Symmetry Constraints on Spin Order Transfer in Parahydrogen-Induced Polarization (PHIP)
<p><b>Schematic view of hydrogenative ((A), left) and non-hydrogenative ((B), right) PHIP for a 3-spin-½ system with asymmetric couplings (top) and a 4-spin-½ system with symmetric couplings (bottom).</b> Here, we focus on hydrogenative PHIP in symmetric and asymmetric systems (<b>A</b>). The case of 4-spin-½ SABRE ((<b>B</b>), <b>bottom</b>) was considered by Levitt in a seminal paper [<a href="#B17-symmetry-14-00530" class="html-bibr">17</a>]. Note that different lines represent different strengths of nuclear spin–spin interactions. pH<sub>2</sub> is represented by red circles, other spins or other reagents by blue squares, and J-couplings by thin, thick, and dashed lines.</p> "> Figure 2
<p><b>Spin topologies considered for simulating the effect of symmetry on the transformation of pH<sub>2</sub>-derived spin order (red) into observable polarization.</b> Red symbols indicate the pH<sub>2</sub>-nascent spins, different lines indicate <span class="html-italic">J</span>-coupling constants, and circles, squares, hexagons are spins of the same type. Note that different lines represent different strengths of nuclear spin–spin interactions.</p> "> Figure 3
<p><b>Average polarization per spin achieved theoretically by adding pH<sub>2</sub> to a precursor yielding a molecule with 2–10 spins with (black) and without (orange, blue) symmetry constraints (SC).</b> In general, higher polarization can be achieved if there are no constraints (compare black with orange and blue) and if the initial density matrix is <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mi mathvariant="normal">S</mi> <mrow> <mi mathvariant="normal">A</mi> <mo>,</mo> <mi mathvariant="normal">B</mi> </mrow> </msubsup> </mrow> </semantics></math> (blue) rather than <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>ZZ</mi> </mrow> <mrow> <mi mathvariant="normal">A</mi> <mo>,</mo> <mi mathvariant="normal">B</mi> </mrow> </msubsup> </mrow> </semantics></math> (orange, compare blue and orange in A). We assumed pH<sub>2</sub> to be added in positions A and B. The reported values are given in <a href="#symmetry-14-00530-t0A6" class="html-table">Table A6</a> and <a href="#symmetry-14-00530-t0A7" class="html-table">Table A7</a> (<a href="#app3-symmetry-14-00530" class="html-app">Appendix B</a>).</p> "> Figure 4
<p><b>Average polarization per molecule—in units of one-spin-1/2 polarization—that can be achieved theoretically by adding pH<sub>2</sub> to a precursor yielding a molecule with 2–10 spins with (black,</b><math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mstyle mathvariant="bold" mathsize="normal"> <mi>S</mi> </mstyle> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi>A</mi> </mstyle> <mo>,</mo> <mstyle mathvariant="bold" mathsize="normal"> <mi>B</mi> </mstyle> </mrow> </msubsup> <mo>→</mo> <msubsup> <mi>σ</mi> <mstyle mathvariant="bold" mathsize="normal"> <mi>P</mi> </mstyle> <mstyle mathvariant="bold" mathsize="normal"> <mi>N</mi> </mstyle> </msubsup> </mrow> </semantics></math><b>) and without symmetry constraints (SC) for</b><math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mstyle mathvariant="bold" mathsize="normal"> <mi>S</mi> </mstyle> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi>A</mi> </mstyle> <mo>,</mo> <mstyle mathvariant="bold" mathsize="normal"> <mi>B</mi> </mstyle> </mrow> </msubsup> <mo>→</mo> <msubsup> <mi>σ</mi> <mstyle mathvariant="bold" mathsize="normal"> <mi>P</mi> </mstyle> <mstyle mathvariant="bold" mathsize="normal"> <mi>N</mi> </mstyle> </msubsup> </mrow> </semantics></math><b>(blue) and</b><math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi>Z</mi> <mi>Z</mi> </mstyle> </mrow> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi>A</mi> </mstyle> <mo>,</mo> <mstyle mathvariant="bold" mathsize="normal"> <mi>B</mi> </mstyle> </mrow> </msubsup> <mo>→</mo> <msubsup> <mi>σ</mi> <mstyle mathvariant="bold" mathsize="normal"> <mi>P</mi> </mstyle> <mstyle mathvariant="bold" mathsize="normal"> <mi>N</mi> </mstyle> </msubsup> </mrow> </semantics></math><b>(orange).</b> If the polarization of all spins in one molecule is summed up, up to ~ 4 was obtained for large spin systems (blue). The reported values can be obtained from the average values given in <a href="#symmetry-14-00530-t0A6" class="html-table">Table A6</a> and <a href="#symmetry-14-00530-t0A7" class="html-table">Table A7</a> (<a href="#app3-symmetry-14-00530" class="html-app">Appendix B</a>) and calculations for <span class="html-italic">N</span> = 2, 3, and 4 exemplified in <a href="#app4-symmetry-14-00530" class="html-app">Appendix C</a>.</p> "> Figure 5
<p><b>Interactions and symmetry axis of ethylene.</b> (<b>A</b>) Ethylene structure and nuclear spin–spin couplings (<span class="html-italic">J</span>-couplings, top), the numbering of the atomic positions, and the cartesian axis x, y, z. (<b>B</b>) Graphs corresponding to the spin system AA’(AA’) where pH<sub>2</sub> was added at cis-, trans-, or geminal positions (red circles). Different lines correspond to different values of spin–spin interactions.</p> "> Figure 6
<p><b>Molecular structures (top) and spin topologies (bottom) of ethyl (A) and allyl (B) esters of carboxylic acids-products of PHIP-SAH.</b> Different lines (<b>bottom</b>) represent different spin–spin interaction values.</p> "> Figure A1
<p><b>The action of a mirror plane on an axial vector (spin or magnetic dipole).</b> When an axial vector is perpendicular to the mirror plane, it does not change upon reflection. If, however, it is oriented along the mirror plane, it changes its orientation upon reflection [<a href="#B63-symmetry-14-00530" class="html-bibr">63</a>].</p> "> Figure A2
<p><b>Average polarization per molecule—in units of one-spin-1/2 polarization—that can be achieved theoretically by adding pH<sub>2</sub> to a precursor producing a molecule with <span class="html-italic">N</span> spins without symmetry constraints.</b> Numerically calculated values fit well to the approximation <math display="inline"><semantics> <mrow> <mn>1.271</mn> <msqrt> <mi>N</mi> </msqrt> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Spin Operators and Observables
2.2. No Symmetry Constraints
2.3. Symmetry Constraints (SC)
2.4. Eigenvalues in the Case of SC
- is diagonal. When the predefined basis of the group coincides with the eigenstates of the operator , then is diagonal with eigenvalues on the diagonal. All coherences (off-diagonal elements) are zero. To find , one has only to sort and enumerate the eigenvalues inside each :
- 2.
- is-block diagonal. When has coherences only inside the same irreducible representations , then is a -block diagonal matrix
- 3.
- is not block diagonal. The most general case is when there are off-diagonal elements between different irreducible representations.
2.5. Spin Systems Notations
3. Results
3.1. Parahydrogen Spin-Order Transfer in a Two Spin-½ System
3.1.1. The Symmetry of AB and A2 Systems
3.1.2. pH2 to Magnetization in AB Systems
3.1.3. pH2 to Magnetization in A2 Systems
3.1.4. Limitation of the Method: ALTADENA Example
3.1.5. pH2 on the Surface of a Solid
3.2. Transfer of pH2 Spin Order to 1H Magnetization in Multispin Systems
3.2.1. No Symmetry Constraints
3.2.2. With Symmetry Constraints
3.2.3. Nuclear Spin Isomers of H2 and Ethylene
3.3. PHIP-SAH and the Transfer of pH2 Spin Order to the Magnetization of X-Nuclei
3.3.1. PHIP-SAH
3.3.2. No Symmetry Constraints
3.3.3. Symmetry Constraints
3.3.4. Double Hydrogenation
3.4. Examples of Isotopic and Chemical Symmetry Breaking
3.4.1. Ethylene
- The two pairs of hydrogens in ethylene can be made magnetically nonequivalent by 13C labeling. In the case of a single-sided 13C labeling system, symmetry drops down to C2 and polarization transfer is possible to 1H or 13C nuclei. In addition, the chemical shifts of two gem pairs of protons are different.
- The other way to break the ethylene symmetry is a chemical reaction. So, polarized ethylene gas bubbled through a CCl4 solution of perfluoro(para-tolylsulfenyl) chloride (PTSC) yields an asymmetric PTSC/ethylene adduct [7]. As a result, a normal PASADENA spectrum can be obtained.
3.4.2. Fumarate and Maleate
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. A2 Two Spin-½ System, C2 Group
E | C2 | |
---|---|---|
A | 1 | 1 |
B | 1 | −1 |
SpinRep = 3A + B | 4 | 2 |
Appendix A.2. A3 Three Spin-½ System, C3 Group
E | |||
---|---|---|---|
A | 1 | 1 | 1 |
E1 | 1 | ||
E2 | 1 | ||
SpinRep = 4A + 2E1 + 2E2 | 8 | 2 | 2 |
Appendix A.3. A4 Four Spin-½ System: C4 Group Example
E | C4 | C2 = (C4)2 | (C4)3 | |
---|---|---|---|---|
A | +1 | +1 | +1 | +1 |
B | +1 | −1 | +1 | −1 |
E1 | +1 | +i | −1 | −i |
E2 | +1 | −i | −1 | +i |
SpinRep = 6A + 4B+3E1+3E2 | 16 | 2 | 4 | 2 |
Appendix A.4. AA’(AA’) Four Spin-½ System: D2 Group (Spin Symmetry of Ethylene)
E | C2(z) | C2(y) | C2(x) | |
---|---|---|---|---|
A | +1 | +1 | +1 | +1 |
B1 | +1 | + | −1 | −1 |
B2 | +1 | −1 | +1 | −1 |
B3 | +1 | −1 | −1 | +1 |
SpinRep = 7A + 3B1 + 3B2 + 3B3 | 16 | 4 | 4 | 4 |
Appendix A.5. AA’ (AA’) Four Spin-½ System, D2h Group (Molecular Symmetry of Ethylene)
E | i | |||||||
---|---|---|---|---|---|---|---|---|
Ag | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 |
B1g | +1 | −1 | −1 | +1 | +1 | −1 | −1 | |
B2g | +1 | −1 | +1 | −1 | +1 | −1 | +1 | −1 |
B3g | +1 | −1 | −1 | +1 | +1 | −1 | −1 | +1 |
Au | +1 | +1 | +1 | +1 | −1 | −1 | −1 | −1 |
B1u | +1 | +1 | −1 | −1 | −1 | −1 | +1 | +1 |
B2u | +1 | −1 | +1 | −1 | −1 | +1 | −1 | +1 |
B3u | +1 | −1 | −1 | +1 | −1 | +1 | +1 | −1 |
SpinRep = 7Ag + 3B1u + 3B1u + 3B3g | 16 | 4 | 4 | 4 | 4 | 4 | 4 | 16 |
Appendix B
Type of the System | Number of Spins | ||
---|---|---|---|
AB | 2 | ½ | 1 |
ABC | 3 | ½ | 2/3 |
ABCD | 4 | 3/8 | 5/8 |
ABCDE | 5 | 3/8 | 11/20 |
ABCDEF | 6 | 5/16 | ½ |
ABCDEFG | 7 | 5/16 | 0.4821 |
ABCDEFGH | 8 | 0.2734 | 0.4336 |
ABCDEFGHI | 9 | 0.2734 | 0.4323 |
ABCDEFGHIJ | 10 | 0.2461 | 0.3906 |
ABCDEFGHIJK | 11 | 0.2461 | 0.3835 |
ABCDEFGHIJKL | 12 | 0.2256 | 0.3597 |
Type of the System | Number of Spins | |
---|---|---|
A2B | 3 | 1/3 |
A2BC | 4 | 0.3125 |
A3B | 4 | 0.25 |
A2B2 | 4 | 0.1875 |
A3BC | 5 | 0.175 |
A2B2C | 5 | 0.175 |
A3B2 | 5 | 0.1167 |
A3BCD | 6 | 0.2014 |
A3B2C | 6 | 0.1424 |
A3B3 | 6 | 0.1204 |
Appendix C
References
- Natterer, J.; Bargon, J. Parahydrogen Induced Polarization. Prog. Nucl. Magn. Reson. Spectrosc. 1997, 31, 293–315. [Google Scholar] [CrossRef]
- Green, R.A.; Adams, R.W.; Duckett, S.B.; Mewis, R.E.; Williamson, D.C.; Green, G.G.R. The Theory and Practice of Hyperpolarization in Magnetic Resonance Using Parahydrogen. Prog. Nucl. Magn. Reson. Spectrosc. 2012, 67, 1–48. [Google Scholar] [CrossRef]
- Ellermann, F.; Pravdivtsev, A.; Hövener, J.-B. Open-Source, Partially 3D-Printed, High-Pressure (50-Bar) Liquid-Nitrogen-Cooled Parahydrogen Generator. Magn. Reson. 2021, 2, 49–62. [Google Scholar] [CrossRef]
- Hövener, J.-B.; Bär, S.; Leupold, J.; Jenne, K.; Leibfritz, D.; Hennig, J.; Duckett, S.B.; von Elverfeldt, D. A Continuous-Flow, High-Throughput, High-Pressure Parahydrogen Converter for Hyperpolarization in a Clinical Setting. NMR Biomed. 2013, 26, 124–131. [Google Scholar] [CrossRef]
- Feng, B.; Coffey, A.M.; Colon, R.D.; Chekmenev, E.Y.; Waddell, K.W. A Pulsed Injection Parahydrogen Generator and Techniques for Quantifying Enrichment. J. Magn. Reson. 2012, 214, 258–262. [Google Scholar] [CrossRef] [Green Version]
- Knopp, G.; Kirch, K.; Beaud, P.; Mishima, K.; Spitzer, H.; Radi, P.; Tulej, M.; Gerber, T. Determination of the Ortho-/Para Deuterium Concentration Ratio with Femtosecond CARS. J. Raman Spectrosc. 2003, 34, 989–993. [Google Scholar] [CrossRef]
- Zhivonitko, V.V.; Kovtunov, K.V.; Chapovsky, P.L.; Koptyug, I.V. Nuclear Spin Isomers of Ethylene: Enrichment by Chemical Synthesis and Application for NMR Signal Enhancement. Angew. Chem. Int. Ed. 2013, 52, 13251–13255. [Google Scholar] [CrossRef]
- Kilaj, A.; Gao, H.; Rösch, D.; Rivero, U.; Küpper, J.; Willitsch, S. Observation of Different Reactivities of Para and Ortho- Water towards Trapped Diazenylium Ions. Nat. Commun. 2018, 9, 2096. [Google Scholar] [CrossRef]
- Bowers, C.R.; Weitekamp, D.P. Parahydrogen and Synthesis Allow Dramatically Enhanced Nuclear Alignment. J. Am. Chem. Soc. 1987, 109, 5541–5542. [Google Scholar] [CrossRef] [Green Version]
- Pravica, M.G.; Weitekamp, D.P. Net NMR Alignment by Adiabatic Transport of Parahydrogen Addition Products to High Magnetic Field. Chem. Phys. Lett. 1988, 145, 255–258. [Google Scholar] [CrossRef]
- Adams, R.W.; Aguilar, J.A.; Atkinson, K.D.; Cowley, M.J.; Elliott, P.I.P.; Duckett, S.B.; Green, G.G.R.; Khazal, I.G.; López-Serrano, J.; Williamson, D.C. Reversible Interactions with Para-Hydrogen Enhance NMR Sensitivity by Polarization Transfer. Science 2009, 323, 1708–1711. [Google Scholar] [CrossRef] [Green Version]
- Korchak, S.; Mamone, S.; Glöggler, S. Over 50 % 1H and 13C Polarization for Generating Hyperpolarized Metabolites—A Para-Hydrogen Approach. ChemistryOpen 2018, 7, 672–676. [Google Scholar] [CrossRef] [Green Version]
- Hövener, J.-B.; Schwaderlapp, N.; Borowiak, R.; Lickert, T.; Duckett, S.B.; Mewis, R.E.; Adams, R.W.; Burns, M.J.; Highton, L.A.R.; Green, G.G.R.; et al. Toward Biocompatible Nuclear Hyperpolarization Using Signal Amplification by Reversible Exchange: Quantitative in Situ Spectroscopy and High-Field Imaging. Anal. Chem. 2014, 86, 1767–1774. [Google Scholar] [CrossRef]
- Buckenmaier, K.; Scheffler, K.; Plaumann, M.; Fehling, P.; Bernarding, J.; Rudolph, M.; Back, C.; Koelle, D.; Kleiner, R.; Hövener, J.-B.; et al. Multiple Quantum Coherences Hyperpolarized at Ultra-Low Fields. ChemPhysChem 2019, 20, 2823–2829. [Google Scholar] [CrossRef]
- Glöggler, S.; Müller, R.; Colell, J.; Emondts, M.; Dabrowski, M.; Blümich, B.; Appelt, S. Para-Hydrogen Induced Polarization of Amino Acids, Peptides and Deuterium–Hydrogen Gas. Phys. Chem. Chem. Phys. 2011, 13, 13759–13764. [Google Scholar] [CrossRef]
- Barskiy, D.A.; Tayler, M.C.D.; Marco-Rius, I.; Kurhanewicz, J.; Vigneron, D.B.; Cikrikci, S.; Aydogdu, A.; Reh, M.; Pravdivtsev, A.N.; Hövener, J.-B.; et al. Zero-Field Nuclear Magnetic Resonance of Chemically Exchanging Systems. Nat. Commun. 2019, 10, 3002. [Google Scholar] [CrossRef] [Green Version]
- Levitt, M.H. Symmetry Constraints on Spin Dynamics: Application to Hyperpolarized NMR. J. Magn. Reson. 2016, 262, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, K.L.; Pravdivtsev, A.N.; Yurkovskaya, A.V.; Vieth, H.-M.; Kaptein, R. The Role of Level Anti-Crossings in Nuclear Spin Hyperpolarization. Prog. Nucl. Magn. Reson. Spectrosc. 2014, 81, 1–36. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Harris, K.; Lin, A.P.; Mansson, M.; Norton, V.A.; Perman, W.H.; Weitekamp, D.P.; Ross, B.D. Ultra-Fast Three Dimensional Imaging of Hyperpolarized 13C in Vivo. Magn. Reson. Mater. Phy. 2005, 18, 245–256. [Google Scholar] [CrossRef]
- Schmidt, A.B.; Berner, S.; Braig, M.; Zimmermann, M.; Hennig, J.; von Elverfeldt, D.; Hövener, J.-B. In Vivo 13C-MRI Using SAMBADENA. PLoS ONE 2018, 13, e0200141. [Google Scholar] [CrossRef]
- Svyatova, A.; Skovpin, I.V.; Chukanov, N.V.; Kovtunov, K.V.; Chekmenev, E.Y.; Pravdivtsev, A.N.; Hövener, J.-B.; Koptyug, I.V. 15N MRI of SLIC-SABRE Hyperpolarized 15N-Labelled Pyridine and Nicotinamide. Chem. Eur. J. 2019, 25, 8465–8470. [Google Scholar] [CrossRef]
- Cavallari, E.; Carrera, C.; Aime, S.; Reineri, F. Metabolic Studies of Tumor Cells Using [1-13C] Pyruvate Hyperpolarized by Means of PHIP-Side Arm Hydrogenation. ChemPhysChem 2019, 20, 318–325. [Google Scholar] [CrossRef]
- Sellies, L.; Aspers, R.; Feiters, M.C.; Rutjes, F.; Tessari, M. Para-Hydrogen Hyperpolarization Allows Direct NMR Detection of α-Amino Acids in Complex (Bio)Mixtures. Angew. Chem. Int. Ed. 2021, 60, 26954–26959. [Google Scholar] [CrossRef]
- Nielsen, N.C.; Sorensen, O.W. Conditional Bounds on Polarization Transfer. J. Magn. Reson. A 1995, 114, 24–31. [Google Scholar] [CrossRef]
- Nielsen, N.C.; Schulte-Herbrüggen, T.; Sørensen, O.W. Bounds on Spin Dynamics Tightened by Permutation Symmetry Application to Coherence Transfer in I2S and I3S Spin Systems. Mol. Phys. 1995, 85, 1205–1216. [Google Scholar] [CrossRef]
- Sengstschmid, H.; Freeman, R.; Barkemeyer, J.; Bargon, J. A New Excitation Sequence to Observe the PASADENA Effect. J. Magn. Reson. A 1996, 120, 249–257. [Google Scholar] [CrossRef]
- Kiryutin, A.S.; Ivanov, K.L.; Yurkovskaya, A.V.; Vieth, H.-M.; Lukzen, N.N. Manipulating Spin Hyper-Polarization by Means of Adiabatic Switching of a Spin-Locking RF-Field. Phys. Chem. Chem. Phys. 2013, 15, 14248–14255. [Google Scholar] [CrossRef] [Green Version]
- Pravdivtsev, A.N.; Yurkovskaya, A.V.; Petrov, P.A.; Vieth, H.-M. Coherent Evolution of Singlet Spin States in PHOTO-PHIP and M2S Experiments. Phys. Chem. Chem. Phys. 2017, 19, 25961–25969. [Google Scholar] [CrossRef] [Green Version]
- Pravdivtsev, A.N.; Kiryutin, A.S.; Yurkovskaya, A.V.; Vieth, H.-M.; Ivanov, K.L. Robust Conversion of Singlet Spin Order in Coupled Spin-1/2 Pairs by Adiabatically Ramped RF-Fields. J. Magn. Reson. 2016, 273, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Pravdivtsev, A.N.; Sönnichsen, F.; Hövener, J.-B. OnlyParahydrogen SpectrosopY (OPSY) Pulse Sequences—One Does Not Fit All. J. Magn. Reson. 2018, 297, 86–95. [Google Scholar] [CrossRef]
- Aguilar, J.A.; Adams, R.W.; Duckett, S.B.; Green, G.G.R.; Kandiah, R. Selective Detection of Hyperpolarized NMR Signals Derived from Para-Hydrogen Using the Only Para-Hydrogen SpectroscopY (OPSY) Approach. J. Magn. Reson. 2011, 208, 49–57. [Google Scholar] [CrossRef]
- Ratajczyk, T.; Gutmann, T.; Dillenberger, S.; Abdulhussaein, S.; Frydel, J.; Breitzke, H.; Bommerich, U.; Trantzschel, T.; Bernarding, J.; Magusin, P.C.M.M.; et al. Time Domain Para Hydrogen Induced Polarization. Solid State Nucl. Magn. Reson. 2012, 43–44, 14–21. [Google Scholar] [CrossRef]
- Buntkowsky, G.; Gutmann, T.; Petrova, M.V.; Ivanov, K.L.; Bommerich, U.; Plaumann, M.; Bernarding, J. Dipolar Induced Para-Hydrogen-Induced Polarization. Solid State Nucl. Magn. Reson. 2014, 63–64, 20–29. [Google Scholar] [CrossRef]
- Nasibulov, E.A.; Pravdivtsev, A.N.; Yurkovskaya, A.V.; Lukzen, N.N.; Vieth, H.-M.; Ivanov, K.L. Analysis of Nutation Patterns in Fourier-Transform NMR of Non-Thermally Polarized Multispin Systems. Z. Phys. Chem. 2013, 227, 929–953. [Google Scholar] [CrossRef] [Green Version]
- Barskiy, D.A.; Salnikov, O.G.; Shchepin, R.V.; Feldman, M.A.; Coffey, A.M.; Kovtunov, K.V.; Koptyug, I.V.; Chekmenev, E.Y. NMR SLIC Sensing of Hydrogenation Reactions Using Parahydrogen in Low Magnetic Fields. J. Phys. Chem. C 2016, 120, 29098–29106. [Google Scholar] [CrossRef]
- Vinogradov, E.; Grant, A.K. Hyperpolarized Long-Lived States in Solution NMR: Three-Spin Case Study in Low Field. J. Magn. Reson. 2008, 194, 46–57. [Google Scholar] [CrossRef]
- Franzoni, M.B.; Buljubasich, L.; Spiess, H.W.; Münnemann, K. Long-Lived 1H Singlet Spin States Originating from Para-Hydrogen in Cs-Symmetric Molecules Stored for Minutes in High Magnetic Fields. J. Am. Chem. Soc. 2012, 134, 10393–10396. [Google Scholar] [CrossRef]
- Stevanato, G.; Roy, S.S.; Hill-Cousins, J.; Kuprov, I.; Brown, L.J.; Brown, R.C.D.; Pileio, G.; Levitt, M.H. Long-Lived Nuclear Spin States Far from Magnetic Equivalence. Phys. Chem. Chem. Phys. 2015, 17, 5913–5922. [Google Scholar] [CrossRef] [Green Version]
- Grohmann, T.; Leibscher, M. Nuclear Spin Selective Alignment of Ethylene and Analogues. J. Chem. Phys. 2011, 134, 204316. [Google Scholar] [CrossRef]
- Chapovsky, P.L.; Hermans, L.J.F. Nuclear Spin Conversion in Polyatomic Molecules. Annu. Rev. Phys. Chem. 1999, 50, 315–345. [Google Scholar] [CrossRef] [Green Version]
- Chapovsky, P.L.; Zhivonitko, V.V.; Koptyug, I.V. Conversion of Nuclear Spin Isomers of Ethylene. J. Phys. Chem. A 2013, 117, 9673–9683. [Google Scholar] [CrossRef]
- San Fabián, J.; Casanueva, J.; Díez, E.; Esteban, A.L. Spin–Spin Coupling Constants in Ethylene: Equilibrium Values. Chem. Phys. Lett. 2002, 361, 159–168. [Google Scholar] [CrossRef]
- Kaski, J.; Lantto, P.; Vaara, J.; Jokisaari, J. Experimental and Theoretical Ab Initio Study of the 13C−13C Spin−Spin Coupling and 1H and 13C Shielding Tensors in Ethane, Ethene, and Ethyne. J. Am. Chem. Soc. 1998, 120, 3993–4005. [Google Scholar] [CrossRef]
- Carrington, A.; McLachlan, A.D. Introduction to Magnetic Resonance with Applications to Chemistry and Chemical Physics; Harper & Row: New York, NY, USA, 1967. [Google Scholar]
- DeVience, S.J.; Walsworth, R.L.; Rosen, M.S. Preparation of Nuclear Spin Singlet States Using Spin-Lock Induced Crossing. Phys. Rev. Lett. 2013, 111, 173002. [Google Scholar] [CrossRef]
- Cavallari, E.; Carrera, C.; Boi, T.; Aime, S.; Reineri, F. Effects of Magnetic Field Cycle on the Polarization Transfer from Parahydrogen to Heteronuclei through Long-Range J-Couplings. J. Phys. Chem. B 2015, 119, 10035–10041. [Google Scholar] [CrossRef]
- Schmidt, A.B.; Berner, S.; Schimpf, W.; Müller, C.; Lickert, T.; Schwaderlapp, N.; Knecht, S.; Skinner, J.G.; Dost, A.; Rovedo, P.; et al. Liquid-State Carbon-13 Hyperpolarization Generated in an MRI System for Fast Imaging. Nat. Commun. 2017, 8, ncomms14535. [Google Scholar] [CrossRef]
- Cavallari, E.; Carrera, C.; Sorge, M.; Bonne, G.; Muchir, A.; Aime, S.; Reineri, F. The 13 C Hyperpolarized Pyruvate Generated by ParaHydrogen Detects the Response of the Heart to Altered Metabolism in Real Time. Sci. Rep. 2018, 8, 8366. [Google Scholar] [CrossRef]
- Kovtunov, K.V.; Pokochueva, E.; Salnikov, O.; Cousin, S.; Kurzbach, D.; Vuichoud, B.; Jannin, S.; Chekmenev, E.; Goodson, B.; Barskiy, D.; et al. Hyperpolarized NMR: D-DNP, PHIP, and SABRE. Chem. Asian J. 2018, 13, 1857–1871. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.T.; Zheng, G.; Talbot, C.L.; Tong, X.; D’Adam, T.; Parnell, S.R.; Veer, M.D.; Jenkin, G.; Polglase, G.R.; Hooper, S.B.; et al. Hyperpolarised Gas Filling Station for Medical Imaging Using Polarised 129Xe and 3He. Magn. Reson. Imag. 2021. [Google Scholar] [CrossRef]
- Reineri, F.; Viale, A.; Ellena, S.; Boi, T.; Daniele, V.; Gobetto, R.; Aime, S. Use of Labile Precursors for the Generation of Hyperpolarized Molecules from Hydrogenation with Parahydrogen and Aqueous-Phase Extraction. Angew. Chem. Int. Ed. 2011, 50, 7350–7353. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Salnikov, O.G.; Shchepin, R.V.; Kovtunov, K.V.; Koptyug, I.V.; Chekmenev, E.Y. Synthesis of Unsaturated Precursors for Parahydrogen-Induced Polarization and Molecular Imaging of 1-13C-Acetates and 1-13C-Pyruvates via Side Arm Hydrogenation. ACS Omega 2018, 3, 6673–6682. [Google Scholar] [CrossRef] [Green Version]
- Nelson, S.J.; Kurhanewicz, J.; Vigneron, D.B.; Larson, P.E.Z.; Harzstark, A.L.; Ferrone, M.; van Criekinge, M.; Chang, J.W.; Bok, R.; Park, I.; et al. Metabolic Imaging of Patients with Prostate Cancer Using Hyperpolarized [1-13C]Pyruvate. Sci. Transl. Med. 2013, 5, 198ra108. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, C.H.; Lau, J.Y.C.; Chen, A.P.; Geraghty, B.J.; Perks, W.J.; Roifman, I.; Wright, G.A.; Connelly, K.A. Hyperpolarized 13C Metabolic MRI of the Human Heart. Circ. Res. 2016, 119, 1177–1182. [Google Scholar]
- Berner, S.; Schmidt, A.B.; Zimmermann, M.; Pravdivtsev, A.N.; Glöggler, S.; Hennig, J.; von Elverfeldt, D.; Hövener, J.-B. SAMBADENA Hyperpolarization of 13C-Succinate in an MRI: Singlet-Triplet Mixing Causes Polarization Loss. ChemistryOpen 2019, 8, 728–736. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.B.; Brahms, A.; Ellermann, F.; Knecht, S.; Berner, S.; Hennig, J.; von Elverfeldt, D.; Herges, R.; Hövener, J.-B.; Pravdivtsev, A. Selective Excitation of Hydrogen Doubles the Yield and Improves the Robustness of Parahydrogen-Induced Polarization of Low-γ Nuclei. Phys. Chem. Chem. Phys. 2021, 23, 26645–26652. [Google Scholar] [CrossRef]
- Olsson, L.E.; Chai, C.-M.; Axelsson, O.; Karlsson, M.; Golman, K.; Petersson, J.S. MR Coronary Angiography in Pigs with Intraarterial Injections of a Hyperpolarized 13C Substance. Magn. Reson. Med. 2006, 55, 731–737. [Google Scholar] [CrossRef]
- Pravdivtsev, A.; Brahms, A.; Kienitz, S.; Sönnichsen, F.D.; Hövener, J.-B.; Herges, R. Catalytic Hydrogenation of Trivinyl Orthoacetate: Mechanisms Elucidated by Parahydrogen Induced Polarization. ChemPhysChem 2021, 22, 370–377. [Google Scholar] [CrossRef]
- Pravdivtsev, A.N.; Yurkovskaya, A.V.; Lukzen, N.N.; Ivanov, K.L.; Vieth, H.-M. Highly Efficient Polarization of Spin-1/2 Insensitive NMR Nuclei by Adiabatic Passage through Level Anticrossings. J. Phys. Chem. Lett. 2014, 5, 3421–3426. [Google Scholar] [CrossRef]
- Knecht, S.; Blanchard, J.W.; Barskiy, D.; Cavallari, E.; Dagys, L.; Dyke, E.V.; Tsukanov, M.; Bliemel, B.; Münnemann, K.; Aime, S.; et al. Rapid Hyperpolarization and Purification of the Metabolite Fumarate in Aqueous Solution. Proc. Natl. Acad. Sci. 2021, 118. [Google Scholar] [CrossRef]
- Eills, J.; Cavallari, E.; Kircher, R.; Matteo, G.D.; Carrera, C.; Dagys, L.; Levitt, M.H.; Ivanov, K.L.; Aime, S.; Reineri, F.; et al. Singlet-Contrast Magnetic Resonance Imaging: Unlocking Hyperpolarization with Metabolism. Angew. Chem. Int. Ed. 2021, 60, 6791–6798. [Google Scholar] [CrossRef]
- Pravdivtsev, A.N.; Hövener, J.-B. Simulating Non-Linear Chemical and Physical (CAP) Dynamics of Signal Amplification By Reversible Exchange (SABRE). Chem. Eur. J. 2019, 25, 7659–7668. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J.; Bourée, F. Symmetry and Magnetic Structures. EPJ Web Conf. 2012, 22, 00010. [Google Scholar] [CrossRef] [Green Version]
Pos. | ||||||
---|---|---|---|---|---|---|
gem | 0 | 0.2409 | 0.009 | 0 | 1/8 | 1/8 |
cis | 0 | 0.1075 | 0.1425 | 1/8 | 0 | 1/8 |
trans | 0 | 0.0266 | 0.2234 | 1/8 | 1/8 | 0 |
Type of the System | Examples of Molecules, R = Acetate, Pyruvate | |
---|---|---|
ABX, ABCX, ABCDX, ABCDEX,… ABCD2X | 1 | 1-13C-vinyl-R |
1-13C-allyl-R | ||
AA’BB’X | 1 | 1-13C-ethylene |
A2BX | ¾ | |
A2BC2X | ¾ | |
A3BX | 2/3 | |
A2B2X | 9/16 | |
A3B2X | ½ | 1-13C-ethyl-R |
A3B2C2X | ½ | 1-13C-propyl-R |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pravdivtsev, A.N.; Barskiy, D.A.; Hövener, J.-B.; Koptyug, I.V. Symmetry Constraints on Spin Order Transfer in Parahydrogen-Induced Polarization (PHIP). Symmetry 2022, 14, 530. https://doi.org/10.3390/sym14030530
Pravdivtsev AN, Barskiy DA, Hövener J-B, Koptyug IV. Symmetry Constraints on Spin Order Transfer in Parahydrogen-Induced Polarization (PHIP). Symmetry. 2022; 14(3):530. https://doi.org/10.3390/sym14030530
Chicago/Turabian StylePravdivtsev, Andrey N., Danila A. Barskiy, Jan-Bernd Hövener, and Igor V. Koptyug. 2022. "Symmetry Constraints on Spin Order Transfer in Parahydrogen-Induced Polarization (PHIP)" Symmetry 14, no. 3: 530. https://doi.org/10.3390/sym14030530
APA StylePravdivtsev, A. N., Barskiy, D. A., Hövener, J. -B., & Koptyug, I. V. (2022). Symmetry Constraints on Spin Order Transfer in Parahydrogen-Induced Polarization (PHIP). Symmetry, 14(3), 530. https://doi.org/10.3390/sym14030530