A Novel Approach to Generate Type-1 Fuzzy Triangular and Trapezoidal Membership Functions to Improve the Classification Accuracy
<p>Type-1 fuzzy logic system.</p> "> Figure 2
<p>Fuzzy membership functions.</p> "> Figure 3
<p>Proposed Methodology.</p> "> Figure 4
<p>Fuzzy <span class="html-italic">c</span>-means working flowchart.</p> "> Figure 5
<p>Type-1 fuzzy triangular MF approximation.</p> "> Figure 6
<p>Type-1 fuzzy trapezoidal MF approximation.</p> "> Figure 7
<p>Iris dataset test results.</p> "> Figure 8
<p>Banknote authentication dataset test results.</p> "> Figure 9
<p>Blood transfusion dataset test results.</p> "> Figure 10
<p>Haberman’s survival dataset test results.</p> ">
Abstract
:1. Introduction
2. Background
2.1. Type-1 Fuzzy Set and Logic System
2.2. Fuzzy Membership Functions
2.3. Related Work and Study
3. Proposed Methodology
3.1. Data
3.1.1. Iris Dataset
3.1.2. Banknote Authentication Dataset
3.1.3. Blood Transfusion Dataset
3.1.4. Haberman’s Survival Dataset
3.2. FCM Algorithm
- i.
- Fix cluster centers (c) i.e., (2 ≤ c ≤ n) and select value for parameter n.
- ii.
- Initialize partition matrix (fuzzy membership matrix) Uij.
- iii.
- Calculate cluster centers (fuzzy centers) for each step.
- iv.
- Update partition matrix (membership matrix).
- v.
- Check for convergence
- vi.
- If ||U(k − 1) − U(k)|| ≤ E2 stop else return to step 3.
3.3. Approximating Type-1 Fuzzy Triangular MF
Algorithm 1:Triangular Membership Function Approximation |
1. Choose (e, m, iter, ε, a, b, c) |
2. Find initial cluster centers |
3. ITERATE |
For t = 1 to iter |
CALCULATE |
CALCULATE |
If error = |
Next t |
4. U-Matrix and cluster center ‘e’ are calculated |
5. Calculate parametric values for triangular MF.
a = α − (β * γ)
b = α
c = α + (β * γ)
|
6. Triangular MF set… |
Use parametric values a < b < c to generate triangular MF |
3.4. Approximating Type-1 Fuzzzy Trapezoidal MF
Algorithm 2:Trapezoidal Membership Function Approximation |
1. Choose (e, m, iter, ε, a, b, c, d) |
2. Find initial cluster centers |
3. ITERATE |
For t = 1 to iter |
CALCULATE |
CALCULATE |
If error = |
Next t |
4. U-Matrix and cluster center ‘e’ are calculated |
5. Calculate parametric values for triangular MF. |
6. Trapezoidal MF set |
Use parametric values a < b < c < d to generate trapezoidal MF |
3.5. Performance Measure
4. Results and Discussion
4.1. Iris Dataset
4.2. Banknote Authentication Dataset
4.3. Blood Transfusion Dataset
4.4. Haberman’s Survival Dataset
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zuliana, E.; Abadi, A.M. Sugeno fuzzy inference method and matlab application program for simulation of student performance evaluation in the elementary mathematics learning process. Int. J. Adv. Trends Comput. Sci. Eng. 2020, 9, 4223–4228. [Google Scholar] [CrossRef]
- Klir, G.J.; Yuan, B. Fuzzy Sets and Fuzzy Logic; Prentice Hall: London, UK, 1994. [Google Scholar]
- Khayatzadeh, R.; Yelten, M.B. A Novel Multiple Membership Function Generator for Fuzzy Logic Systems. In Proceedings of the SMACD 2018—15th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design, Prague, Czech Republic, 2–5 July 2018; pp. 101–104. [Google Scholar] [CrossRef]
- Moshfe, S.; Khoei, A.; Hadidi, K.; Mashoufi, B. A fully programmable nano-watt analogue CMOS circuit for Gaussian functions. In Proceedings of the 2010 International Conference on Electronic Devices, Systems and Applications, ICEDSA, Kuala Lampur, Malaysia, 11–14 April 2010; pp. 82–87. [Google Scholar] [CrossRef]
- Azam, M.; Hasan, M.H.; Hassan, S.; Abdulkadir, S.J. Fuzzy Type-1 Triangular Membership Function Approximation Using Fuzzy C-Means. In Proceedings of the 2020 International Conference on Computational Intelligence (ICCI), Seri Iskandar, Malaysia, 8–9 October 2020; pp. 115–120. [Google Scholar] [CrossRef]
- Hasan, M.H.; Jaafar, J.; Hassan, M.F. Fuzzy C-Means and two clusters’ centers method for generating interval type-2 membership function. In Proceedings of the 2016 3rd International Conference on Computer and Information Sciences, ICCOINS, Kuala Lampur, Malaysia, 15–17 August 2016; pp. 627–632. [Google Scholar] [CrossRef]
- Dunn, J.C. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. J. Cybern. 1973, 3, 32–57. [Google Scholar] [CrossRef]
- Guillaume, S. Designing fuzzy inference systems from data: An interpretability-oriented review. IEEE Trans. Fuzzy Syst. 2001, 9, 426–443. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.-S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man, Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Khairuddin, S.; Hasan, M.; Hashmani, M.; Azam, M. Generating Clustering-Based Interval Fuzzy Type-2 Triangular and Trapezoidal Membership Functions: A Structured Literature Review. Symmetry 2021, 13, 239. [Google Scholar] [CrossRef]
- Bhatt, R.B.; Narayanan, S.J.; Paramasivam, I.; Khalid, M. Approximating fuzzy membership functions from clustered raw data. In Proceedings of the 2012 Annual IEEE India Conference, INDICON, Kochi, India, 7–9 December 2012; pp. 487–492. [Google Scholar] [CrossRef]
- Koduru, G.K.; Nageswararao, K.; Namburu, A. T1 Weighted MR Brain Image Segmentation with Triangular Intuitionistic Fuzzy Set. Int. J. Innov. Technol. Explor. Eng. 2020, 9, 762–768. [Google Scholar]
- Oluborode, K.O.; Obe, O.O.; Olabode, O.; Adeboje, O.T. Adaptive neuro-fuzzy controller for double lane traffic intersections. Int. J. Adv. Trends Comput. Sci. Eng. 2020, 9, 6455–6463. [Google Scholar]
- Azam, M.H.; Hasan, M.H.; Kadir, S.J.A.; Hassan, S. Prediction of Sunspots using Fuzzy Logic: A Triangular Membership Function-based Fuzzy C-Means Approach. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 357–362. [Google Scholar]
- Cao, H.; Jia, L.; Si, G.; Zhang, Y. A Clustering-analysis-based membership functions formation method for fuzzy controller of ball mill pulverizing system. J. Process. Control. 2013, 23, 34–43. [Google Scholar] [CrossRef]
- Moewes, C.; Kruse, R. Evolutionary Fuzzy Rules for Ordinal Binary Classification with Monotonicity Constraints. In Soft Computing: State of the Art Theory and Novel Applications; Springer: Berlin/Heidelberg, Germany, 2013; Volume 291, pp. 105–112. [Google Scholar] [CrossRef]
- Chen, C.; John, R.; Twycross, J.; Garibaldi, J.M. Type-1 and interval type-2 ANFIS: A comparison. In Proceedings of the IEEE International Conference on Fuzzy Systems, Naples, Italy, 9–12 July 2017. [Google Scholar]
- Narayanan, S.J.; Paramasivam, I.; Bhatt, R.B.; Khalid, M. A Study on the Approximation of Clustered Data to Parameterized Family of Fuzzy Membership Functions for the Induction of Fuzzy Decision Trees. Cybern. Inf. Technol. 2015, 15, 75–96. [Google Scholar] [CrossRef] [Green Version]
- UCI Machine Learning Repository: Iris Data Set. Available online: https://archive.ics.uci.edu/mL/datasets/iris (accessed on 3 June 2021).
- UCI Machine Learning Repository: Banknote Authentication Data Set. Available online: https://archive.ics.uci.edu/ml/datasets/banknote+authentication (accessed on 3 June 2021).
- UCI Machine Learning Repository: Blood Transfusion Service Center Data Set. Available online: https://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center (accessed on 3 June 2021).
- UCI Machine Learning Repository: Haberman’s Survival Data Set. Available online: https://archive.ics.uci.edu/ml/datasets/Haberman’s+Survival (accessed on 3 June 2021).
- Nematzadeh, Z.; Ibrahim, R.; Selamat, A. Comparative studies on breast cancer classifications with k-fold cross validations using machine learning techniques. In Proceedings of the 2015 10th Asian Control Conference: Emerging Control Techniques for a Sustainable World, ASCC, Kota Kinabalu, Malaysia, 31 May–3 June 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Xiong, Z.; Cui, Y.; Liu, Z.; Zhao, Y.; Hu, M.; Hu, J. Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation. Comput. Mater. Sci. 2019, 171, 109203. [Google Scholar] [CrossRef]
MF Type | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 | Correct Classification Count | Accuracy (%) |
---|---|---|---|---|---|---|---|
FCM Tri | 30 | 30 | 30 | 28 | 22 | 140 | 93.33 |
FCM Trap | 30 | 30 | 30 | 21 | 21 | 132 | 88.00 |
FCM Gauss | 30 | 30 | 30 | 21 | 22 | 133 | 88.66 |
GP Tri | 30 | 30 | 30 | 23 | 15 | 128 | 85.33 |
GP Gauss | 30 | 30 | 30 | 21 | 17 | 128 | 85.33 |
MF Type | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 | Correct Classification Count | Accuracy (%) |
---|---|---|---|---|---|---|---|
FCM Tri | 119 | 117 | 122 | 173 | 172 | 703 | 51.13 |
FCM Trap | 107 | 107 | 114 | 173 | 167 | 668 | 48.58 |
FCM Gauss | 109 | 103 | 113 | 171 | 168 | 664 | 48.29 |
GP Tri | 84 | 72 | 86 | 147 | 143 | 532 | 38.69 |
GP Gauss | 84 | 72 | 86 | 143 | 143 | 532 | 38.69 |
MF Type | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 | Correct Classification Count | Accuracy (%) |
---|---|---|---|---|---|---|---|
FCM Tri | 81 | 88 | 99 | 88 | 94 | 450 | 60.40 |
FCM Trap | 76 | 84 | 95 | 78 | 94 | 427 | 57.31 |
FCM Gauss | 76 | 84 | 95 | 78 | 94 | 427 | 57.31 |
GP Tri | 76 | 85 | 89 | 79 | 96 | 425 | 57.05 |
GP Gauss | 79 | 85 | 97 | 85 | 96 | 442 | 59.33 |
MF Type | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 | Correct Classification Count | Accuracy (%) |
---|---|---|---|---|---|---|---|
FCM Tri | 52 | 43 | 44 | 44 | 38 | 221 | 72.46 |
FCM Trap | 52 | 43 | 44 | 44 | 37 | 220 | 72.13 |
FCM Gauss | 52 | 43 | 44 | 44 | 37 | 220 | 72.13 |
GP Tri | 52 | 40 | 42 | 47 | 35 | 216 | 70.82 |
GP Gauss | 52 | 40 | 42 | 47 | 35 | 216 | 70.82 |
Dataset Name | No of Data Point | FCM Tri MF | FCM Trap MF | FCM Gauss MF | GP Tri MF | GP-Gauss MF | Most Effective MF |
---|---|---|---|---|---|---|---|
Iris dataset | 150 | 93.33 | 88.0 | 88.66 | 85.33 | 85.33 | FCM-Tri |
Banknote Authentication | 1372 | 51.13 | 48.58 | 48.29 | 38.69 | 38.69 | FCM-Tri |
Blood Transfusion | 745 | 60.40 | 57.31 | 57.31 | 57.05 | 59.33 | FCM-Tri |
Haberman’s Survival dataset | 305 | 72.46 | 72.13 | 72.13 | 70.82 | 70.82 | FCM-Tri |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azam, M.H.; Hasan, M.H.; Hassan, S.; Abdulkadir, S.J. A Novel Approach to Generate Type-1 Fuzzy Triangular and Trapezoidal Membership Functions to Improve the Classification Accuracy. Symmetry 2021, 13, 1932. https://doi.org/10.3390/sym13101932
Azam MH, Hasan MH, Hassan S, Abdulkadir SJ. A Novel Approach to Generate Type-1 Fuzzy Triangular and Trapezoidal Membership Functions to Improve the Classification Accuracy. Symmetry. 2021; 13(10):1932. https://doi.org/10.3390/sym13101932
Chicago/Turabian StyleAzam, Muhammad Hamza, Mohd Hilmi Hasan, Saima Hassan, and Said Jadid Abdulkadir. 2021. "A Novel Approach to Generate Type-1 Fuzzy Triangular and Trapezoidal Membership Functions to Improve the Classification Accuracy" Symmetry 13, no. 10: 1932. https://doi.org/10.3390/sym13101932