Enhancing Performance of Lossy Compression on Encrypted Gray Images through Heuristic Optimization of Bitplane Allocation
<p>Illustration of a factor graph for the MRF of a <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>×</mo> <mn>3</mn> </mrow> </semantics></math> image.</p> "> Figure 2
<p>Illustration of a factor graph for the MRF between adjacent bitplanes. <math display="inline"><semantics> <msup> <mi mathvariant="bold">B</mi> <mi>k</mi> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mi mathvariant="bold">B</mi> <mrow> <mi>k</mi> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math> denote two adjacent bitplanes, <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="bold">F</mi> <mi>k</mi> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="bold">F</mi> <mrow> <mi>k</mi> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> are two VNs at the same coordinate of <math display="inline"><semantics> <msup> <mi mathvariant="bold">B</mi> <mi>k</mi> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mi mathvariant="bold">B</mi> <mrow> <mi>k</mi> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math>, and <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="bold">D</mi> <mi>k</mi> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> is an FN representing the statistical correlation between <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="bold">F</mi> <mi>k</mi> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="bold">F</mi> <mrow> <mi>k</mi> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 3
<p>BIRFG for binary image <math display="inline"><semantics> <mi mathvariant="bold">I</mi> </semantics></math> of size <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>×</mo> <mi>n</mi> </mrow> </semantics></math>. <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> are LDPC syndrome bits, which is taken as the encrypted and decompressed bit sequence; <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi mathvariant="bold">Y</mi> <mo stretchy="false">^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>m</mi> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> is the decompressed but encrypted sequence, <math display="inline"><semantics> <msub> <mi mathvariant="bold">K</mi> <mi>i</mi> </msub> </semantics></math> is the encryption key sequence, <math display="inline"><semantics> <msub> <mover accent="true"> <mi mathvariant="bold">F</mi> <mo stretchy="false">^</mo> </mover> <mi>i</mi> </msub> </semantics></math> is a 1-D bit sequence converted from a given binary image, and <math display="inline"><semantics> <msub> <mover accent="true"> <mi mathvariant="bold">F</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mi>y</mi> <mo>,</mo> <mi>x</mi> </mrow> </msub> </semantics></math> denotes pixels of 2-D binary image. <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">M</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>x</mi> </mrow> </msub> <mo>/</mo> <msub> <mi mathvariant="bold">N</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>x</mi> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi mathvariant="bold">P</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>x</mi> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi mathvariant="bold">t</mi> <mi>i</mi> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi mathvariant="bold">g</mi> <mi>j</mi> </msub> </semantics></math> represent the constraints imposed by the potential function, image source prior, decryption, and LDPC code, respectively.</p> "> Figure 4
<p>Flowchart of the proposed ETC scheme, where ⊕ denotes an exclusive or operation.</p> "> Figure 5
<p>Illustration of sub-image extraction, where pixels with the same symbol are uniformly downsampled as a sub-image.</p> "> Figure 6
<p>Interpolation illustration, where 00, 01, 10, and 11 denote <math display="inline"><semantics> <msubsup> <mi mathvariant="bold">B</mi> <mn>00</mn> <mo>′</mo> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi mathvariant="bold">B</mi> <mn>01</mn> <mo>′</mo> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi mathvariant="bold">B</mi> <mn>10</mn> <mo>′</mo> </msubsup> </semantics></math>, and <math display="inline"><semantics> <msubsup> <mi mathvariant="bold">B</mi> <mn>11</mn> <mo>′</mo> </msubsup> </semantics></math>, respectively. The circle, pentagram, triangle, and circular polygon stand for pixels in sub-image <math display="inline"><semantics> <msubsup> <mi mathvariant="bold">B</mi> <mn>00</mn> <mo>′</mo> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi mathvariant="bold">B</mi> <mn>01</mn> <mo>′</mo> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi mathvariant="bold">B</mi> <mn>10</mn> <mo>′</mo> </msubsup> </semantics></math>, and <math display="inline"><semantics> <msubsup> <mi mathvariant="bold">B</mi> <mn>11</mn> <mo>′</mo> </msubsup> </semantics></math>, respectively.</p> "> Figure 7
<p>Illustration of tested 512 × 512 gray images.</p> "> Figure 8
<p>Illustration for reconstructed images of F16 and Lena, where CR denotes the compression ratio.</p> "> Figure 9
<p>Rate-PSNR performance comparison for the proposed scheme, KANG, ZHOU, and QIN. (<b>a</b>–<b>i</b>) present the rate-PSNR performance of all compared methods for images Baboon, Bar, Boat, F16, Hill, Lena, Man, Peppers, and Tank, respectively.</p> ">
Abstract
:1. Introduction
2. Related Works
2.1. Lossy Compression on Encrypted Images
2.2. MRF-Based ETC Method
2.2.1. MRF Introduction
2.2.2. Joint Factor Graph for Reconstruction of Bitplanes
3. Proposed ETC Scheme
3.1. Stream Cipher-Based Encryption
3.2. Compression via Heuristic Optimization of Bitplane Allocation
- (1)
- Select the MSB of and compute the compression ratio as . If holds, then bits are randomly discarded from the MSB of , where discarding locations can be generated through a secret key . Otherwise, go to Step 2.
- (2)
- Choose the MSB of and calculate . Then, process it in a way similar to Step 1 to either discard some bits or go to Step 3.
- (3)
- Extract the MSB of and obtain . Next, remove some of the bits or go to Step 4.
- (4)
- Sample the second MSBs of , , and sequentially in a manner similar to Steps 1–3. Even sample their third MSBs, fourth MSBs, and so on. Repeat this process until is met.
- (1)
- Divide the stream ciphered gray image into four sub-images , , , and via the method in Figure 5.
- (2)
- Compress the MSB of through LDPC coding [8], i.e.,As there exist weak statistical correlations within and between the other five bitplanes, these bitplanes are not compressed via the LDPC coding and directly sent to the receiver. For notational convenience, these five bitplanes are also denoted .
- (3)
- Compute the compression ratio, , for sub-image asNext, transmit the syndrome sequence of to the receiver and terminate the compression process. Otherwise, send the syndrome sequence of to the receiver and go to the next step.
- (4)
- Compress the MSB of by LDPC coding and generate syndrome . If holds, then further send to the receiver and end the compression. Otherwise, go to the next step.
- (5)
- Impose the LDPC coding on the MSB of and yield syndrome . If holds, then transmit to the receiver and complete the compression. Otherwise, go to the next step.
- (6)
- Conduct similar processing on the MSB of . If holds, then send to the receiver and finish the compression. Otherwise, go to the next step.
- (7)
- Similar to Steps 4–7, condense the second and third MSBs of , , and successively until the given compression ratio is approximately satisfied.
- (8)
- Similar to the compression of bitplanes , the other five bitplanes of , , and are not LDPC-coded and denoted , , and for notational convenience, respectively. If is sufficiently large, , , and are chosen sequentially from to until is nearly achieved.
3.3. Reconstruction via MRF Exploitation and Interpolation
4. Experiments and Analysis
4.1. Experimental Settings
4.2. Visual Quality Evaluation of Reconstructed Images
4.3. Rate-PSNR Performance Assessment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, M.; Ishwar, P.; Prabhakaran, V.; Schonberg, D.; Ramchandran, K. On compressing encrypted data. IEEE Trans. Signal Process. 2004, 52, 2992–3006. [Google Scholar] [CrossRef]
- Schonberg, D.; Draper, S.; Ramchandran, K. On Compression of Encrypted Images. In Proceedings of the 2006 International Conference on Image Processing, Atlanta, GA, USA, 8–11 October 2006; pp. 269–272. [Google Scholar] [CrossRef]
- Schonberg, D.; Draper, S.C.; Yeo, C.; Ramchandran, K. Toward Compression of Encrypted Images and Video Sequences. IEEE Trans. Inf. Forensics Secur. 2008, 3, 749–762. [Google Scholar] [CrossRef]
- Lazzeretti, R.; Barni, M. Lossless compression of encrypted grey-level and color images. In Proceedings of the 2008 16th European Signal Processing Conference, Lausanne, Switzerland, 25–29 August 2008; pp. 1–5. [Google Scholar]
- Anil Kumar, A.; Makur, A. Distributed source coding based encryption and lossless compression of gray scale and color images. In Proceedings of the 2008 IEEE 10th Workshop on Multimedia Signal Processing, Cairns, QLD, Australia, 8–10 October 2008; pp. 760–764. [Google Scholar] [CrossRef]
- Liu, W.; Zeng, W.; Dong, L.; Yao, Q. Efficient Compression of Encrypted Grayscale Images. IEEE Trans. Image Process. 2010, 19, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, X.; Au, O.C.; Tang, Y.Y. Designing an Efficient Image Encryption-Then-Compression System via Prediction Error Clustering and Random Permutation. IEEE Trans. Inf. Forensics Secur. 2014, 9, 39–50. [Google Scholar] [CrossRef]
- Wang, C.; Ni, J.; Zhang, X.; Huang, Q. Efficient Compression of Encrypted Binary Images Using the Markov Random Field. IEEE Trans. Inf. Forensics Secur. 2017, 13, 1271–1285. [Google Scholar] [CrossRef]
- Wang, C.; Feng, Y.; Li, T.; Xie, H.; Kwon, G.R. A new encryption-then-compression scheme on gray images using the markov random field. Comput. Mater. Contin. 2018, 56, 107–121. [Google Scholar] [CrossRef]
- Kumar, A.A.; Makur, A. Lossy compression of encrypted image by compressive sensing technique. In Proceedings of the TENCON 2009—2009 IEEE Region 10 Conference, Singapore, 23–26 January 2009; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, Y.; Feng, G.; Qian, Z. Compressing Encrypted Image Using Compressive Sensing. In Proceedings of the 2011 Seventh International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Dalian, China, 14–16 October 2011; pp. 222–225. [Google Scholar] [CrossRef]
- Song, C.; Lin, X.; Shen, X. Secure and effective image storage for cloud based e-healthcare systems. In Proceedings of the IEEE Global Communications Conference, Atlanta, GA, USA, 9–13 December 2013; pp. 653–658. [Google Scholar]
- Zhang, B.; Yang, L.; Wang, K.; Cao, Y. Random Permutation-Based Block Compressed Sensing for Image Encryption-then-Compression Applications. In Proceedings of the 2018 IEEE 18th International Conference on Communication Technology (ICCT), Chongqing, China, 8–11 October 2018; pp. 1203–1207. [Google Scholar] [CrossRef]
- Gschwandtner, M.; Uhl, A.; Wild, P. Compression of Encrypted Visual Data. In Proceedings of the IFIP International Conference on Communications and Multimedia Security, Crete, Greece, 19–21 October 2006; pp. 141–150. [Google Scholar]
- Zhang, X. Lossy Compression and Iterative Reconstruction for Encrypted Image. IEEE Trans. Inf. Forensics Secur. 2011, 6, 53–58. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, G.; Ren, Y.; Qian, Z. Scalable Coding of Encrypted Images. IEEE Trans. Image Process. 2012, 21, 3108–3114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, G.; Shen, L.; Qin, C. Compression of encrypted images with multi-layer decomposition. Multimed. Tools Appl. 2014, 72, 489–502. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, Y.; Shen, L.; Qian, Z.; Feng, G. Compressing Encrypted Images with Auxiliary Information. IEEE Trans. Multimed. 2014, 16, 1327–1336. [Google Scholar] [CrossRef]
- Hu, R.; Li, X.; Yang, B. A new lossy compression scheme for encrypted gray-scale images. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 7387–7390. [Google Scholar] [CrossRef]
- Wang, C.; Ni, J. Compressing Encrypted Images Using the Integer Lifting Wavelet. In Proceedings of the 2015 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), Adelaide, Australia, 23–25 September 2015; pp. 409–412. [Google Scholar] [CrossRef]
- Wang, C.; Ni, J.; Huang, Q. A New Encryption-Then-Compression Algorithm Using the Rate-Distortion Optimization. Signal Process. Image Commun. 2015, 39, 141–150. [Google Scholar] [CrossRef]
- Wang, C.; Xiao, D.; Peng, H.; Zhang, R. A lossy compression scheme for encrypted images exploiting Cauchy distribution and weighted rate distortion optimization. J. Vis. Commun. Image Represent. 2018, 51, 122–130. [Google Scholar] [CrossRef]
- Qin, C.; Zhou, Q.; Cao, F.; Dong, J.; Zhang, X. Flexible Lossy Compression for Selective Encrypted Image With Image Inpainting. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 3341–3355. [Google Scholar] [CrossRef]
- Kang, X.; Peng, A.; Xu, X.; Cao, X. Performing scalable lossy compression on pixel encrypted images. Eurasip J. Image Video Process. 2013, 2013, 400. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Au, O.C.; Zhai, G.; Tang, Y.Y.; Liu, X. Scalable Compression of Stream Cipher Encrypted Images Through Context-Adaptive Sampling. IEEE Trans. Inf. Forensics Secur. 2014, 9, 1857–1868. [Google Scholar] [CrossRef]
- Wang, C.; Li, T.; Ni, J.; Huang, Q. A New MRF-Based Lossy Compression for Encrypted Binary Images. IEEE Access 2020, 8, 11328–11341. [Google Scholar] [CrossRef]
- Donoho, D. Compressed Sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Kschischang, F.; Frey, B.; Loeliger, H.A. Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 2001, 47, 498–519. [Google Scholar] [CrossRef] [Green Version]
- Kang, X.; Xu, X.; Peng, A.; Zeng, W. Scalable Lossy Compression for Pixel-Value Encrypted Images. In Proceedings of the 2012 Data Compression Conference, Snowbird, UT, USA, 10–12 April 2012; p. 400. [Google Scholar] [CrossRef]
- Al-Shaykh, O.; Mersereau, R. Lossy compression of noisy images. IEEE Trans. Image Process. 1998, 7, 1641–1652. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Liang, R.; Zhao, S.; Bian, S.; Lai, Z. Enhancing Performance of Lossy Compression on Encrypted Gray Images through Heuristic Optimization of Bitplane Allocation. Symmetry 2021, 13, 2338. https://doi.org/10.3390/sym13122338
Wang C, Liang R, Zhao S, Bian S, Lai Z. Enhancing Performance of Lossy Compression on Encrypted Gray Images through Heuristic Optimization of Bitplane Allocation. Symmetry. 2021; 13(12):2338. https://doi.org/10.3390/sym13122338
Chicago/Turabian StyleWang, Chuntao, Renxin Liang, Shancheng Zhao, Shan Bian, and Zhimao Lai. 2021. "Enhancing Performance of Lossy Compression on Encrypted Gray Images through Heuristic Optimization of Bitplane Allocation" Symmetry 13, no. 12: 2338. https://doi.org/10.3390/sym13122338