Dendronized Hyperbranched Polymer: A New Architecture for Second-Order Nonlinear Optics
<p>The poling procedure for NLO polymers.</p> "> Figure 2
<p>The design idea of DHP and comparison of the characteristics of different types of macromolecule.</p> "> Figure 3
<p>Dendronized hyperbranched polymers of different spatial configurations.</p> "> Figure 4
<p>A variety of dendronized hyperbranched polymers with isolation chromophores.</p> "> Figure 5
<p>The structure of DHP8a and DHP8b.</p> "> Figure 6
<p>The synthesis of DHP9, DHP10, DHP11 and DHP12.</p> "> Scheme 1
<p>The polymerization process of DHP1, DHP2, and DHP3.</p> ">
Abstract
:1. Introduction
2. Synthesis and Topological Structural Optimization of DHP
3. Introducing Isolation Chromophores to DHP
4. Increasing the Loading Density of Chromophore in DHP
5. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, F.; Han, Y. Electro-optic polymer ring resonator modulators. Chin. Opt. Lett. 2021, 19, 041301. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Luo, J.; Jen, K.Y. High-performance organic second- and third-order nonlinear optical materials for ultrafast information processing. J. Mater. Chem. C 2020, 8, 15009–15026. [Google Scholar] [CrossRef]
- Enami, Y.; Seki, A.; Masuda, S.; Joichi, T.; Luo, J.; Jen, K.Y. Bandwidth optimization for Mach-Zehnder polymer/sol-gel modulators. J. Lightwave Technol. 2018, 36, 4181–4189. [Google Scholar] [CrossRef]
- Huo, F.; Chen, Z.; Bo, S. Advances in organic second-order nonlinear optical polymers. J. Funct. Polym. 2020, 33, 108–124. [Google Scholar]
- Zwickel, H.; Wolf, S.; Kieninger, C.; Kutuvantavida, Y.; Lauermann, M.; de Keulenaer, T.; Vyncke, A.; Vaernewyck, R.; Luo, J.; Jen, A.K.-Y.; et al. Silicon-organic hybrid (SOH) modulators for intensity-modulation/direct-detection links with line rates of up to 120 Gbit/s. Opt. Express 2017, 25, 23784–23800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, S.; Zwickel, H.; Hartmann, W.; Lauermann, M.; Kutuvantavida, Y.; Kieninger, C.; Altenhain, L.; Schmid, R.; Luo, J.; Jen, A.K.-Y.; et al. Silicon-organic hybrid (SOH) Mach-Zehnder modulators for 100 Gbit/s on-off keying. Sci. Rep. 2018, 8, 2598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kieninger, C.; Kutuvantavida, Y.; Elder, D.L.; Wolf, S.; Zwickel, H.; Blaicher, M.; Kemal, J.N.; Lauermann, M.; Randel, S.; Freude, W.; et al. Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator. Optica 2018, 5, 739–748. [Google Scholar] [CrossRef] [Green Version]
- Gallo, K.; Codemard, C.; Gawith, C.B.E.; Nilsson, J.; Smith, P.G.R.; Broderick, N.G.R.; Richardson, D.J. Guided-wave second-harmonic generation in a LiNbO3 nonlinear photonic crystal. Opt. Lett. 2006, 31, 1232–1234. [Google Scholar] [CrossRef]
- Chemla, D.S.; Kupecek, P.J.; Robertson, D.S.; Smith, R.C. Silver thiogallate, a new material with potential for infrared devices. Opt. Commun. 1971, 3, 29–31. [Google Scholar] [CrossRef]
- Fei, Y.A.; Lei, W.A.; Ling, H.A.; Gz, B. The study of structure evolvement of KTiOPO4 family and their nonlinear optical properties—ScienceDirect. Coord. Chem. Rev. 2020, 423, 213491. [Google Scholar]
- Zhang, J.; Kosugi, Y.; Otomo, A.; Ho, Y.-L.; Delaunay, J.-J.; Nakano, Y.; Tanemura, T. Electrical tuning of metal-insulator-metal metasurface with electro-optic polymer. Appl. Phys. Lett. 2018, 113, 231102. [Google Scholar] [CrossRef]
- Li, M.; Li, Y.; Zhang, H.; Wang, S.; Ao, Y.; Cui, Z. Molecular engineering of organic chromophores and polymers for enhanced bulk second-order optical nonlinearity. J. Mater. Chem. C 2017, 5, 4111–4122. [Google Scholar] [CrossRef]
- Harper, A.W.; Sun, S.; Dalton, L.R.; Garner, S.M.; Chen, A.; Kulluri, S.; Steier, W.H.; Robinson, B.H. Translating microscopic optical nonlinearity to macroscopic optical nonlinearity: The role of chromophore-chromophore electrostatic interactions. J. Opt. Soc. Am. B 1998, 15, 329–337. [Google Scholar] [CrossRef]
- Meredith, G.R.; Vandusen, J.; Williams, D.J. Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers. Macromolecules 1982, 15, 1385–1389. [Google Scholar] [CrossRef]
- Tang, R.; Li, Z. Second-order nonlinear optical dendrimers and dendronized hyperbranched polymers. Chem. Rec. 2017, 17, 71–89. [Google Scholar] [CrossRef]
- Li, Q.; Li, Z. Molecular packing: Another key point for the performance of organic and polymeric optoelectronic materials. Acc. Chem. Res. 2020, 53, 962–973. [Google Scholar] [CrossRef] [PubMed]
- Dalton, L.R.; Sullivan, P.A.; Bale, D.H. Electric field poled organic electro-optic materials: State of the art and future prospects. Chem. Rev. 2010, 110, 25–55. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Fang, S. Polymeric nonlinear optical materials. Polym. Bull. 1990, 3, 95–103. [Google Scholar]
- Wu, W.; Qin, J.; Li, Z. New design strategies for second-order nonlinear optical polymers and dendrimers. Polymer 2013, 54, 4351–4382. [Google Scholar] [CrossRef] [Green Version]
- Robinson, B.H.; Dalton, L.R. Monte carlo statistical mechanical similations of the competition of intermolecular electrostatic and poling-field interactions in defining macroscopic electro-optic activity for organic chromophore/polymer materials. J. Phys. Chem. A 2000, 104, 4785–4795. [Google Scholar] [CrossRef]
- Robinson, B.H.; Dalton, L.R.; Harper, H.W.; Ren, A.; Wang, F.; Zhang, C.; Todorova, G.; Lee, M.; Aniszfeld, R.; Garner, S. The molecular and supramolecular engineering of polymeric electro-optic materials. Chem. Phys. 1999, 245, 35–50. [Google Scholar] [CrossRef]
- Shi, Z.; Hau, S.; Luo, J.; Kim, T.-D.; Tucker, N.M.; Ka, J.-W.; Sun, H.; Pyajt, A.; Dalton, L.; Chen, A.; et al. Highly efficient Diels-Alder crosslinkable electro-optic dendrimers for electric-field sensors. Adv. Funct. Mater. 2007, 17, 2557–2563. [Google Scholar] [CrossRef]
- Ma, H.; Chen, B.; Sassa, T.; Dalton, L.R.; Jen, A.K.Y. Highly efficient and thermally stable nonlinear optical dendrimer for electrooptics. J. Am. Chem. Soc. 2001, 123, 986–987. [Google Scholar] [CrossRef]
- Tang, R.; Zhou, S.; Cheng, Z.; Gui, Y.; Peng, Q.; Zeng, H.; Guo, G.; Li, Q.; Li, Z. Janus second-order nonlinear optical dendrimers: Their controllable molecular topology and corresponding largely enhanced performance. Chem. Sci. 2016, 8, 340–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Wu, W.; Li, Q.; Yu, G.; Xiao, L.; Liu, Y.; Ye, C.; Qin, J.; Li, Z. High-Generation Second-Order Nonlinear Optical (NLO) Dendrimers: Convenient Synthesis by Click Chemistry and the Increasing Trend of NLO Effects. Angew. Chem. Int. Ed. 2010, 49, 2763–2767. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Huang, L.; Song, C.; Yu, G.; Ye, C.; Liu, Y.; Qin, J.; Li, Q.; Li, Z. Novel global-like second-order nonlinear optical dendrimers: Convenient synthesis through powerful click chemistry and large NLO effects achieved by using simple azo chromophore. Chem. Sci. 2012, 3, 1256–1261. [Google Scholar] [CrossRef]
- Wu, W.; Tang, R.; Li, Q.; Li, Z. Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem. Soc. Rev. 2015, 44, 3997–4022. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Qin, A.; Lam, J.W.Y.; Dong, Y.; Ye, C.; Williams, I.; Tang, B. Facile synthesis, large optical nonlinearity, and excellent thermal stability of hyperbranched poly(aryleneethynylene)s containing azobenzene chromophores. Macromolecules 2006, 39, 1436–1442. [Google Scholar] [CrossRef]
- Li, Z.; Wu, W.; Ye, C.; Qin, J.; Li, Z. New main-chain hyperbranched polymers: Facile synthesis, structural control, and second-order nonlinear optical properties. Polymer 2012, 53, 153–160. [Google Scholar] [CrossRef]
- Zang, X.; Liu, H.; Li, Q.; Li, Z.; Li, Z. A TCBD-based AB2-type second-order nonlinear optical hyperbranched polymer prepared by a facile click-type postfunctionalization. Polym. Chem. 2020, 11, 5493–5499. [Google Scholar] [CrossRef]
- Wu, W.; Huang, L.; Fu, Y.; Ye, C.; Qin, J.; Li, Z. Design, synthesis and nonlinear optical properties of “dendronized hyperbranched polymers”. Chin. Sci. Bull. 2013, 58, 2753–2761. [Google Scholar] [CrossRef] [Green Version]
- Frauenrath, H. Dendronized polymers-building a new bridge from molecules to nanoscopic objects. Prog. Polym. Sci. 2005, 30, 325–384. [Google Scholar] [CrossRef]
- Li, Z.; Yu, G.; Wu, W.; Liu, Y.; Ye, C.; Qin, J.; Li, Z. Nonlinear optical dendrimers from click chemistry: Convenient synthesis, new function of the formed triazole rings, and enhanced NLO effects. Macromolecules 2009, 42, 3864–3868. [Google Scholar] [CrossRef]
- Li, Z.; Yu, G.; Liu, Y.; Ye, C.; Qin, J.; Li, Z. Dendronized polyfluorenes with high azo-chromophore loading density: Convenient synthesis and enhanced second-order nonlinear optical effects. Macromolecules 2009, 42, 6463–6472. [Google Scholar] [CrossRef]
- Wu, W.; Wang, Z.; Xiao, R.; Xu, Z.; Li, Z. Main chain dendronized hyperbranched polymers: Convenient synthesis and good second-order nonlinear optical performance. Poly. Chem. 2015, 24, 4396–4403. [Google Scholar] [CrossRef]
- Wu, W.; Xu, Z.; Li, Z. Using low generation dendrimers as monomers to construct dendronized hyperbranched polymers with high nonlinear optical performance. J. Mater. Chem. C 2014, 38, 8122–8130. [Google Scholar] [CrossRef]
- Wu, W.; Fu, Y.; Wang, C.; Xu, Z.; Ye, C.; Qin, J.; Li, Z. Second-order nonlinear optical hyperbranched polymer containing isolation chromophore moieties derived from both “H”-type and star-type chromophores. Chin. J. Polym. Sci. 2013, 31, 1415–1423. [Google Scholar] [CrossRef]
- Tang, R.; Chen, H.; Zhou, S.; Liu, B.; Gao, D.; Zeng, H.; Li, Z. The integration of an “X” type dendron into polymers to further improve the comprehensive NLO performance. Polym. Chem. 2015, 6, 6680–6688. [Google Scholar] [CrossRef]
- Wu, W.; Ye, C.; Yu, G.; Liu, Y.; Qin, J.; Li, Z. New hyperbranched polytriazoles containing isolation chromophore moieties derived from AB4 monomers through click chemistry under copper (I) catalysis: Improved optical transparency and enhanced NLO effects. Chem. Eur. J. 2012, 18, 4426–4434. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Ye, C.; Qin, J.; Li, Z. Introduction of an isolation chromophore into an “H”-shaped NLO polymer: Enhanced NLO effect, optical transparency, and stability. ChemPlusChem 2013, 78, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Li, C.; Yu, G.; Liu, Y.; Ye, C.; Qin, J.; Li, Z. High-generation second-order nonlinear optical (NLO) dendrimers that contain isolation chromophores: Convenient synthesis by using click chemistry and their increased NLO effects. Chem. Eur. J. 2012, 18, 11019–11028. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Huang, Q.; Xu, G.; Wang, C.; Ye, C.; Qin, J.; Li, Z. Using an isolation chromophore to further improve the comprehensive performance of nonlinear optical (NLO) dendrimers. J. Mater. Chem. C 2013, 1, 3226–3234. [Google Scholar] [CrossRef]
- Wu, W.; Huang, L.; Xiao, L.; Huang, Q.; Tang, R.; Ye, C.; Qin, J.; Li, Z. New second-order nonlinear optical (NLO) hyperbranched polymers containing isolation chromophore moieties derived from one-pot “A2 + B4” approach via Suzuki coupling reaction. RSC Adv. 2012, 2, 6520–6526. [Google Scholar] [CrossRef]
- Yang, H.; Cheng, Z.; Liu, C.; Wu, W.; Zhang, K.-N.; Xu, S.; Liu, Y.; Cao, S.; Li, Z. A second-order nonlinear optical dendronized hyperbranched polymer containing isolation chromophores: Achieving good optical nonlinearity and stability simultaneously. Sci. Chin. Chem. 2018, 61, 584–591. [Google Scholar] [CrossRef]
- Wu, W.; Ye, C.; Qin, J.; Li, Z. Further enhancement of the second-order nonlinear optical (NLO) coefficient and the stability of NLO polymers that contain isolation chromophore moieties by using the "suitable isolation group" concept and the Ar/ArF self-assembly effect. Chem. Asian J. 2013, 8, 1836–1846. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Tang, R.; Wu, W.; Liu, W.; Guo, Q.; Liu, Y.; Xu, S.; Cao, S.; Li, Z. A series of dendronized hyperbranched polymers with dendritic chromophore moieties in the periphery: Convenient synthesis and large nonlinear optical effects. Polym. Chem. 2016, 7, 4016–4024. [Google Scholar] [CrossRef]
- Liu, G.; Chen, P.; Tang, R.; Li, Z. Synthesis and characterization of dendronized hyperbranched polymers through the “A3 + B2” approach. Sci. Chin. Chem. 2016, 59, 1561–1567. [Google Scholar] [CrossRef]
- Tang, R.; Chen, H.; Zhou, S.; Xiang, W.; Tang, X.; Liu, B.; Dong, Y.; Zeng, H.; Li, Z. Dendronized hyperbranched polymers containing isolation chromophores: Design, synthesis and further enhancement of the comprehensive NLO performance. Polym. Chem. 2015, 6, 5580–5589. [Google Scholar] [CrossRef]
- Wang, R.; Cheng, Z.; Deng, X.; Zhao, W.; Li, Z. Photo-crosslinkable second order nonlinear AB2-type monomers: Convenient synthesis and enhanced NLO thermostability. J. Mater. Chem. C 2020, 8, 6380–6387. [Google Scholar] [CrossRef]
- Wu, W.; Wang, C.; Li, Q.; Ye, C.; Qin, J.; Li, Z. The influence of pentafluorophenyl groups on the nonlinear optical (NLO) performance of high generation dendrons and dendrimers. Sci. Rep. 2014, 209, 1454–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Violeta, M.V.; Sonia, H.D.; Natalia, A.F.; Roberto, P.C.; Jorge, L.O.; Sonia, V.; Oscar, S.G.; Adrian, V.C.; Teresa, S.; Olga, A. Fluorescence liquid biopsy for cancer detection is improved by using cationic dendronized hyperbranched polymer. Int. J. Mol. Sci. 2021, 22, 6501. [Google Scholar]
- Hatton, F.L.; Tatham, L.M.; Tidbury, L.R.; Chambon, P.; He, T.; Owen, A.; Rannard, S.P. Hyperbranched polydendrons: A new nanomaterials platform with tuneable permeation through model gut epithelium. Chem. Sci. 2015, 6, 326–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuchkina, N.V.; Zinatullina, M.S.; Serkova, E.S.; Vlasov, P.S.; Peregudov, A.S.; Shifrina, Z.B. Hyperbranched pyridylphenylene polymers based on the first-generation dendrimer as multifunctional monomer. RSC Adv. 2015, 5, 99510–99516. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, T.; Yan, J.; Liu, K.; Li, W.; Zhang, A. Multiple-responsive dendronized hyperbranched polymers. ACS Omega 2019, 4, 7667–7674. [Google Scholar] [CrossRef] [PubMed]
No. | Tea (°C) | d33b (pm/V) | Tonsetc (°C) | Tgd (°C) | Tde (°C) |
---|---|---|---|---|---|
DHP1 | 140 | 133 | 108 | 138 | 285 |
DHP2 | 140 | 122 | 117 | 142 | 291 |
DHP3 | 125 | 166 | 117 | (-) f | 283 |
DHP4 | 145 | 40 | 103 | 143 | 275 |
DHP5 | 180 | 36 | (-) f | 217 | 274 |
DHP6 | 145 | 101 | 120 | 123 | 297 |
DHP7 | 120 | 179 | 68 | 86 | 245 |
DHP8a | 130 | 183 | 111 | 100 | 253 |
DHP8b | 135 | 220 | 115 | 82 | 263 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wu, W. Dendronized Hyperbranched Polymer: A New Architecture for Second-Order Nonlinear Optics. Symmetry 2022, 14, 882. https://doi.org/10.3390/sym14050882
Liu J, Wu W. Dendronized Hyperbranched Polymer: A New Architecture for Second-Order Nonlinear Optics. Symmetry. 2022; 14(5):882. https://doi.org/10.3390/sym14050882
Chicago/Turabian StyleLiu, Jiaxin, and Wenbo Wu. 2022. "Dendronized Hyperbranched Polymer: A New Architecture for Second-Order Nonlinear Optics" Symmetry 14, no. 5: 882. https://doi.org/10.3390/sym14050882
APA StyleLiu, J., & Wu, W. (2022). Dendronized Hyperbranched Polymer: A New Architecture for Second-Order Nonlinear Optics. Symmetry, 14(5), 882. https://doi.org/10.3390/sym14050882