Measures of Departure from Local Marginal Homogeneity for Square Contingency Tables
Abstract
:1. Introduction
2. New Models and Measures
2.1. For the Nominal Category
- 1.
- the measure must lie between 0 and 1.
- 2.
- if and only if the LMH model holds.
- 3.
- if and only if the degree of departure from LMH is the maximum, in the sense that (then ) or (then ) for all .
2.2. For the Ordered Category
- (1)
- the measure must lie between 0 and 1.
- (2)
- if and only if the probability table has the structure of CLMH.
- (3)
- if and only if the probability table has the structure of complete marginal inhomogeneity in the sense that (then ) or (then ) for all .
3. Approximate Confidence Interval of the Measures
4. Properties of Measures
5. Simulation
6. Example
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Measures Proposed in Previous Studies
Appendix B. Differentiation of the Proposed Measures
Appendix B.1. Measure of LMH
Appendix B.2. Measure of CLMH
References
- Bowker, A.H. A test for symmetry in contingency tables. J. Am. Stat. Assoc. 1948, 43, 572–574. [Google Scholar] [CrossRef]
- Bishop, Y.M.; Fienberg, S.E.; Holland, P.W. Discrete Multivariate Analysis: Theory and Practice; The MIT Press: Cambridge, UK, 1975. [Google Scholar]
- Saigusa, Y.; Tahata, K.; Tomizawa, S. Measure of departure from partial symmetry for square contingency tables. J. Math. Stat. 2016, 12, 152–156. [Google Scholar] [CrossRef] [Green Version]
- Saigusa, Y.; Takami, M.; Ishii, A.; Tomizawa, S. Measure of departure from local symmetry for square contingency tables. Int. J. Stat. Probab. 2019, 8, 140–145. [Google Scholar] [CrossRef]
- Stuart, A. A test for homogeneity of the marginal distributions in a two-way classification. Biometrika 1955, 42, 412–416. [Google Scholar] [CrossRef]
- Saigusa, Y.; Kubo, Y.; Tahata, K.; Tomizawa, S. A measure of departure from partial marginal homogeneity for square contingency tables. J. Stat. Appl. Probab. Lett. 2020, 7, 1–7. [Google Scholar]
- Caussinus, H. Contribution to correlation analysis of two qualitative variables. Ann. Fac. Des Sci. L’Univ. Toulouse 1965, 29, 77–182. (In French) [Google Scholar] [CrossRef]
- McCullagh, P. A class of parametric models for the analysis of square contingency tables with ordered categories. Biometrika 1978, 65, 413–418. [Google Scholar] [CrossRef]
- Goodman, L.A. Multiplicative models for square contingency tables with ordered categories. Biometrika 1979, 66, 413–418. [Google Scholar] [CrossRef]
- Agresti, A. A simple diagonals-parameter symmetry and quasi-symmetry model. Stat. Probab. Lett. 1983, 1, 313–316. [Google Scholar] [CrossRef]
- Saigusa, Y.; Takami, M.; Ishii, A.; Nakagawa, T.; Tomizawa, S. Measure for departure from cumulative partial symmetry square contingency tables with ordered categories. J. Stat. Adv. Theory Appl. 2019, 21, 53–70. [Google Scholar] [CrossRef]
- Saigusa, Y.; Takada, T.; Ishii, A.; Nakagawa, T.; Tomizawa, S. Measure of departure from cumulative local symmetry for square contingency tables having ordered categories. Biom. Lett. 2020, 57, 23–35. [Google Scholar] [CrossRef]
- Nakagawa, T.; Takei, T.; Ishii, A.; Tomizawa, S. Geometric mean type measure of marginal homogeneity for square contingency tables with ordered categories. J. Math. Stat. 2020, 16, 170–175. [Google Scholar] [CrossRef]
- Bhapkar, V.P. A note on the equivalence of two test criteria for hypotheses in categorical data. J. Am. Stat. Assoc. 1966, 61, 228–235. [Google Scholar] [CrossRef]
- Fleiss, J.L.; Everitt, B.S. Comparing the marginal totals of square contingency tables. Br. J. Math. Stat. Psychol. 1971, 24, 117–123. [Google Scholar] [CrossRef]
- Agresti, A. Testing marginal homogeneity for ordinal categorical variables. Biometrics 1983, 39, 505–510. [Google Scholar] [CrossRef]
- Tomizawa, S.; Miyamoto, N.; Ashihara, N. Measure of departure from marginal homogeneity for square contingency tables having ordered categories. Behaviormetrika 2003, 30, 173–193. [Google Scholar] [CrossRef]
- Yule, G.U. On the association of attributes in statistics. Philos. Trans. R. Soc. London. Ser. A Contain. Pap. Math. Phys. Character 1900, 194, 257–319. [Google Scholar]
- Yule, G.U. On the methods of measuring association between two attributes. J. R. Stat. Soc. 1912, 75, 579–652. [Google Scholar] [CrossRef] [Green Version]
- Cramér, H. Mathematical Methods of Statistics; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
- Goodman, L.A.; Kruskal, W.H. Measures of association for cross classifications. J. Am. Stat. Assoc. 1954, 49, 732–764. [Google Scholar]
- Tomizawa, S.; Seo, T.; Yamamoto, H. Power-divergence-type measure of departure from symmetry for square contingency tables that have nominal categories. J. Appl. Stat. 1998, 25, 387–398. [Google Scholar] [CrossRef]
- Patil, G.P.; Taillie, C. Diversity as a concept and its measurement. J. Am. Stat. Assoc. 1982, 77, 548–561. [Google Scholar] [CrossRef]
- Tomizawa, S.; Miyamoto, N.; Hatanaka, Y. Measure of asymmetry for square contingency tables having ordered categories. Aust. N. Z. J. Stat. 2001, 43, 335–349. [Google Scholar] [CrossRef]
- Tomizawa, S.; Makii, T. Generalized measures of departure from marginal homogeneity for contingency tables with nominal categories. J. Stat. Res. 2001, 35, 1–24. [Google Scholar]
- Altun, G.; Aktaş, S. Measures of departure from marginal homogeneity model in square contingency tables. İstat. Derg. İstat. Aktüerya 2018, 11, 93–108. [Google Scholar]
- Rand, W.M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 1971, 66, 846–850. [Google Scholar] [CrossRef]
- Hubert, L.; Arabie, P. Comparing partitions. J. Classif. 1985, 2, 193–218. [Google Scholar] [CrossRef]
- Cressie, N.; Read, T.R. Multinomial goodness-of-fit tests. J. R. Stat. Soc. Ser. B (Methodol.) 1984, 46, 440–464. [Google Scholar] [CrossRef]
- Read, T.R.; Cressie, N.A. Goodness-of-Fit Statistics for Discrete Multivariate Data; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Agresti, A. Categorical Data Analysis, 2nd ed.; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Upton, G.J.G. A memory model for voting transitions in British elections. J. R. Stat. Soc. Ser. A (Gen.) 1977, 140, 86–94. [Google Scholar] [CrossRef]
- Tominaga, K. Nippon no Kaisou Kouzou (Japanese Hierarchical Structure); University of Tokyo Press: Tokyo, Japan, 1979. (In Japanese) [Google Scholar]
(a) | (d) | ||||||||||
(1) | (2) | (3) | (4) | Total | (1) | (2) | (3) | (4) | Total | ||
(1) | 0.12 | 0.09 | 0.07 | 0.02 | 0.30 | (1) | 0.02 | 0.09 | 0.12 | 0.04 | 0.27 |
(2) | 0.08 | 0.09 | 0.12 | 0.02 | 0.31 | (2) | 0.02 | 0.03 | 0.03 | 0.02 | 0.10 |
(3) | 0.06 | 0.03 | 0.06 | 0.05 | 0.20 | (3) | 0.02 | 0.01 | 0.08 | 0.04 | 0.15 |
(4) | 0.04 | 0.01 | 0.08 | 0.06 | 0.19 | (4) | 0.03 | 0.17 | 0.22 | 0.06 | 0.48 |
Total | 0.30 | 0.22 | 0.33 | 0.15 | 1.00 | Total | 0.09 | 0.30 | 0.45 | 0.16 | 1.00 |
(b) | (e) | ||||||||||
(1) | (2) | (3) | (4) | Total | (1) | (2) | (3) | (4) | Total | ||
(1) | 0.16 | 0.12 | 0.05 | 0.03 | 0.36 | (1) | 0.00 | 0.20 | 0.00 | 0.10 | 0.30 |
(2) | 0.02 | 0.10 | 0.03 | 0.02 | 0.17 | (2) | 0.00 | 0.00 | 0.30 | 0.05 | 0.35 |
(3) | 0.04 | 0.01 | 0.14 | 0.02 | 0.21 | (3) | 0.00 | 0.00 | 0.00 | 0.35 | 0.35 |
(4) | 0.04 | 0.10 | 0.00 | 0.12 | 0.26 | (4) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Total | 0.26 | 0.33 | 0.22 | 0.19 | 1.00 | Total | 0.00 | 0.20 | 0.30 | 0.50 | 1.00 |
(c) | (f) | ||||||||||
(1) | (2) | (3) | (4) | Total | (1) | (2) | (3) | (4) | Total | ||
(1) | 0.12 | 0.10 | 0.00 | 0.04 | 0.26 | (1) | 0.00 | 0.20 | 0.00 | 0.45 | 0.65 |
(2) | 0.02 | 0.10 | 0.03 | 0.02 | 0.17 | (2) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
(3) | 0.02 | 0.01 | 0.14 | 0.04 | 0.21 | (3) | 0.00 | 0.05 | 0.00 | 0.30 | 0.35 |
(4) | 0.03 | 0.12 | 0.05 | 0.16 | 0.36 | (4) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Total | 0.19 | 0.33 | 0.22 | 0.26 | 1.00 | Total | 0.00 | 0.25 | 0.00 | 0.75 | 1.00 |
(a) Measures of nominal categories | ||||||||
Applied tables | ||||||||
(a) | (b) | (c) | (d) | (e) | (f) | |||
0.00 | 0.019 | 0.029 | 0.029 | 0.189 | 0.416 | 1.000 | ||
0.50 | 0.024 | 0.036 | 0.036 | 0.230 | 0.420 | 1.000 | ||
1.00 | 0.026 | 0.039 | 0.039 | 0.250 | 0.422 | 1.000 | ||
0.00 | 0.000 | 0.011 | 0.011 | 0.189 | 0.076 | 1.000 | ||
0.50 | 0.000 | 0.014 | 0.014 | 0.230 | 0.087 | 1.000 | ||
1.00 | 0.000 | 0.016 | 0.016 | 0.250 | 0.092 | 1.000 | ||
0.00 | 0.000 | 0.002 | 0.002 | 0.189 | 0.012 | 1.000 | ||
0.50 | 0.000 | 0.002 | 0.002 | 0.230 | 0.015 | 1.000 | ||
1.00 | 0.000 | 0.002 | 0.002 | 0.250 | 0.017 | 1.000 | ||
(b) Measures of ordered categories | ||||||||
Applied tables | ||||||||
(a) | (b) | (c) | (d) | (e) | (f) | |||
0.00 | 0.022 | 0.060 | 0.082 | 0.180 | 1.000 | 0.877 | ||
0.50 | 0.028 | 0.075 | 0.101 | 0.217 | 1.000 | 0.897 | ||
1.00 | 0.031 | 0.082 | 0.111 | 0.234 | 1.000 | 0.905 | ||
0.00 | 0.000 | 0.052 | 0.082 | 0.046 | 1.000 | 0.847 | ||
0.50 | 0.000 | 0.065 | 0.101 | 0.056 | 1.000 | 0.878 | ||
1.00 | 0.000 | 0.071 | 0.111 | 0.060 | 1.000 | 0.889 | ||
0.00 | 0.000 | 0.044 | 0.082 | 0.004 | 1.000 | 0.811 | ||
0.50 | 0.000 | 0.055 | 0.101 | 0.005 | 1.000 | 0.855 | ||
1.00 | 0.000 | 0.061 | 0.111 | 0.006 | 1.000 | 0.871 |
(a) Results for LMH | (b) Results for CLMH | ||||||
Sample Size | Sample Size | ||||||
200 | 500 | 1000 | 200 | 500 | 1000 | ||
−0.5 | 0.941 | 0.955 | 0.949 | −0.5 | 0.874 | 0.885 | 0.940 |
0.0 | 0.939 | 0.929 | 0.897 | 0.0 | 0.946 | 0.951 | 0.954 |
0.5 | 0.874 | 0.890 | 0.918 | 0.5 | 0.906 | 0.948 | 0.885 |
1.0 | 0.949 | 0.941 | 0.965 | 1.0 | 0.942 | 0.940 | 0.947 |
1.5 | 0.940 | 0.956 | 0.910 | 1.5 | 0.937 | 0.950 | 0.952 |
2.0 | 0.962 | 0.940 | 0.951 | 2.0 | 0.934 | 0.962 | 0.917 |
2.5 | 0.939 | 0.851 | 0.923 | 2.5 | 0.939 | 0.934 | 0.948 |
3.0 | 0.934 | 0.948 | 0.943 | 3.0 | 0.936 | 0.927 | 0.875 |
(a) Result of voting changes between the 1966 and 1964 British elections | |||
Estimated measure | Standard error | Confidence interval | |
−0.5 | 0.0000 | 0.0005 | (−0.0009, 0.0010) |
0.0 | 0.0001 | 0.0008 | (−0.0015, 0.0016) |
0.5 | 0.0001 | 0.0010 | (−0.0019, 0.0021) |
1.0 | 0.0001 | 0.0011 | (−0.0021, 0.0023) |
1.5 | 0.0001 | 0.0011 | (−0.0021, 0.0023) |
2.0 | 0.0001 | 0.0011 | (−0.0021, 0.0023) |
2.5 | 0.0001 | 0.0010 | (−0.0019, 0.0021) |
3.0 | 0.0001 | 0.0009 | (−0.0018, 0.0020) |
(b) Result of voting changes between the 1966 and 1970 British elections | |||
Estimated measure | Standard error | Confidence interval | |
−0.5 | 0.0079 | 0.0033 | (0.0014, 0.0144) |
0.0 | 0.0133 | 0.0056 | (0.0024, 0.0243) |
0.5 | 0.0167 | 0.0070 | (0.0030, 0.0304) |
1.0 | 0.0184 | 0.0077 | (0.0033, 0.0335) |
1.5 | 0.0188 | 0.0079 | (0.0034, 0.0343) |
2.0 | 0.0184 | 0.0077 | (0.0033, 0.0335) |
2.5 | 0.0173 | 0.0072 | (0.0031, 0.0315) |
3.0 | 0.0158 | 0.0066 | (0.0028, 0.0288) |
(a) Result in 1955 | |||
Estimated measure | Standard error | Confidence interval | |
−0.5 | 0.0032 | 0.0094 | (−0.0151, 0.0216) |
0.0 | 0.0055 | 0.0158 | (−0.0255, 0.0364) |
0.5 | 0.0068 | 0.0198 | (−0.0319, 0.0456) |
1.0 | 0.0076 | 0.0218 | (−0.0352, 0.0504) |
1.5 | 0.0078 | 0.0224 | (−0.0361, 0.0516) |
2.0 | 0.0076 | 0.0218 | (−0.0352, 0.0504) |
2.5 | 0.0071 | 0.0205 | (−0.0331, 0.0474) |
3.0 | 0.0065 | 0.0188 | (−0.0303, 0.0433) |
(b) Result in 1975 | |||
Estimated measure | Standard error | Confidence interval | |
−0.5 | 0.0713 | 0.0196 | (0.0328, 0.1098) |
0.0 | 0.1172 | 0.0314 | (0.0556, 0.1788) |
0.5 | 0.1443 | 0.0379 | (0.0700, 0.2187) |
1.0 | 0.1576 | 0.0410 | (0.0773, 0.2379) |
1.5 | 0.1611 | 0.0417 | (0.0793, 0.2428) |
2.0 | 0.1576 | 0.0410 | (0.0773, 0.2379) |
2.5 | 0.1495 | 0.0392 | (0.0726, 0.2265) |
3.0 | 0.1385 | 0.0369 | (0.0662, 0.2109) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saito, K.; Takakubo, N.; Ishii, A.; Nakagawa, T.; Tomizawa, S. Measures of Departure from Local Marginal Homogeneity for Square Contingency Tables. Symmetry 2022, 14, 1075. https://doi.org/10.3390/sym14061075
Saito K, Takakubo N, Ishii A, Nakagawa T, Tomizawa S. Measures of Departure from Local Marginal Homogeneity for Square Contingency Tables. Symmetry. 2022; 14(6):1075. https://doi.org/10.3390/sym14061075
Chicago/Turabian StyleSaito, Ken, Nozomi Takakubo, Aki Ishii, Tomoyuki Nakagawa, and Sadao Tomizawa. 2022. "Measures of Departure from Local Marginal Homogeneity for Square Contingency Tables" Symmetry 14, no. 6: 1075. https://doi.org/10.3390/sym14061075