A SPH-GFDM Coupled Method for Elasticity Analysis
<p>(<b>a</b>) Schematic of the problem and the loads. (<b>b</b>) The location of the sample point <span class="html-italic">P</span> and line <span class="html-italic">AB</span>. (<b>c</b>) The mesh generated by COMSOL. (<b>d</b>) The distribution of the nodes.</p> "> Figure 2
<p>The contours of stress and displacement obtained by FEM. (<b>a</b>) The <span class="html-italic">x</span>–direction displacement <span class="html-italic">u</span>. (<b>b</b>) The <span class="html-italic">y</span>–direction displacement <span class="html-italic">v</span>. (<b>c</b>) The <span class="html-italic">x</span>–direction normal stress <span class="html-italic">σ<sub>x</sub></span>. (<b>d</b>) The <span class="html-italic">y</span>–direction normal stress <span class="html-italic">σ<sub>y</sub></span>. (<b>e</b>) The shear stress <span class="html-italic">τ<sub>xy</sub></span>. (<b>f</b>) The Von-Mises stress <span class="html-italic">σ<sub>Sig_eq</sub></span>.</p> "> Figure 3
<p>The contours of stress and displacement obtained by SPH-GFDM. (<b>a</b>) The <span class="html-italic">x</span>–direction displacement <span class="html-italic">u</span>. (<b>b</b>) The <span class="html-italic">y</span>–direction displacement <span class="html-italic">v</span>. (<b>c</b>) The <span class="html-italic">x</span>–direction normal stress <span class="html-italic">σ<sub>x</sub></span>. (<b>d</b>) The <span class="html-italic">y</span>–direction normal stress <span class="html-italic">σ<sub>y</sub></span>. (<b>e</b>) The shear stress <span class="html-italic">τ<sub>xy</sub></span>. (<b>f</b>) The Von-Mises stress <span class="html-italic">σ<sub>Sig_eq</sub></span>.</p> "> Figure 4
<p>(<b>a</b>) The distribution of <span class="html-italic">x</span>–direction displacement <span class="html-italic">u</span> in line <span class="html-italic">AB</span> (Unit: m). (<b>b</b>) The distribution of <span class="html-italic">y</span>–direction displacement <span class="html-italic">v</span> in line <span class="html-italic">AB</span> (Unit: m).</p> "> Figure 5
<p>(<b>a</b>) Schematic of the problem and the loads. (<b>b</b>) The location of the sample points and line <span class="html-italic">AB</span>. (<b>c</b>) The mesh generated by COMSOL. (<b>d</b>) The distribution of the nodes.</p> "> Figure 6
<p>The contours of stress and displacement obtained by FEM. (<b>a</b>) The <span class="html-italic">x</span>–direction displacement <span class="html-italic">u</span>. (<b>b</b>) The <span class="html-italic">y</span>–direction displacement <span class="html-italic">v</span>. (<b>c</b>) The <span class="html-italic">x</span>–direction normal stress <span class="html-italic">σ<sub>x</sub></span>. (<b>d</b>) The <span class="html-italic">y</span>–direction normal stress <span class="html-italic">σ<sub>y</sub></span>. (<b>e</b>) The shear stress <span class="html-italic">τ<sub>xy</sub></span>. (<b>f</b>) The Von-Mises stress <span class="html-italic">σ<sub>Sig_eq</sub></span>.</p> "> Figure 7
<p>The contours of stress and displacement obtained by SPH-GFDM. (<b>a</b>) The <span class="html-italic">x</span>–direction displacement <span class="html-italic">u</span>. (<b>b</b>) The <span class="html-italic">y</span>–direction displacement <span class="html-italic">v</span>. (<b>c</b>) The <span class="html-italic">x</span>–direction normal stress <span class="html-italic">σ<sub>x</sub></span>. (<b>d</b>) The <span class="html-italic">y</span>–direction normal stress <span class="html-italic">σ<sub>y</sub></span>. (<b>e</b>) The shear stress <span class="html-italic">τ<sub>xy</sub></span>. (<b>f</b>) The Von-Mises stress <span class="html-italic">σ<sub>Sig_eq</sub></span>.</p> "> Figure 8
<p>(<b>a</b>) The distribution of <span class="html-italic">x</span>–direction displacement <span class="html-italic">u</span> in line <span class="html-italic">AB</span> (Unit: m). (<b>b</b>) The distribution of <span class="html-italic">y</span>–direction displacement <span class="html-italic">v</span> in line <span class="html-italic">AB</span> (Unit: m).</p> "> Figure 9
<p>(<b>a</b>) Schematic of the problem and the load. (<b>b</b>) The location of the sample points <span class="html-italic">A</span> and <span class="html-italic">B</span>. (<b>c</b>) The mesh generated by COMSOL. (<b>d</b>) The distribution of the nodes.</p> "> Figure 10
<p>The contours of stress and displacement obtained by FEM. (<b>a</b>) The <span class="html-italic">x</span>–direction displacement <span class="html-italic">u</span>. (<b>b</b>) The <span class="html-italic">y</span>–direction displacement <span class="html-italic">v</span>. (<b>c</b>) The <span class="html-italic">x</span>–direction normal stress <span class="html-italic">σ<sub>x</sub></span>. (<b>d</b>) The <span class="html-italic">y</span>–direction normal stress <span class="html-italic">σ<sub>y</sub></span>. (<b>e</b>) The shear stress <span class="html-italic">τ<sub>x</sub></span>. (<b>f</b>) The Von-Mises stress <span class="html-italic">σ<sub>Sig_eq</sub></span>.</p> "> Figure 11
<p>The contours of stress and displacement obtained by SPH-GFDM. (<b>a</b>) The <span class="html-italic">x</span>–direction displacement <span class="html-italic">u</span>. (<b>b</b>) The <span class="html-italic">y</span>–direction displacement <span class="html-italic">v</span>. (<b>c</b>) The <span class="html-italic">x</span>–direction normal stress <span class="html-italic">σ<sub>x</sub></span>. (<b>d</b>) The <span class="html-italic">y</span>–direction normal stress <span class="html-italic">σ<sub>y</sub></span>. (<b>e</b>) The shear stress <span class="html-italic">τ<sub>x</sub></span><span class="html-italic"><sub>y</sub></span>. (<b>f</b>) The Von-Mises stress <span class="html-italic">σ<sub>Sig_eq</sub></span>.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Basic Ideas and Differential Operators
2.2. The Governing Equations for Two-Dimensional Elastic Problems and Their Discrete SPH Forms
2.3. Treatment of the Boundary Conditions
3. Results and Discussion
3.1. A Rectangular Metal Plate with Two Ends Fixed under Prescribed Uniform Loads
3.2. A L-Shape Plate with Two Ends Fixed under Prescribed Uniform Loads
3.3. A Square Plate with A Hole in the Center Whose Left Side Is Fixed and the Right Side Is under Uniform Normal Loads
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gingold, R.A.; Monaghan, J.J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 1977, 181, 375–389. [Google Scholar] [CrossRef]
- Lucy, L. A numerical approach to the testing of the fission hypothesis. Astron. J. 1977, 82, 1013–1024. [Google Scholar] [CrossRef]
- Monaghan, J.J. Simulating free surface flows with SPH. Comput Phys. 1994, 110, 399–406. [Google Scholar] [CrossRef]
- Bierbrauer, F.; Bollada, P.C.; Phillips, T.N. A consistent reflected image particle approach to the treatment of boundary conditions in smoothed particle hydrodynamics. Comput. Methods Appl. Mech. Eng. 2009, 198, 3400–3410. [Google Scholar] [CrossRef]
- Liu, M.; Shao, J.; Chang, J. On the treatment of solid boundary in smoothed particle hydrodynamics. Sci. China 2012, 1, 248–258. [Google Scholar] [CrossRef]
- Kulasegaram, S.; Bonet, J.; Lewis, R.W.; Profit, M.A. variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications. Comput. Mech. 2004, 33, 316–325. [Google Scholar] [CrossRef]
- Ferrand, M.; Laurence, D.R.; Rogers, B.D.; Violeau, D.; Kassiotis, C. Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method. Int. J. Numer. Methods Fluids 2013, 71, 446–472. [Google Scholar] [CrossRef] [Green Version]
- Nasir, H.M.; Kako, T.; Koyama, D. A mixed-type finite element approximation for radiation problems using fictitious domain method. Comput. Appl. Math. 2003, 152, 377–392. [Google Scholar] [CrossRef] [Green Version]
- Fülöp, T.; Kovács, R.; Szücs, M.; Fawaier, M. Thermodynamical Extension of a Symplectic Numerical Scheme with Half Space and Time Shifts Demonstrated on Rheological Waves in Solids. Entropy 2020, 22, 155. [Google Scholar] [CrossRef] [Green Version]
- Pozsár, Á.; Szücs, M.; Kovács, R.; Fülöp, T. Four Spacetime Dimensional Simulation of Rheological Waves in Solids and the Merits of Thermodynamics. Entropy 2020, 22, 1376. [Google Scholar] [CrossRef]
- Sikarudi, M.E.; Nikseresht, A.H. Neumann and Robin boundary conditions for heat conduction modeling using smoothed particle hydrodynamics. Comput. Phys. Commun. 2016, 198, 1–11. [Google Scholar] [CrossRef]
- Pan, W.; Bao, J.; Tartakovsky, A.M. Smoothed particle hydrodynamics continuous boundary force method for Navier–Stokes equations subject to a Robin boundary condition. J. Comput. Phys. 2014, 259, 242–259. [Google Scholar] [CrossRef]
- Härdi, S.; Schreiner, M.; Janoske, U. Enhancing smoothed particle hydrodynamics for shallow water equations on small scales by using the finite particle method. Comput. Methods Appl. Mech. Eng. 2019, 344, 360–375. [Google Scholar] [CrossRef]
- Härdi, S.; Schreiner, M.; Janoske, U. Simulating thin film flow using the shallow water equations and smoothed particle hydrodynamics. Comput. Methods Appl. Mech. Eng. 2020, 358, 112639. [Google Scholar] [CrossRef]
- Monaghan, J.J. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 1992, 30, 543–574. [Google Scholar] [CrossRef]
- Jin, H.B.; Ding, X. On criterions for smoothed particle hydrodynamics kernels in stable field. Comput. Phys. 2005, 202, 699–709. [Google Scholar]
- Flebbe, O.; Muenzel, S.; Herold, H.; Riffert, H.; Ruder, H. Smoothed particle hydrodynamics: Physical viscosity and the simulation of accretion disks. Astrophys. J. 1994, 431, 754–760. [Google Scholar] [CrossRef]
- Watkins, S.J.; Bhattal, A.S.; Francis, N.; Turner, J.A.; Whitworth, A.P. A new prescription for viscosity in smoothed particle hydrodynamics. Astron. Astrophys. Suppl. Ser. 1996, 119, 177–187. [Google Scholar] [CrossRef]
- Takeda, H.; Miyama, S.M.; Sekiya, M. Numerical simulation of viscous flow by smoothed particle hydrodynamics. Prog. Theor. Phys. 1994, 92, 939–960. [Google Scholar] [CrossRef]
- Espanol, P.; Revenga, M. Smoothed dissipative particle dynamics. Phys. Rev. E 2003, 67, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Liszka, T. An interpolation method for an irregular net of nodes. Int. J. Numer. Methods Eng. 1984, 20, 1599–1612. [Google Scholar] [CrossRef]
- Liszka, T.; Orkisz, J. The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput. Struct. 1980, 11, 83–95. [Google Scholar] [CrossRef]
- Payre, G.M.J. Influence graphs and the generalized finite difference method. Comput. Methods Appl. Mech. Eng. 2007, 196, 1933–1945. [Google Scholar] [CrossRef]
- Benito, J.J.; Urena, F.; Gavete, L. Influence of several factors in the generalized finite difference method. Appl. Math. Model. 2001, 25, 1039–1053. [Google Scholar] [CrossRef]
- Benito, J.J.; Urena, F.; Gavete, L.; Alvarez, R. An h-adaptive method in the generalized finite differences. Comput. Methods Appl. Mech. Eng. 2003, 192, 735–759. [Google Scholar] [CrossRef]
- Gavete, L.; Gavete, M.L.; Benito, J.J. Improvements of generalized finite difference method and comparison with other meshless method. Appl. Math. Model. 2003, 27, 831–847. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Qu, W.; Chen, W.; Song, L.; Zhang, C. The generalized finite difference method for long-time dynamic modeling of three-dimensional coupled thermoelasticity problems. J. Comput. Phys. 2019, 384, 42–59. [Google Scholar] [CrossRef]
- Gu, Y.; Hua, Q.; Zhang, C.; He, X. The generalized finite difference method for long-time transient heat conduction in 3D anisotropic composite materials. Appl. Math. Model. 2019, 71, 316–330. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, Y.; Fan, C.; Chen, W.; Zhang, C. Domain-decomposition generalized finite difference method for stress analysis in multi-layered elastic materials. Eng. Anal. Bound. Elem. 2018, 94, 94–102. [Google Scholar] [CrossRef]
- Chen, J.; Gu, Y.; Wang, M.; Chen, W.; Liu, L. Application of the generalized finite difference method to three-dimensional transient electromagnetic problems. Eng. Anal. Bound. Elem. 2018, 92, 257–266. [Google Scholar] [CrossRef]
- Li, Y.; Tong, Z. Development of real-time adaptive model-free extremum seeking control for CFD-simulated thermal environment. Sustain. Cities Soc. 2021, 70, 102903. [Google Scholar]
- Chen, Z.; Jiang, Y.; Tong, Z.; Tong, S. Residual Stress Distribution Design for Gear Surfaces Based on Genetic Algorithm Optimization. Materials 2021, 14, 366. [Google Scholar] [CrossRef]
- Tong., Z.; Miao, J.; Tong, S.; Lu, Y. Early prediction of remaining useful life for Lithium-ion batteries based on a hybrid machine learning method. J. Clean. Prod. 2021, 317, 128265. [Google Scholar] [CrossRef]
- Tong, Z.; Xin, J.; Ling, C. Many-Objective Hybrid Optimization Method for Impeller Profile Design of Low Specific Speed Centrifugal Pump in District Energy Systems. Sustainability 2021, 13, 10537. [Google Scholar]
SPH-GFDM | FEM | |
---|---|---|
4.08 × 10−9 | 4.12 × 10−9 | |
1.75 × 10−8 | 1.76 × 10−8 |
σx | σy | τxy | σSig_eq | |
---|---|---|---|---|
SPH-GFDM | 2.28 × 10−6 | 7.30 × 10−7 | −148.82 | 257.76 |
FEM | 0.00 | 0.00 | −149.45 | 263.76 |
SPH-GFDM | FEM | |
---|---|---|
2.20 × 10−9 | 2.21 × 10−9 | |
2.20 × 10−9 | 2.21 × 10−9 |
σx | σy | τxy | σSig_eq | |
---|---|---|---|---|
SPH-GFDM | 40.28 | 37.41 | 16.23 | 48.28 |
FEM | 42.77 | 37.08 | 18.25 | 51.16 |
σx | σy | τxy | σSig_eq | |
---|---|---|---|---|
SPH-GFDM | 43.25 | 43.25 | 9.93 | 45.17 |
FEM | 42.46 | 42.44 | 11.83 | 47.14 |
σx | σy | τxy | σSig_eq | |
---|---|---|---|---|
SPH-GFDM | 37.41 | 40.28 | 16.23 | 48.28 |
FEM | 37.07 | 42.74 | 18.17 | 51.06 |
SPH-GFDM | FEM | |
---|---|---|
3.26 × 10−9 | 3.32 × 10−9 | |
6.33 × 10−10 | 6.34 × 10−10 |
σx | σy | τxy | σSig_eq | |
---|---|---|---|---|
SPH-GFDM | −62.57 | −4.21 | 2.57 | 60.25 |
FEM | −63.29 | −4.32 | 2.76 | 61.43 |
σx | σy | τxy | σSig_eq | |
---|---|---|---|---|
SPH-GFDM | −21.68 | −9.80 | 0.00 | 18.41 |
FEM | −22.81 | −10.00 | 0.00 | 19.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, Z.; Peng, Z.; Yue, Y.; Chen, Z. A SPH-GFDM Coupled Method for Elasticity Analysis. Symmetry 2021, 13, 1774. https://doi.org/10.3390/sym13101774
Tong Z, Peng Z, Yue Y, Chen Z. A SPH-GFDM Coupled Method for Elasticity Analysis. Symmetry. 2021; 13(10):1774. https://doi.org/10.3390/sym13101774
Chicago/Turabian StyleTong, Zheming, Zezhao Peng, Yuqing Yue, and Zhou Chen. 2021. "A SPH-GFDM Coupled Method for Elasticity Analysis" Symmetry 13, no. 10: 1774. https://doi.org/10.3390/sym13101774
APA StyleTong, Z., Peng, Z., Yue, Y., & Chen, Z. (2021). A SPH-GFDM Coupled Method for Elasticity Analysis. Symmetry, 13(10), 1774. https://doi.org/10.3390/sym13101774