Discriminative Siamese Tracker Based on Multi-Channel-Aware and Adaptive Hierarchical Deep Features
<p>Comparison of our tracker with other trackers, including Siamese-based trackers SiamFC [<a href="#B21-symmetry-13-02329" class="html-bibr">21</a>] and CF2 [<a href="#B22-symmetry-13-02329" class="html-bibr">22</a>], attention-based tracker MemTrack [<a href="#B23-symmetry-13-02329" class="html-bibr">23</a>] for MotorRolling (<b>top</b>), Bird2 (<b>middle</b>), and Shaking (<b>bottom</b>).</p> "> Figure 2
<p>Overview of our network architecture for visual tracking.</p> "> Figure 3
<p>Comparison diagram of feature extraction before and after adding multi-channel aware features. (<b>a</b>) is before the addition and (<b>b</b>) is after the addition.</p> "> Figure 4
<p>Response map at different feature layers.</p> "> Figure 5
<p>The response map of different feature layers in the same frame. (<b>a</b>) is the response map of Conv2, (<b>b</b>) is the response map of Conv5, and (<b>c</b>) is the response map after the weighted fusion of two feature layers using the layer reliability module.</p> "> Figure 6
<p>The line chart of different response values for each frame. Blue line is the response value of each frame before adding the layer reliability, and red line is the response value of each frame after adding. (<b>a</b>) it reflects the tracking result of the response value of the blue line, and (<b>b</b>) it reflects the tracking result of the response value of the red line.</p> "> Figure 7
<p>Success and precision rates on the OTB100 dataset.</p> "> Figure 8
<p>Success and precision rates on the OTB50 dataset.</p> "> Figure 9
<p>The qualitative results for six challenging sequences from the OTB100 benchmark, including tiger1, soccer, lemming, girl2, biker, and dragonbaby.</p> "> Figure 10
<p>Success and precision rates on the TC-128 dataset.</p> "> Figure 11
<p>Success and precision rates on the UAV-123 dataset.</p> "> Figure 12
<p>EAO score ranking of the compared trackers VOT2016 dataset.</p> "> Figure 13
<p>Comparison of the two modules when they act separately. Ours shows the effect when the two modules work together. Ours-WCR representative without multi-channel aware deep feature. Ours-WLR representative without using adaptive hierarchical deep features. SiamFC is our baseline algorithm.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Deep Features Based Tracker
2.2. Siamese Network Based Tracker
2.3. Deep Feature and Attention Based Tracker
3. Proposed Method
3.1. Basic Siamese Network for Visual Tracking
3.2. Multi-Channel Aware Deep Features
3.3. Adaptive Hierarchical Deep Features
3.3.1. Layer Response Learning Reliability
3.3.2. Layer Interference Detection Reliability
4. Experimental Details
4.1. Training Detail
4.2. Evaluation on OTB Benchmark
Qualitative Analysis on OTB Benchmark
4.3. Evaluation on TC-128 Benchmark
Qualitative Analysis on TC-128 Benchmark
4.4. Evaluation on UAV123 Benchmark
4.5. Evaluation on VOT2016 Benchmark
4.6. Ablation Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grigorescu, S.; Trasnea, B.; Cocias, T.; Macesanu, G. A survey of deep learning techniques for autonomous driving. J. Field Robot. 2019, 37, 362–386. [Google Scholar] [CrossRef]
- Funde, N.; Paranjape, P.; Ram, K.; Magde, P.; Dhabu, M. Object Detection and Tracking Approaches for Video Surveillance over Camera Network. In Proceedings of the 2019 5th International Conference on Advanced Computing and Communication Systems, Coimbatore, India, 15–16 March 2019; pp. 1171–1176. [Google Scholar] [CrossRef]
- Baumgartl, H.; Sauter, D.; Schenk, C.; Atik, C.; Buettner, R. Vision-based Hand Gesture Recognition for Human-Computer Interaction using MobileNetV2. In Proceedings of the 2021 IEEE 45th Annual Computers, Software, and Applications Conference, Madrid, Spain, 12–16 July 2021; pp. 1667–1674. [Google Scholar] [CrossRef]
- Bousetouane, F.; Dib, L.; Snoussi, H. Improved mean shift integrating texture and color features for robust real time object tracking. Vis. Comput. 2012, 29, 155–170. [Google Scholar] [CrossRef]
- Fawad; Khan, M.J.; Rahman, M.; Amin, Y.; Tenhunen, H. Low-Rank Multi-Channel Features for Robust Visual Object Tracking. Symmetry 2019, 11, 1155. [Google Scholar] [CrossRef] [Green Version]
- Jamil Khan, M.; Rahman, M.; Amin, Y.; Tenhunen, H. High-Speed Tracking with Kernelized Correlation Filters. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 583–596. [Google Scholar]
- He, Z.; Fan, Y.; Zhuang, J.; Dong, Y.; Bai, H. Correlation Filters with Weighted Convolution Responses. In Proceedings of the IEEE International Conference on Computer Vision Workshop, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Sun, C.; Lu, H.; Yang, M.-H. Learning spatial-aware regressions for visual tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Sun, C.; Wang, D.; Lu, H.; Yang, M.-H. Correlation tracking via joint discrimination and reliability learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Nam, H.; Han, B. Learning multi-domain convolutional neural networks for visual tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Qi, Y.; Zhang, S.; Qin, L.; Yao, H.; Huang, Q.; Lim, J.; Yang, M.H. Hedged deep tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Hong, S.; You, T.; Kwak, S.; Han, B. Online tracking by learning discriminative saliency map with convolutional neural network. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015. [Google Scholar]
- Li, X.; Ma, C.; Wu, B.; He, Z.; Yang, M.H. Target-Aware Deep Tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Yang, T.; Chan, A.B. Visual tracking via dynamic memory networks. IEEE Trans. Pattern Anal. Mach. Intell. 2019. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Shao, Y.; Cui, Y.; Wang, Z.; Zhang, L.; Shen, C. Graph Attention Tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021. [Google Scholar]
- Cao, Z.; Fu, C.; Ye, J.; Li, B.; Li, Y. HiFT: Hierarchical Feature Transformer for Aerial Tracking. In Proceedings of the IEEE International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021. [Google Scholar]
- Zhang, H.; Chen, J.; Nie, G.; Hu, S. Uncertain motion tracking based on convolutional net with semantics estimation and region proposals. Pattern Recognit. 2020, 102, 107232. [Google Scholar] [CrossRef]
- Guo, W.; Gao, J.; Tian, Y.; Yu, F.; Feng, Z. SAFS: Object Tracking Algorithm Based on Self-Adaptive Feature Selection. Sensors 2021, 21, 4030. [Google Scholar] [CrossRef]
- Wang, L.; Liu, T.; Wang, G.; Chan, K.L.; Yang, Q. Video tracking using learn-ed hierarchical features. IEEE Trans. Image Process. 2015, 24, 1424–1435. [Google Scholar] [CrossRef]
- Rahman, M.M.; Fiaz, M.; Jung, S.K. Efficient Visual Tracking with Stacked Channel-Spatial Attention Learning. IEEE Access 2020, 8, 100857–100869. [Google Scholar] [CrossRef]
- Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H.S. Fully-convolutional siamese networks for object tracking. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016. [Google Scholar]
- Ma, C.; Huang, J.B.; Yang, X.; Yang, M.H. Hierarchical convolutional features for visual tracking. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Yang, T.; Chan, A.B. Learning dynamic memory networks for object tracking. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Wu, Y.; Lim, J.; Yang, M.H. Online object tracking: A benchmark. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013. [Google Scholar]
- Wu, Y.; Lim, J.; Yang, M.H. Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1834–1848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, M.; Smith, N.; Ghanem, B. A benchmark and simulator for UAV tracking. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016. [Google Scholar]
- Liang, P.; Blasch, E.; Ling, H. Encoding color information for visual tracking: Algorithms and benchmark. IEEE Trans. Image Process. 2015, 24, 5630–5644. [Google Scholar] [CrossRef] [PubMed]
- Kristan, M.; Matas, J.; Leonardis, A.; Felsberg, M.; Cehovin, L.; Fernandez, G.; Vojir, T.; Hager, G.; Nebehay, G.; Pflugfeld, R.; et al. The visual object tracking vot2016 challenge results. In Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Danelljan, M.; Hager, G.; Shahbaz Khan, F.; Felsberg, M. Convolutional Features for Correlation Filter Based Visual Tracking. In Proceedings of the IEEE International Conference on Computer Vision, Honolulu, HI, USA, 27–30 June 2016. [Google Scholar]
- Danelljan, M.; Robinson, A.; Khan, F.S.; Felsberg, M. Beyond correlation filters: Learning continuous convolution operators for visual tracking. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016. [Google Scholar]
- Danelljan, M.; Bhat, G.; Shahbaz Khan, F.; Felsberg, M. Eco: Efficient convolution operators for tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Wang, L.; Ouyang, W.; Wang, X.; Lu, H. Visual tracking with fully convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Held, D.; Thrun, S.; Savarese, S. Learning to track at 100 fps with deep regression networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016. [Google Scholar]
- Li, B.; Yan, J.; Wu, W.; Zhu, Z.; Hu, X. High performance visual tracking with siamese region proposal network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- He, A.; Luo, C.; Tian, X.; Zeng, W. A twofold siamese network for real-time object tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Morimitsu, H. Multiple context features in siamese networks for visual object tracking. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Guo, Q.; Feng, W.; Zhou, C.; Huang, R.; Wan, L.; Wang, S. Learning dynamic siamese network for visual object tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Wang, X.; Zhi, M. Summary of object detection based on convolutional neural network. In Proceedings of the Eleventh International Conference on Graphics and Image Processing (ICGIP 2019), Hangzhou, China, 3 January 2020. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, S.; Ouyang, W.; Yang, J.; Tai, Y. Person search via a mask-guided two-stream CNN model. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Li, X.; Liu, Q.; Fan, N.; He, Z.; Wang, H. Hierarchical Spatial-aware Siamese Network for Thermal Infrared Object Tracking. Knowl. Based Syst. 2018, 166, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Li, X.; He, Z.; Fan, N.; Yuan, D.; Wang, H. Learning Deep Multi-Level Similarity for Thermal Infrared Object Tracking. IEEE Trans. Multimed. 2019, 23, 2114–2126. [Google Scholar] [CrossRef]
- Wang, Q.; Teng, Z.; Xing, J.; Gao, J.; Hu, W.; Maybank, S. Learning attentions: Residual attentional siamese network for high performance online visual tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Qin, X.; Fan, Z. Initial matting-guided visual tracking with siamese network. IEEE Access 2019, 7, 41669–41677. [Google Scholar] [CrossRef]
- Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010. [Google Scholar]
- Huang, L.; Zhao, X.; Huang, K. GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 1562–1577. [Google Scholar] [CrossRef] [Green Version]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Bertinetto, L.; Valmadre, J.; Golodetz, S.; Miksik, O.; Torr, P.H. Staple: Complementary learners for real-time tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Danelljan, M.; Häger, G.; Khan, F.S.; Felsberg, M. Discriminative scale space tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1561–1575. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Tian, C.; Zuo, W.; Zhang, L.; Yang, M.H. Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Song, Y.; Ma, C.; Gong, L.; Zhang, J.; Lau, R.W.; Yang, M.H. Crest: Convolutional residual learning for visual tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Lukežič, A.; Vojíř, T.; Zajc, L.; Matas, J.; Kristan, M. Discriminative Correlation Filter with Channel and Spatial Reliability. Int. J. Comput. Vision 2018, 126, 671–688. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Huang, J.-B.; Yang, X.; Yang, M.-H. Robust Visual Tracking via Hierarchical Convolutional Features. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 2709–2723. [Google Scholar] [CrossRef] [Green Version]
- Mueller, M.; Smith, N.; Ghanem, B. Context-Aware Correlation Filter Tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Oron, S.; Bar-Hillel, A.; Levi, D.; Avidan, S. Locally orderless tracking. Int. J. Comput. Vision 2015, 111, 213–228. [Google Scholar] [CrossRef]
- Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. Exploiting the Circulant Structure of Tracking-by-Detection with Kernels. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October2012. [Google Scholar]
- Hare, S.; Golodetz, S.; Saffari, A.; Vineet, V.; Cheng, M.-M.; Hicks, S.L.; Torr, P.H.S. Struck: Structured Output Tracking with Kernels. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 2096–2109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pu, S.; Song, Y.; Ma, C.; Zhang, H.; Yang, M.H. Deep Attentive Tracking via Reciprocative Learning. arXiv 2018, arXiv:1810.03851. [Google Scholar]
- Li, Y; Zhu, J. A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014. [Google Scholar]
- Park, E.; Berg, A.C. Meta-tracker: Fast and Robust Online Adaptation for Visual Object Trackers. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
Tracker | SV | LR | OC | DF | MB | FM | IR | OR | OV | BC | IV |
---|---|---|---|---|---|---|---|---|---|---|---|
Ours | 0.857 | 0.872 | 0.783 | 0.732 | 0.872 | 0.840 | 0.794 | 0.803 | 0.829 | 0.837 | 0.823 |
CF2 | 0.790 | 0.831 | 0.749 | 0.721 | 0.801 | 0.798 | 0.813 | 0.741 | 0.671 | 0.766 | 0.794 |
MemDTC | 0.772 | 0.866 | 0.754 | 0.692 | 0.749 | 0.765 | 0.756 | 0.765 | 0.808 | 0.710 | 0.759 |
MemTrack | 0.768 | 0.807 | 0.705 | 0.588 | 0.748 | 0.751 | 0.726 | 0.723 | 0.744 | 0.717 | 0.762 |
CREST | 0.749 | 0.819 | 0.715 | 0.720 | 0.777 | 0.749 | 0.807 | 0.763 | 0.681 | 0.795 | 0.867 |
SRDCF | 0.688 | 0.655 | 0.680 | 0.640 | 0.722 | 0.745 | 0.651 | 0.655 | 0.573 | 0.723 | 0.718 |
CSR-DCF | 0.660 | 0.682 | 0.643 | 0.710 | 0.722 | 0.729 | 0.675 | 0.647 | 0.686 | 0.661 | 0.669 |
SiamFC | 0.682 | 0.847 | 0.655 | 0.571 | 0.662 | 0.692 | 0.614 | 0.646 | 0.672 | 0.635 | 0.652 |
Staple | 0.611 | 0.631 | 0.654 | 0.653 | 0.638 | 0.613 | 0.622 | 0.614 | 0.658 | 0.648 | 0.681 |
KCF | 0.553 | 0.560 | 0.591 | 0.565 | 0.540 | 0.540 | 0.572 | 0.585 | 0.441 | 0.623 | 0.657 |
DSST | 0.544 | 0.567 | 0.569 | 0.502 | 0.480 | 0.448 | 0.579 | 0.538 | 0.411 | 0.659 | 0.656 |
Tracker | SV | LR | OC | DF | MB | FM | IR | OR | OV | BC | IV |
---|---|---|---|---|---|---|---|---|---|---|---|
Ours | 0.624 | 0.637 | 0.563 | 0.509 | 0.650 | 0.630 | 0.576 | 0.571 | 0.603 | 0.602 | 0.590 |
CF2 | 0.478 | 0.439 | 0.484 | 0.465 | 0.561 | 0.542 | 0.529 | 0.485 | 0.443 | 0.512 | 0.512 |
MemDTC | 0.570 | 0.605 | 0.550 | 0.493 | 0.570 | 0.573 | 0.557 | 0.552 | 0.572 | 0.544 | 0.564 |
MemTrack | 0.573 | 0.574 | 0.518 | 0.452 | 0.561 | 0.575 | 0.537 | 0.529 | 0.534 | 0.533 | 0.556 |
CREST | 0.534 | 0.527 | 0.518 | 0.509 | 0.598 | 0.576 | 0.589 | 0.555 | 0.504 | 0.579 | 0.614 |
SRDCF | 0.510 | 0.494 | 0.487 | 0.451 | 0.525 | 0.562 | 0.475 | 0.475 | 0.430 | 0.530 | 0.521 |
CSR-DCF | 0.479 | 0.439 | 0.462 | 0.500 | 0.546 | 0.556 | 0.483 | 0.459 | 0.497 | 0.472 | 0.476 |
SiamFC | 0.515 | 0.592 | 0.483 | 0.425 | 0.504 | 0.531 | 0.473 | 0.475 | 0.495 | 0.476 | 0.484 |
Staple | 0.453 | 0.418 | 0.481 | 0.497 | 0.472 | 0.479 | 0.455 | 0.455 | 0.463 | 0.495 | 0.511 |
KCF | 0.348 | 0.307 | 0.392 | 0.395 | 0.401 | 0.389 | 0.384 | 0.391 | 0.327 | 0.417 | 0.431 |
DSST | 0.400 | 0.383 | 0.411 | 0.380 | 0.384 | 0.366 | 0.427 | 0.390 | 0.323 | 0.491 | 0.497 |
Tracker | SV | LR | OC | DF | MB | FM | IR | OR | OV | BC | IV |
---|---|---|---|---|---|---|---|---|---|---|---|
Eco | 0.712 | 0.752 | 0.706 | 0.779 | 0.612 | 0.625 | 0.670 | 0.680 | 0.618 | 0.795 | 0.675 |
Ours | 0.782 | 0.686 | 0.684 | 0.745 | 0.603 | 0.647 | 0.712 | 0.713 | 0.568 | 0.791 | 0.738 |
CREST | 0.660 | 0.678 | 0.662 | 0.781 | 0.638 | 0.630 | 0.663 | 0.680 | 0.571 | 0.763 | 0.733 |
HCFTstar | 0.681 | 0.577 | 0.608 | 0.773 | 0.618 | 0.627 | 0.623 | 0.681 | 0.511 | 0.756 | 0.733 |
CF2 | 0.688 | 0.583 | 0.622 | 0.802 | 0.635 | 0.634 | 0.635 | 0.673 | 0.492 | 0.744 | 0.721 |
CACF | 0.567 | 0.499 | 0.524 | 0.664 | 0.530 | 0.506 | 0.552 | 0.549 | 0.388 | 0.677 | 0.632 |
KCF | 0.529 | 0.449 | 0.478 | 0.652 | 0.486 | 0.490 | 0.510 | 0.524 | 0.374 | 0.625 | 0.581 |
DSST | 0.538 | 0.405 | 0.488 | 0.502 | 0.449 | 0.431 | 0.501 | 0.512 | 0.384 | 0.552 | 0.583 |
LOT | 0.451 | 0.448 | 0.443 | 0.542 | 0.381 | 0.426 | 0.431 | 0.458 | 0.361 | 0.514 | 0.400 |
CSK | 0.380 | 0.348 | 0.343 | 0.351 | 0.299 | 0.282 | 0.358 | 0.366 | 0.217 | 0.427 | 0.370 |
Tracker | SV | LR | OC | DF | MB | FM | IR | OR | OV | BC | IV |
---|---|---|---|---|---|---|---|---|---|---|---|
Eco | 0.532 | 0.496 | 0.545 | 0.552 | 0.451 | 0.507 | 0.520 | 0.523 | 0.470 | 0.562 | 0.526 |
Ours | 0.569 | 0.466 | 0.508 | 0.544 | 0.458 | 0.501 | 0.533 | 0.532 | 0.427 | 0.561 | 0.549 |
CREST | 0.509 | 0.406 | 0.506 | 0.565 | 0.484 | 0.521 | 0.524 | 0.540 | 0.453 | 0.544 | 0.573 |
HCFTstar | 0.457 | 0.342 | 0.449 | 0.533 | 0.431 | 0.479 | 0.461 | 0.490 | 0.398 | 0.516 | 0.522 |
CF2 | 0.486 | 0.323 | 0.473 | 0.557 | 0.446 | 0.499 | 0.481 | 0.503 | 0.382 | 0.501 | 0.526 |
CACF | 0.379 | 0.278 | 0.389 | 0.481 | 0.391 | 0.407 | 0.403 | 0.417 | 0.317 | 0.458 | 0.465 |
KCF | 0.340 | 0.238 | 0.344 | 0.457 | 0.342 | 0.376 | 0.350 | 0.375 | 0.297 | 0.422 | 0.414 |
DSST | 0.402 | 0.269 | 0.371 | 0.370 | 0.345 | 0.363 | 0.387 | 0.394 | 0.297 | 0.396 | 0.454 |
LOT | 0.333 | 0.230 | 0.320 | 0.360 | 0.294 | 0.330 | 0.334 | 0.340 | 0.282 | 0.346 | 0.318 |
CSK | 0.281 | 0.205 | 0.270 | 0.248 | 0.240 | 0.269 | 0.283 | 0.289 | 0.205 | 0.294 | 0.301 |
Tracker | EAO | Overlap | Failures |
---|---|---|---|
Ours | 0.303 | 0.560 | 18.514 |
TADT | 0.300 | 0.546 | 19.973 |
Staple | 0.294 | 0.540 | 23.895 |
SA-Siam | 0.292 | 0.539 | 19.560 |
DeepSRDCF | 0.275 | 0.522 | 20.346 |
MDNet | 0.257 | 0.538 | 21.081 |
SRDCF | 0.245 | 0.525 | 28.316 |
CF2 | 0.219 | 0.436 | 23.856 |
DAT | 0.216 | 0.458 | 28.353 |
SAMF | 0.185 | 0.496 | 37.793 |
DSST | 0.180 | 0.524 | 44.813 |
KCF | 0.153 | 0.469 | 52.031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Duan, R.; Zheng, A.; Zhang, J.; Li, L.; Wang, F. Discriminative Siamese Tracker Based on Multi-Channel-Aware and Adaptive Hierarchical Deep Features. Symmetry 2021, 13, 2329. https://doi.org/10.3390/sym13122329
Zhang H, Duan R, Zheng A, Zhang J, Li L, Wang F. Discriminative Siamese Tracker Based on Multi-Channel-Aware and Adaptive Hierarchical Deep Features. Symmetry. 2021; 13(12):2329. https://doi.org/10.3390/sym13122329
Chicago/Turabian StyleZhang, Huanlong, Rui Duan, Anping Zheng, Jie Zhang, Linwei Li, and Fengxian Wang. 2021. "Discriminative Siamese Tracker Based on Multi-Channel-Aware and Adaptive Hierarchical Deep Features" Symmetry 13, no. 12: 2329. https://doi.org/10.3390/sym13122329