Adaptive Sliding Mode Attitude Control of Quadrotor UAVs Based on the Delta Operator Framework
<p>RBF neural network structure diagram.</p> "> Figure 2
<p>Diagram of the RBF neural-network-based adaptive sliding-mode control algorithm.</p> "> Figure 3
<p>Response results of the attitude angle <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math>.</p> "> Figure 4
<p>Response results of the attitude angle <math display="inline"><semantics> <mi>θ</mi> </semantics></math>.</p> "> Figure 5
<p>Response results of the attitude angle <math display="inline"><semantics> <mi>ψ</mi> </semantics></math>.</p> "> Figure 6
<p>Neural network approximation results of the external disturbance <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 7
<p>Neural network approximation results of the external disturbance <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 8
<p>Neural network approximation results of the external disturbance <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 9
<p>Response results of the attitude angle <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math>.</p> "> Figure 10
<p>Response results of the attitude angle <math display="inline"><semantics> <mi>θ</mi> </semantics></math>.</p> "> Figure 11
<p>Response results of the attitude angle <math display="inline"><semantics> <mi>ψ</mi> </semantics></math>.</p> "> Figure 12
<p>Neural network approximation results of the external disturbance <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 13
<p>Neural network approximation results of the external disturbance <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 14
<p>Neural network approximation results of the external disturbance <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. System Model Description of Quadrotor UAV
3. Design of the Sliding Mode Attitude Control Algorithm
3.1. Sliding Surface Design
3.2. Adaptive Sliding Mode Controller Design
4. Illustrative Example
4.1. Parameter Settings and Modelling of the Quadrotor UAV
4.2. Design of Linear Surfaces
4.3. Simulation Retsults
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Noordin, A.; Basri, M.A.M.; Mohamed, Z.; Lazim, I.M. Adaptive PID controller using sliding mode control approaches for quadrotor UAVs attitude and position stabilization. Arab. J. Sci. Eng. 2021, 46, 963–981. [Google Scholar] [CrossRef]
- Wang, S.Y.; Polyakov, A.; Zheng, G. Quadrotor stabilization under time and space constraints using implicit PID conttroler. J. Frankl. Institude 2022. [Google Scholar] [CrossRef]
- Sun, C.; Liu, M.; Liu, C.; Feng, X.; Wu, H. An industrial quadrotor UAVs control method based on fuzzy adaptive linear active disturbance rejection control. Aerosp. Sci. Technol. 2020, 10, 376. [Google Scholar] [CrossRef]
- Wang, Z.J.; Zhao, T. Adaptive-based linear active disturbance rejection attitude control for quadrotor with external disturbances. Trans. Inst. Meas. Control 2022, 44, 286–298. [Google Scholar] [CrossRef]
- Zhang, Y.; Nie, Y.; Chen, L. Adaptive fuzzy fault-tolerant control against time-varying faults via a new sliding mode observer method. Symmetry 2021, 13, 1615. [Google Scholar] [CrossRef]
- Hong, Q.; Shi, Y.; Chen, Z. Adaptive sliding mode control based on disturbance observer for placement pressure control system. Symmetry 2020, 12, 1057. [Google Scholar] [CrossRef]
- Xiong, J.J.; Zhang, G.B. Discreti-time sliding mode control for a quadrotor UAV. Optik 2016, 127, 3718–3722. [Google Scholar] [CrossRef]
- Wu, X.W.; Xiao, B.; Qu, Y.H. Modeling and sliding mode-based attitude tracking control of a quadrotor UAVs with time-varying mass. ISA Trans. 2019. [Google Scholar] [CrossRef]
- Hou, Z.; Lu, P.; Tu, Z. Nonsingular terminal sliding mode control for a quadrotor UAVs with a total rotor failure. Electronics 2021, 98, 105716. [Google Scholar] [CrossRef]
- Yang, S.Y.; Han, J.; Xia, L.; Chen, Y.-H. Adaptive sliding mode attitude controller such that all attitudes of the quadrotor UAVs can be driven to the designed sliding surface. ISA Trans. 2021, 106, 12–30. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, Z.; Deng, C.; Wen, B. Adaptive fuzzy global sliding mode control for trajectory tracking of quadrotor UAVs. Nonlinear Dyn. 2019, 97, 609–627. [Google Scholar] [CrossRef]
- Nekoukar, V.; Dehkordi, M.M. Robust path tracking of a quadrotor using adaptive fuzzy terminal sliding mode control. Control. Eng. Pract. 2021, 110, 104763. [Google Scholar] [CrossRef]
- Eliker, K.; Zhang, W. Finite-time adaptive integral backstepping fast terminal sliding mode control applications on quadrotor UAV. Int. J. Control. Autom. Syst. 2020, 18, 415–430. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Zhu, G.; Chen, X.; Su, C.-Y. Discrete-time adaptive neural tracking control and its Enperiments for quadrotor unmanned aerial vehicle systems. IEEE/ASME Trans. Mechatronics 2022. [Google Scholar] [CrossRef]
- Middleton, R.; Goodwin, G.C. Improved finite word length characteristics in digital control using delta operators. IEEE Trans. Automat. Contr. 1986, 31, 1015–1021. [Google Scholar] [CrossRef]
- Middleton, R.H.; Goodwin, G.C. Digital Control and Estimation: A Unified Approach; Prentice Hall: Hoboken, NJ, USA, 1990. [Google Scholar]
- Zheng, B.C.; Yu, X.; Xue, Y. Quantized sliding mode control in delta operator framework. Int. J. Robust Nonlinear Control 2018, 28, 519–535. [Google Scholar] [CrossRef]
- Yang, H.; Xia, Y.; Shi, P.; Zhao, L. Analysis and Synthesis of Delta Operator Systems; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Sakthivel, R.; Ramya, L.S.; Ma, Y.K.; Malik, M.; Leelamani, A. Stabilization of uncertain switched discrete-time systems against actuator faults and input saturation. Nonlinear-Anal.-Hybrid Syst. 2020, 35, 519–535. [Google Scholar] [CrossRef]
- Guo, X.; Yang, G.-H. Insensitive output feedback H-infinity control of delta operator systems with insensitivity to sampling time jitter. Int. J. Robust Nonlinear Control 2014, 24, 725–743. [Google Scholar] [CrossRef]
- Guo, X.; Yang, G.-H. Low-sensitivity H∞ filter design for linear delta operator systems with sampling time jitter. Int. J. Control 2012, 85, 397–408. [Google Scholar] [CrossRef]
- Pu, X.; Ren, L.; Liu, Y.; Ji, L.H. Group consensus of multi-agent systems with cooperative-competitive interaction and communication delay in switching topologies networks based on the delta operator method. Neurocomputing 2020, 390, 57–68. [Google Scholar] [CrossRef]
- Pu, X.; Ren, L.; Liu, Y.; Pu, R. Couple-group consensus for heterogeneous MASs under switched topologies in cooperative-competitive systems: A hybrid pinning and delta operator skills. Neurocomputing 2021, 441, 335–349. [Google Scholar] [CrossRef]
- Chen, G.S. Study on Anti-Jamming and Fault-Tolerant Control of Quadrotor UAV; Nanjing University of Information Science and Technology: Nanjing, China, 2020. [Google Scholar] [CrossRef]
- Zhang, Z.C. Sliding Mode Fault-Tolerant Control Algorithm for Delta Operator Time-Delay Systems; Nanjing University of Aeronautics and Astronautics: Nanjing, China, 2016. [Google Scholar]
- Zhao, B.; Xian, B.; Zhang, Y.; Zhang, X. Nonlinear robust adaptive tracking control of a quadrotor UAVs via immersion and invariance methodology. IEEE Trans. Ind. Electron. 2015, 62, 2891–2902. [Google Scholar] [CrossRef]
- Lendoul, F.; Lara, D.; Fantoni-Coichot, I.; Lozano, R. Real-time nonlinear embedded control for an autonomous quadrotor helicopter. J. Guid. Control. Dyn. 2007, 30, 1049–1060. [Google Scholar] [CrossRef]
- Zhao, D.; Sun, C.; Wang, Q.; Yang, W. Neural-network-based PID control for quadrotor aircraft. In Proceedings of the International Conference on Intelligent Science and Big Data Engineering; Springer: Cham, Switzerland, 2015; pp. 287–297. [Google Scholar]
- Wang, W.; Ma, H.; Xia, M.; Weng, L.; Ye, X. Attitude adn altitude controller design for quad-rotor type MAVs. Math. Probl. Eng. 2013, 2013, 587098. [Google Scholar]
- Wang, S.B.; Han, Y.; Chen, J.; Zhang, Z.C.; LIu, X.Z. Attitude active disturbance rejection control of UAVs attitude based on iterative learning control. Acta Aeronaut. Astronaut. Sin. 2020, 41, 324112. (in Chinese) [Google Scholar] [CrossRef]
- Du, H.; Zhu, W.; Wen, G.; Wu, D. Finite time formation control for a group of quadrotor aircraft. Aerosp. Sci. Technol. 2017, 69, 609–616. [Google Scholar] [CrossRef]
- Li, H.; Wu, B.; Li, G.; Yang, C. Global Theory of Delta Operator Control and Its Robustness Control; National Defense Inddustry Press: Beijing, China, 2005. [Google Scholar]
- Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V. Linear matrix inequalities in system and control theory. In Society for Industrial and Applied Mathematics; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1994. [Google Scholar]
- Liu, J. Intelligent Control Design and MATLAB Simulation; Tsinghua University Press: Beijing, China; Springer Nature Singapore Pte Ltd.: Singapore, 2018. [Google Scholar]
Parameters | Values | Units |
---|---|---|
m | 2.5 | kg |
l | 0.245 | m |
g | 9.8 | m/s |
c | 0.575 | m |
0.148 | N s/m | |
0.148 | N s/m | |
0.164 | N s/m | |
0.05 | kg·m | |
0.05 | kg·m | |
0.12 | kg·m |
Attitude Angle Systems | |||
---|---|---|---|
Roll angle system | 100 | 20 | 30 |
Pitch angle system | 200 | 20 | 30 |
Yaw angle system | 120 | 20 | 40 |
Attitude Angle Systems | Roll Angle System | Pitch Angle System | Yaw Angle System |
---|---|---|---|
RBF + SMC | 16.8 s | 15.2 s | 13.7 s |
AC + SMC | / | / | / |
Attitude Angle Systems | Roll Angle System | Pitch Angle System | Yaw Angle System |
---|---|---|---|
Effective approximation time | 4.6 s | 7.5 s | 1.45 s |
Attitude Angle Systems | |
---|---|
Roll angle system | 4 |
Pitch angle system | 3 |
Yaw angle system | 4 |
Attitude Angle Systems | |||
---|---|---|---|
Roll angle system | 120 | 20 | 10 |
Pitch angle system | 200 | 20 | 5 |
Yaw angle system | 300 | 20 | 5 |
Attitude Angle Systems | Roll Angle System | Pitch Angle System | Yaw Angle System |
---|---|---|---|
RBF + SMC | 15.7 s | 13.7 s | 16.4 s |
AC + SMC | 21.6 s | / | 25.8 s |
Attitude Angle Systems | Roll Angle System | Pitch Angle System | Yaw Angle System |
---|---|---|---|
Effective approximation time | 1.63 s | 1.79 s | 2.06 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, B.; Wu, Y.; Li, H.; Chen, Z. Adaptive Sliding Mode Attitude Control of Quadrotor UAVs Based on the Delta Operator Framework. Symmetry 2022, 14, 498. https://doi.org/10.3390/sym14030498
Zheng B, Wu Y, Li H, Chen Z. Adaptive Sliding Mode Attitude Control of Quadrotor UAVs Based on the Delta Operator Framework. Symmetry. 2022; 14(3):498. https://doi.org/10.3390/sym14030498
Chicago/Turabian StyleZheng, Bochao, Yuewen Wu, Hui Li, and Zhipeng Chen. 2022. "Adaptive Sliding Mode Attitude Control of Quadrotor UAVs Based on the Delta Operator Framework" Symmetry 14, no. 3: 498. https://doi.org/10.3390/sym14030498
APA StyleZheng, B., Wu, Y., Li, H., & Chen, Z. (2022). Adaptive Sliding Mode Attitude Control of Quadrotor UAVs Based on the Delta Operator Framework. Symmetry, 14(3), 498. https://doi.org/10.3390/sym14030498