Applications of Symmetric Conic Domains to a Subclass of q-Starlike Functions
Abstract
:1. Introduction and Definitions
2. A Set of Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goodman, A.W. Univalent Functions; Polygonal Publishing House: Washington, NJ, USA, 1983; Volume I. [Google Scholar]
- Goodman, A.W. Univalent Functions; Polygonal Publishing House: Washington, NJ, USA, 1983; Volume II. [Google Scholar]
- Goodman, A.W. On uniformly convex functions. Ann. Polon. Math. 1991, 56, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Wisniowska, A. Conic domains and k-starlike functions. Rev. Roum. Math. Pure Appl. 2000, 45, 647–657. [Google Scholar]
- Rønning, F. Uniformly convex functions and a corresponding class of starlike functions. Proc. Am. Math. Soc. 1993, 118, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Minda, D. Uniformly convex functions. Ann. Polon. Math. 1992, 57, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Shams, S.; Kulkarni, S.R.; Jahangiri, J.M. Classes of uniformly starlike and convex functions. Int. J. Math. Math. Sci. 2004, 55, 2959–2961. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Islam, S.; Khan, M.G.; Ahmad, B.; Arif, M.; Chinram, R. q-Extension of Starlike Functions Subordinated with a Trigonometric Sine Function. Mathematics 2020, 8, 1676. [Google Scholar] [CrossRef]
- Zainab, S.; Raza, M.; Xin, Q.; Jabeen, M.; Malik, S.N.; Riaz, S. On q-Starlike Functions Defined by q-Ruscheweyh Differential Operator in Symmetric Conic Domain. Symmetry 2021, 13, 1947. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Khan, S.; Hussain, S.; Zaighum, M.A.; Darus, M. A subclass of uniformly convex functions and a corresponding subclass of starlike function with fixed coefficient associated with q-analogue of Ruscheweyh operator. Math. Slovaca 2019, 69, 825–832. [Google Scholar] [CrossRef]
- Mahmood, S.; Khan, I.; Srivastava, H.M.; Malik, S.N. Inclusion relations for certain families of integral operators associated with conic regions. J. Inequalities Appl. 2019, 2019, 59. [Google Scholar] [CrossRef]
- Mahmood, S.; Jabeen, M.; Malik, S.N.; Srivastava, H.M.; Manzoor, R.; Riaz, S.M. Some coefficient inequalities of q-starlike functions associated with conic domain defined by q-derivative. J. Funct. Spaces 2018, 2018, 8492072. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, Q.Z.; Khan, N.; Raza, M.; Tahir, M.; Khan, B. Certain q-difference operators and their applications to the subclass of meromorphic q-starlike functions. Filomat 2019, 33, 3385–3397. [Google Scholar] [CrossRef]
- Rehman, M.S.; Ahmad, Q.Z.; Khan, B.; Tahir, M.; Khan, N. Generalisation of certain subclasses of analytic and univalent functions, Maejo Internat. J. Sci. Technol. 2019, 13, 1–9. [Google Scholar]
- Shi, L.; Ahmad, B.; Khan, N.; Khan, M.G.; Araci, S.; Mashwani, W.K.; Khan, B. Coefficient Estimates for a Subclass of Meromorphic Multivalent q-Close-to-Convex Functions. Symmetry 2021, 13, 1840. [Google Scholar] [CrossRef]
- Uçar, H.E.O. Coefficient inequality for q-starlike Functions. Appl. Math. Comput. 2016, 76, 122–126. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q -) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent functions, fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; John Wiley & Sons: New York, NY, USA, 1989. [Google Scholar]
- Khan, B.; Liu, Z.-G.; Srivastava, H.M.; Khan, N.; Tahir, M. Applications of higher-order derivatives to subclasses of multivalent q-starlike functions. Maejo Int. J. Sci. Technol. 2021, 15, 61–72. [Google Scholar]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Khan, M.G.; Frasin, B.A.; Aouf, M.K.; Abdeljawad, T.; Mashwani, W.K.; Arif, M. On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Math. 2021, 6, 3037–3052. [Google Scholar] [CrossRef]
- Ahmad, B.; Khan, M.G.; Darus, M.; Khan Mashwani, W.; Arif, M. Applications of Some Generalized Janowski Meromorphic Multivalent Functions. J. Math. 2021, 2021, 6622748. [Google Scholar] [CrossRef]
- Khan, N.; Srivastava, H.M.; Rafiq, A.; Arif, M.; Arjika, S. Some applications of q-difference operator involving a family of meromorphic harmonic functions. Adv. Differ. Equ. 2021, 2021, 471. [Google Scholar] [CrossRef]
- Zhan, C.; Khan, S.; Hussain, A.; Khan, N.; Hussain, S.; Khan, N. Applications of q-difference symmetric operator in harmonic univalent functions. AIMS Math. 2021, 7, 667–680. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, S.; Naeem, M.; Darus, M.; Rasheed, A. A Subclass of q-starlike functions defined by using a symmetric q-derivative operator and related with generalized symmetric conic domains. Mathematics 2021, 9, 917. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.-G.; Shaba, T.G.; Araci, S.; Khan, N.; Khan, M.G. Applications of q-Derivative Operator to the Subclass of Bi-Univalent Functions Involving q-Chebyshev Polynomials. J. Math. 2022, 2022, 8162182. [Google Scholar] [CrossRef]
- Cruz, A.M.D.; Martins, N. The q-symmetric variational calculus. Comput. Math. Appl. 2012, 64, 2241–2250. [Google Scholar] [CrossRef] [Green Version]
- Lavagno, A. Basic-deformed quantum mechanics. Rep. Math. Phys 2009, 64, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Gasper, G.; Rahman, M. Volume 35 of Encyclopedia of Mathematics and its applications. In Basic Hpergeometric Series; Ellis Horwood: Chichester, UK, 1990. [Google Scholar]
- Kamel, B.; Yosr, S. On some symmetric q-special functions. Le Matematiche 2013, 68, 107–122. [Google Scholar]
- Kanas, S.; Raducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Kanas, S.; Wisniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Noor, K.I. Applications of certain operators to the classes related with generalized Janowski functions. Integral Transform. Spec. Funct. 2010, 21, 557–567. [Google Scholar] [CrossRef]
- Noor, K.I.; Malik, S.N. On coefficient inequalities of functions associated with conic domains. Comput. Math. Appl. 2011, 62, 2209–2217. [Google Scholar] [CrossRef] [Green Version]
- Noor, K.I.; Malik, S.N.; Arif, M.; Raza, M. On bounded boundary and bounded radius rotation related with Janowski function. World Appl. Sci. J. 2011, 12, 895–902. [Google Scholar]
- Sokół, J. Classes of multivalent functions associated with a convolution operator. Comput. Math. Appl. 2010, 60, 1343–1350. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Khan, S.; Hussain, S.; Tang, H.; Shareef, Z. New subclass of q-starlike functions associated with generalized conic domain. AIMS Math. 2020, 5, 4830–4848. [Google Scholar] [CrossRef]
- Andrei, L.; Caus, V.-A. A Generalized Class of Functions Defined by the q-Difference Operator. Symmetry 2021, 13, 2361. [Google Scholar] [CrossRef]
- Cătaş, A.A. On the Fekete–Szegö Problem for Meromorphic Functions Associated with p,q-Wright Type Hypergeometric Function. Symmetry 2021, 13, 2143. [Google Scholar] [CrossRef]
- Swamy, S.R.; Alb Lupaş, A. Bi-univalent Function Subfamilies Defined by q-Analogue of Bessel Functions Subordinate to (p,q)-Lucas Polynomials. WSEAS Trans. Math. 2022, 21, 98–106. [Google Scholar] [CrossRef]
- Akgül, A.; Cotîrlă, L.-I. Coefficient Estimates for a Family of Starlike Functions Endowed with Quasi Subordination on Conic Domain. Symmetry 2022, 14, 582. [Google Scholar] [CrossRef]
- Janowski, W. Some extremal problems for certain families of analytic functions. Ann. Polon. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef] [Green Version]
- Rogosinski, W. On the coefficients of subordinate functions. Proc. Lond. Math. Soc 1943, 48, 48–82. [Google Scholar] [CrossRef]
- Sim, Y.J.; Kwon, O.S.; Cho, N.E.; Srivastava, H.M. Some classes of analytic functions associated with conic regions. Taiwan J. Math. 2012, 16, 387–408. [Google Scholar] [CrossRef]
- Noor, K.I.; Arif, M.; Ul-Haq, W. On k-uniformly close-to-convex functions of complex order. Appl. Math. Comput. 2009, 215, 629–635. [Google Scholar] [CrossRef]
- Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conferene on Complex Analysis; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press Inc.: New York, NY, USA, 1992; pp. 157–169. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.; Khan, N.; Hussain, A.; Araci, S.; Khan, B.; Al-Sulami, H.H. Applications of Symmetric Conic Domains to a Subclass of q-Starlike Functions. Symmetry 2022, 14, 803. https://doi.org/10.3390/sym14040803
Khan S, Khan N, Hussain A, Araci S, Khan B, Al-Sulami HH. Applications of Symmetric Conic Domains to a Subclass of q-Starlike Functions. Symmetry. 2022; 14(4):803. https://doi.org/10.3390/sym14040803
Chicago/Turabian StyleKhan, Shahid, Nazar Khan, Aftab Hussain, Serkan Araci, Bilal Khan, and Hamed H. Al-Sulami. 2022. "Applications of Symmetric Conic Domains to a Subclass of q-Starlike Functions" Symmetry 14, no. 4: 803. https://doi.org/10.3390/sym14040803
APA StyleKhan, S., Khan, N., Hussain, A., Araci, S., Khan, B., & Al-Sulami, H. H. (2022). Applications of Symmetric Conic Domains to a Subclass of q-Starlike Functions. Symmetry, 14(4), 803. https://doi.org/10.3390/sym14040803