Expected Values of Some Molecular Descriptors in Random Cyclooctane Chains
<p>The cyclooctane chains for <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>The four types of cyclooctane chains for <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>The four types of local arrangements in cyclooctane for <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>></mo> <mn>3</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Four special cyclooctain chains with <span class="html-italic">m</span> octagons.</p> "> Figure 5
<p>Difference between <math display="inline"><semantics> <mrow> <mi>E</mi> <mo stretchy="false">[</mo> <mi>A</mi> <mi>Z</mi> <mi>I</mi> <mo stretchy="false">]</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>E</mi> <mo stretchy="false">[</mo> <mi>S</mi> <mi>D</mi> <mi>D</mi> <mo stretchy="false">]</mo> </mrow> </semantics></math>.</p> "> Figure 6
<p>Difference between <math display="inline"><semantics> <mrow> <mi>E</mi> <mo stretchy="false">[</mo> <mi>S</mi> <mi>D</mi> <mi>D</mi> <mo stretchy="false">]</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>E</mi> <mo stretchy="false">[</mo> <mi>I</mi> <mi>S</mi> <mi>I</mi> <mo stretchy="false">]</mo> </mrow> </semantics></math>.</p> "> Figure 7
<p>Difference between <math display="inline"><semantics> <mrow> <mi>E</mi> <mo stretchy="false">[</mo> <mi>a</mi> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo stretchy="false">]</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>E</mi> <mo stretchy="false">[</mo> <mi>I</mi> <mi>S</mi> <mi>I</mi> <mo stretchy="false">]</mo> </mrow> </semantics></math>.</p> "> Figure 8
<p>Difference between <math display="inline"><semantics> <mrow> <mi>E</mi> <mo stretchy="false">[</mo> <mi>A</mi> <mi>Z</mi> <mi>I</mi> <mo stretchy="false">]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>E</mi> <mo stretchy="false">[</mo> <mi>S</mi> <mi>D</mi> <mi>D</mi> <mo stretchy="false">]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>E</mi> <mo stretchy="false">[</mo> <mi>I</mi> <mi>S</mi> <mi>I</mi> <mo stretchy="false">]</mo> </mrow> </semantics></math> and, <math display="inline"><semantics> <mrow> <mi>E</mi> <mo stretchy="false">[</mo> <mi>a</mi> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo stretchy="false">]</mo> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
- (i)
- with probability ,
- (ii)
- with probability ,
- (iii)
- with probability , or
- (iv)
- with probability
3. Results
- 1.
- .;
- ;
- ;
- .
- 2.
- ;
- .;
- ;
- .
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wiener, H. Structure determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Gutman, I.; Das, K. The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 2004, 50, 83–92. [Google Scholar]
- Furtula, B.; Graovac, A.; Vukicevic, D. Augmented Zagreb index. J. Math. Chem. 2010, 48, 370–380. [Google Scholar] [CrossRef]
- Vukicevic, D.; Gasperov, M. Bond additive modeling 1 Adriatic indices. Croat. Chem. Acta 2010, 83, 243–260. [Google Scholar]
- Vukicevic, D. Bond additive modeling 2. Mathematical properties of max-min rodeg index. Croat. Chem. Acta 2010, 83, 261–273. [Google Scholar]
- Milicevi, A.; Nikoli, S.; Trinajsti, N. On reformulated Zagreb indices. Mol. Divers. 2004, 8, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Koam, A.N.A.; Ahmad, A.; Nadeem, M.F. Comparative study of valency-based topological descriptor for hexagon star network. Comput. Syst. Sci. Eng. 2021, 36, 293–306. [Google Scholar] [CrossRef]
- Ahmad, A.; Hasni, R.; Elahi, K.; Asim, M.A. Polynomials of Degree-based Indices for Swapped Networks Modeled by Optical Transpose Interconnection System. IEEE Access 2020, 8, 214293–214299. [Google Scholar] [CrossRef]
- Ranjini, P.S.; Lokesha, V.; Usha, A. Relation between phenylene and hexagonal squeeze using harmonic index. Int. J. Graph Theory 2013, 1, 116–121. [Google Scholar]
- Wei, S.; Ke, X.; Hao, G. Comparing the excepted values of atom-bond connectivity and geometric arithmetic indices in random spiro chains. J. Inequal. Appl. 2018, 2018, 45. [Google Scholar] [CrossRef]
- Huang, G.; Kuang, M.; Deng, H. The expected values of Kirchhoff indices in the random polyphenyl and spiro chains. Ars Math. Contemp. 2018, 9, 197–207. [Google Scholar] [CrossRef]
- Jahanbani, A. The Expected Values of the First Zagreb and Randic Indices in Random Polyphenyl Chains. Polycycl. Aromat. Compd. 2020, 1–10. [Google Scholar] [CrossRef]
- Raza, Z. The expected values of arithmetic bond connectivity and geometric indices in random phenylene chains. Heliyon 2020, 6, e04479. [Google Scholar] [CrossRef]
- Raza, Z. The harmonic and second Zagreb indices in random polyphenyl and spiro chains. Polycycl. Aromat. Compd. 2020, 1–10. [Google Scholar] [CrossRef]
- Raza, Z. The expected values of some indices in random phenylene chains. Eur. Phys. J. Plus 2021, 136, 1–15. [Google Scholar] [CrossRef]
- Das, K.C.; Trinajstic, N. Comparison between first geometric arithmetic index and atom-bond connectivity index. Chem. Phys. Lett. 2010, 497, 149–151. [Google Scholar] [CrossRef]
- Shao, Z.; Jiang, H.; Raza, Z. Inequalities among topological descripter. Kragujev. J. Math. 2023, 47, 661–672. [Google Scholar]
- Du, Z.; Ali, A.; Rafee, R.; Raza, Z.; Jamil, M.K. On the first two extremum Zagreb indices and coindices of chemical trees. Int. J. Quantum Chem. 2021, 121, e26547. [Google Scholar] [CrossRef]
- Ali, A.; Raza, Z.; Bhatti, A.A. Extremal pentagonal chains with respect to degree-based topological indices. Can. J. Chem. 2016, 94, 870–876. [Google Scholar] [CrossRef]
- Ali, A.; Raza, Z.; Bhatti, A.A. Bond incident degree (BID) indices for some nanostructures. Optoelectron. Adv. Mater.-Rapid Commun. 2016, 10, 108–112. [Google Scholar]
- Ali, A.; Raza, Z.; Bhatti, A.A. Bond incident degree (BID) indices of polyomino chains: A unified approach. Appl. Math. Comput. 2016, 287, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Bhatti, A.A.; Raza, Z. Topological study of tree-like polyphenylene systems, spiro hexagonal systems and polyphenylene dendrimer nanostars. Quantum Matter 2016, 5, 534–538. [Google Scholar] [CrossRef]
- Akhter, S.; Imran, M.; Raza, Z. Bounds for the general sum-connectivity index of composite graphs. J. Inequal. Appl. 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Akhter, S.; Imran, M.; Raza, Z. On the general sum-connectivity index and general Randic index of cacti. J. Inequal. Appl. 2016, 2016, 1–9. [Google Scholar] [CrossRef]
- Ali, A.; Raza, Z.; Bhatti, A.A. Some vertex-degree-based topological indices of cacti. Ars Comb. 2019, 144, 195–206. [Google Scholar]
- Gutmana, I.; Kairtvic, T. Wiener indices and molecular surfaces. Z. Naturforschung A 1995, 50, 669–671. [Google Scholar] [CrossRef] [Green Version]
- Gutman, I.; Kennedy, J.W.; Quintas, L.V. Wiener numbers of random benzenoid chains. Chem. Phys. Lett. 1990, 173, 403–408. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, F. Wiener index in random polyphenyl chains. Match-Commun. Math. Comput. Chem. 2012, 68, 371. [Google Scholar]
- Raza, Z. Zagreb Connection Indices for Some Benzenoid Systems. Polycycl. Aromat. Compd. 2020, 1–14. [Google Scholar] [CrossRef]
- Alamdari, M.H.; Helliwell, M.; Baradarani, M.M.; Jouleb, J.A. Synthesis of some cyclooctane-based pyrazines and quinoxalines. Arkivoc 2008, 14, 166–179. [Google Scholar] [CrossRef] [Green Version]
- Ali, K.A.; Hosni, H.M.; Ragab, E.A.; Elas-Moez, S.I.A. Synthesis and antimicrobial evaluation of some new cyclooctanones and cyclooctane-based heterocycles. Arch. Pharm. 2012, 345, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, R.K. Conformational properties of cyclooctane: A molecular dynamics simulation study. Mol. Phys. 2000, 98, 211–218. [Google Scholar] [CrossRef]
- Salamci, E.; Ustabaay, R.; Aoruh, U.; Yavuz, M.; Vazquez-Lopez, E.M. Cyclooctane-1, 2, 5, 6-tetrayl tetraacetate. Acta Crystallogr. Sect. E Struct. Rep. Online 2006, 62, 02401–02402. [Google Scholar] [CrossRef]
- Brunvoll, J.; Cyvin, S.J.; Cyvin, B.N. Enumeration of tree-like octagonal systems. J. Math. Chem. 1997, 21, 193–196. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, B. Kekulic Structures of Octagonal Chains and the Hosoya Index of Caterpillar Trees. J. Xinjiang Univ. (Nat. Sci. Ed.) 2013, 3, 1–5. [Google Scholar]
- Destainville, N.; Mosseri, R.; Bailly, F. Fixed-boundary octagonal random tilings: A combinatorial approach. J. Stat. Phys. 2001, 102, 147–190. [Google Scholar] [CrossRef]
m | ||||
---|---|---|---|---|
4 | 296.953125 | 71.33333333 | 39.1 | 7.333333333 |
5 | 375.734375 | 89.66666667 | 49.5 | 9.138888889 |
6 | 454.515625 | 108 | 59.9 | 10.94444444 |
7 | 533.296875 | 126.3333333 | 70.3 | 12.75 |
8 | 612.078125 | 144.6666667 | 80.7 | 14.55555556 |
9 | 690.859375 | 163 | 91.1 | 16.36111111 |
10 | 769.640625 | 181.3333333 | 101.5 | 18.16666667 |
11 | 848.421875 | 199.6666667 | 111.9 | 19.97222222 |
12 | 927.203125 | 218 | 122.3 | 21.77777778 |
13 | 1005.984375 | 236.3333333 | 132.7 | 23.58333333 |
m | ||||
---|---|---|---|---|
4 | 290.171875 | 72 | 38.9 | 7.333333333 |
5 | 365.5625 | 90.66666667 | 49.2 | 9.111111111 |
6 | 440.953125 | 109.3333333 | 59.5 | 10.88888889 |
7 | 516.34375 | 128 | 69.8 | 12.66666667 |
8 | 591.734375 | 146.6666667 | 80.1 | 14.44444444 |
9 | 667.125 | 165.3333333 | 90.4 | 16.22222222 |
10 | 742.515625 | 184 | 100.7 | 18 |
11 | 817.90625 | 202.6666667 | 111 | 19.77777778 |
12 | 893.296875 | 221.3333333 | 121.3 | 21.55555556 |
13 | 968.6875 | 240 | 131.6 | 23.33333333 |
m | ||||
---|---|---|---|---|
4 | 293.5625 | 71.66666667 | 39 | 7.361111111 |
5 | 370.6484375 | 90.16666667 | 49.35 | 9.152777778 |
6 | 447.734375 | 108.6666667 | 59.7 | 10.94444444 |
7 | 524.8203125 | 127.1666667 | 70.05 | 12.73611111 |
8 | 601.90625 | 145.6666667 | 80.4 | 14.52777778 |
9 | 678.9921875 | 164.1666667 | 90.75 | 16.31944444 |
10 | 756.078125 | 182.6666667 | 101.1 | 18.11111111 |
11 | 833.1640625 | 201.1666667 | 111.45 | 19.90277778 |
12 | 910.25 | 219.6666667 | 121.8 | 21.69444444 |
13 | 987.3359375 | 238.1666667 | 132.15 | 23.48611111 |
m | ||||
---|---|---|---|---|
4 | 291.8671875 | 71.83333333 | 38.95 | 7.347222222 |
5 | 368.1054688 | 90.41666667 | 49.275 | 9.131944444 |
6 | 444.34375 | 109 | 59.6 | 10.91666667 |
7 | 520.5820313 | 127.5833333 | 69.925 | 12.70138889 |
8 | 596.8203125 | 146.1666667 | 80.25 | 14.48611111 |
9 | 673.0585938 | 164.75 | 90.575 | 16.27083333 |
10 | 749.296875 | 183.3333333 | 100.9 | 18.05555556 |
11 | 825.5351563 | 201.9166667 | 111.225 | 19.84027778 |
12 | 901.7734375 | 220.5 | 121.55 | 21.625 |
13 | 978.0117188 | 239.0833333 | 131.875 | 23.40972222 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raza, Z.; Imran, M. Expected Values of Some Molecular Descriptors in Random Cyclooctane Chains. Symmetry 2021, 13, 2197. https://doi.org/10.3390/sym13112197
Raza Z, Imran M. Expected Values of Some Molecular Descriptors in Random Cyclooctane Chains. Symmetry. 2021; 13(11):2197. https://doi.org/10.3390/sym13112197
Chicago/Turabian StyleRaza, Zahid, and Muhammad Imran. 2021. "Expected Values of Some Molecular Descriptors in Random Cyclooctane Chains" Symmetry 13, no. 11: 2197. https://doi.org/10.3390/sym13112197
APA StyleRaza, Z., & Imran, M. (2021). Expected Values of Some Molecular Descriptors in Random Cyclooctane Chains. Symmetry, 13(11), 2197. https://doi.org/10.3390/sym13112197