network Approach for Solving Space Fractional Differential Equations. Symmetry 2022, 14, 535. [Google Scholar] [CrossRef]
- Dahmani, Z.; Anber, A. The variational iteration method for solving the fractional foam drainage equation. Int. J. Nonlinear Sci. 2010, 10, 39–45. [Google Scholar]
- Khani, F.; Hamedi-Nezhad, S.; Darvishi, M.; Ryu, S.W. New solitary wave and periodic solutions of the foam drainage equation using the Exp-function method. Nonlinear Anal. Real World Appl. 2009, 10, 1904–1911. [Google Scholar] [CrossRef]
- Gul, H.; Ali, S.; Shah, K.; Muhammad, S.; Sitthiwirattham, T.; Chasreechai, S. Application of Asymptotic Homotopy Perturbation Method to Fractional Order Partial Differential Equation. Symmetry 2021, 13, 2215. [Google Scholar] [CrossRef]
- Sedighi, H.M.; Shirazi, K.H.; Zare, J. An analytic solution of transversal oscillation of quintic non-linear beam with homotopy analysis method. Int. J. Non-Linear Mech. 2012, 47, 777–784. [Google Scholar] [CrossRef]
- Al-qudah, Y.; Alaroud, M.; Qoqazeh, H.; Jaradat, A.; Alhazmi, S.E.; Al-Omari, S. Approximate Analytic–Numeric Fuzzy Solutions of Fuzzy Fractional Equations Using a Residual Power Series Approach. Symmetry 2022, 14, 804. [Google Scholar] [CrossRef]
- Jena, R.M.; Chakraverty, S.; Jena, S.K.; Sedighi, H.M. Analysis of time-fractional fuzzy vibration equation of large membranes using double parametric based Residual power series method. ZAMM-J. Appl. Math. Mech./Z. für Angew. Math. Und Mech. 2021, 101, e202000165. [Google Scholar] [CrossRef]
- Kumar, S.; Gómez-Aguilar, J.F. Numerical solution of Caputo-Fabrizio time fractional distributed order reaction-diffusion equation via quasi wavelet based numerical method. J. Appl. Comput. Mech. 2020, 6, 848–861. [Google Scholar]
- Arbabi, S.; Nazari, A.; Darvishi, M.T. A semi-analytical solution of foam drainage equation by Haar wavelets method. Optik 2016, 127, 5443–5447. [Google Scholar] [CrossRef]
- Habib, S.; Islam, A.; Batool, A.; Sohail, M.U.; Nadeem, M. Numerical solutions of the fractal foam drainage equation. GEM-Int. J. Geomath. 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Nadeem, M.; Yao, S.W. Solving the fractional heat-like and wave-like equations with variable coefficients utilizing the Laplace homotopy method. Int. J. Numer. Methods Heat Fluid Flow 2020, 31, 273–292. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, D.; Singh, J. Analytical solutions of convection–diffusion problems by combining Laplace transform method and homotopy perturbation method. Alex. Eng. J. 2015, 54, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, M.; Li, F. Modified Laplace Variational Iteration Method for Analytical Approach of Klein–Gordon and Sine–Gordon equations. Iran. J. Sci. Technol. Trans. Sci. 2019, 43, 1933–1940. [Google Scholar] [CrossRef]
- Nadeem, M.; He, J.H.; Islam, A. The homotopy perturbation method for fractional differential equations: Part 1 Mohand transform. Int. J. Numer. Methods Heat Fluid Flow 2021, 31, 3490–3504. [Google Scholar] [CrossRef]
- Aggarwal, S.; Chauhan, R. A comparative study of Mohand and Aboodh transforms. Int. J. Res. Advent Technol. 2019, 7, 520–529. [Google Scholar] [CrossRef]
- Shah, R.; Khan, H.; Farooq, U.; Baleanu, D.; Kumam, P.; Arif, M. A New Analytical Technique to Solve System of Fractional-Order Partial Differential Equations. IEEE Access 2019, 7, 150037–150050. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, J.; Nadeem, M.; Habib, M.; Akgül, A. Numerical Investigation of Nonlinear Shock Wave Equations with Fractional Order in Propagating Disturbance. Symmetry 2022, 14, 1179. https://doi.org/10.3390/sym14061179
Fang J, Nadeem M, Habib M, Akgül A. Numerical Investigation of Nonlinear Shock Wave Equations with Fractional Order in Propagating Disturbance. Symmetry. 2022; 14(6):1179. https://doi.org/10.3390/sym14061179
Chicago/Turabian StyleFang, Jiahua, Muhammad Nadeem, Mustafa Habib, and Ali Akgül. 2022. "Numerical Investigation of Nonlinear Shock Wave Equations with Fractional Order in Propagating Disturbance" Symmetry 14, no. 6: 1179. https://doi.org/10.3390/sym14061179
APA StyleFang, J., Nadeem, M., Habib, M., & Akgül, A. (2022). Numerical Investigation of Nonlinear Shock Wave Equations with Fractional Order in Propagating Disturbance. Symmetry, 14(6), 1179. https://doi.org/10.3390/sym14061179