Bayesian Analysis of Partially Linear Additive Spatial Autoregressive Models with Free-Knot Splines
<p>Trace plots of five parallel Markov chains with different starting values for some parameters and nonparametric functions (only a replication with <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>80</mn> <mo>,</mo> <mn>5</mn> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>ρ</mi> <mo>,</mo> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.25</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> is displayed).</p> "> Figure 2
<p>The “potential scale reduction factor” <math display="inline"><semantics> <msqrt> <mover accent="true"> <mi>R</mi> <mo stretchy="false">^</mo> </mover> </msqrt> </semantics></math> for simulation results (the case of <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>ρ</mi> <mo>,</mo> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.25</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>).</p> "> Figure 3
<p>The boxplots (<b>a</b>,<b>b</b>) display the integrated squared bias, the boxplots (<b>c</b>,<b>d</b>) display the root integrated mean squared errors. (The two panels on the left are based on the Rook weight matrix, and the two panels on the right are based on the Case weight matrix with <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>ρ</mi> <mo>,</mo> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.25</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>).</p> "> Figure 4
<p>The true functions (solid lines), the fitted functions (dotted lines) and their 95% CI (dot-dashed lines) for a typical sample (the <b>left</b> panel based on the Rook weight matrix and the <b>right</b> panel based on the Case weight matrix with <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>ρ</mi> <mo>,</mo> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.25</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>).</p> "> Figure 5
<p>The boxplots (<b>a</b>) display the mean absolute deviation errors with the Case weight matrix <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>20</mn> <mo>,</mo> <mn>5</mn> <mo>)</mo> </mrow> </semantics></math> and (<b>b</b>) display the mean absolute deviation errors with the Case weight matrix <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>80</mn> <mo>,</mo> <mn>5</mn> <mo>)</mo> </mrow> </semantics></math> (the three panels on the left are based on Bayesian free knots splines and the three panels on the right are based on Bayesian P-splines).</p> "> Figure 6
<p>Trace plots of five parallel Markov chains with different starting values for some parameters and nonparametric functions.</p> "> Figure 7
<p>The “potential scale reduction factor” <math display="inline"><semantics> <msqrt> <mover accent="true"> <mi>R</mi> <mo stretchy="false">^</mo> </mover> </msqrt> </semantics></math> for Sydney real estate data.</p> "> Figure 8
<p>The fitted functions (dotted lines) and their 95% CI (dot-dashed lines) in the model (<a href="#FD17-symmetry-13-01635" class="html-disp-formula">17</a>) for Sydney real estate data.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Model
2.2. Likelihood
3. Bayesian Estimation
3.1. Priors
3.2. The Full Conditional Posterior Distributions of Unknown Quantities
3.3. Sampling Scheme
Algorithm 1 The MCMC sampling algorithm. |
Input: Samples . Initialization: Initialize in the MCMC algorithm, where the unknown parameters are generated from the priors, respectively. MCMC iterations: Given the current state of successively, draw from , for The detailed MCMC sampling cycles are outlined in the following manner. (a) Generate from ; (b) Generate from ; (c) Generate from ; (d) Generate from for ; (e) Generate from , and adjust according to (14) for ; (f) Generate from for ; (g) Generate from . Output: The MCMC sampling from the conditional posteriors of . |
4. Empirical Illustrations
4.1. Simulation
4.2. Application
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cliff, A.D.; Ord, J.K. Spatial Autocorrelation; Pion Ltd.: London, UK, 1973. [Google Scholar]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Case, A.C. Spatial patterns in householed demand. Econometrica 1991, 59, 953–965. [Google Scholar] [CrossRef] [Green Version]
- Cressie, N. Statistics for Spatial Data; John Wiley and Sons: New York, NY, USA, 1993. [Google Scholar]
- LeSage, J.P. Bayesian estimation of spatial autoregressive models. Int. Reg. Sci. Rev. 1997, 20, 113–129. [Google Scholar] [CrossRef]
- LeSage, J.P. Bayesian estimation of limited dependent variable spatial autoregressive models. Geogr. Anal. 2000, 32, 19–35. [Google Scholar] [CrossRef]
- Anselin, L.; Bera, A.K. Spatial dependence in linear regression models with an introduction to spatial econometrics. In Handbook of Applied Economics Statistics; Marcel Dekker: New York, NY, USA, 1998. [Google Scholar]
- Ord, J. Estimation methods for models of spatial interaction. J. Am. Stat. Assoc. 1975, 70, 120–126. [Google Scholar] [CrossRef]
- Kelejian, H.H.; Prucha, I.R. A generalized moments estimator for the autoregressive parameter in a spatial model. Int. Econ. Rev. 1999, 40, 509–533. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.F. Asymptotic distribution of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica 2004, 72, 1899–1925. [Google Scholar] [CrossRef]
- Paelinck, J.H.P.; Klaassen, L.H.; Ancot, J.P.; Verster, A.C.P. Spatial Econometrics; Gower: Farnborough, UK, 1979. [Google Scholar]
- Basile, R.; Gress, B. Semi-parametric spatial auto-covariance models of regional growth behaviour in Europe. Rég. Dév. 2004, 21, 93–118. [Google Scholar] [CrossRef]
- Basile, R. Regional economic growth in Europe: A semiparametric spatial dependence approach. Pape. Reg. Sci. 2008, 87, 527–544. [Google Scholar] [CrossRef]
- Su, L.J.; Jin, S.N. Profile quasi-maximum likelihood estimation of partially linear spatial autoregressive models. J. Econom. 2010, 157, 18–33. [Google Scholar] [CrossRef]
- Baltagi, B.H.; Li, D. LM tests for functional form and spatial correlation. Int. Reg. Sci. Rev. 2001, 24, 194–225. [Google Scholar] [CrossRef]
- Pace, P.K.; Barry, R.; Slawson, V.C., Jr.; Sirmans, C.F. Simultaneous spatial and functional form transformation. In Advances in Spatial Econometrics; Anselin, L., Florax, R., Rey, S.J., Eds.; Springer: Berlin, Germany, 2004; pp. 197–224. [Google Scholar]
- van Gastel, R.A.J.J.; Paelinck, J.H.P. Computation of Box-cox transform parameters: A new method and its application to spatial econometrics. In New Directions in Spatial Econometrics; Anselin, L., Florax, R.J.G.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 136–155. [Google Scholar]
- Yang, Z.; Li, C.; Tse, Y.K. Functional form and spatial dependence in dynamic panels. Econ. Lett. 2006, 91, 138–145. [Google Scholar] [CrossRef]
- Bellman, R.E. Adaptive Control Processes; Princeton University Press: Princeton, NJ, USA, 1961. [Google Scholar]
- Friedman, J.H.; Stuetzle, W. Projection pursuit regression. J. Am. Stat. Assoc. 1981, 76, 817–823. [Google Scholar] [CrossRef]
- Engle, R.F.; Granger, C.W.; Rice, J.; Weiss, A. Semiparametric Estimates of the Relation Between Weather and Electricity Sales. J. Am. Stat. Assoc. 1986, 81, 310–320. [Google Scholar] [CrossRef]
- Hastie, T.J.; Tibshirani, R.J. Generalized Additive Models; Chapman and Hall: London, UK, 1990. [Google Scholar]
- Hastie, T.J.; Tibshirani, R.J. Varying-coefficient models. J. R. Stat. B 1993, 55, 757–796. [Google Scholar] [CrossRef]
- Su, L.J. Semiparametric GMM estimation of spatial autoregressive models. J. Econom. 2012, 167, 543–560. [Google Scholar] [CrossRef]
- Chen, J.Q.; Wang, R.F.; Huang, Y.X. Semiparametric spatial autoregressive model: A two-step Bayesian approach. Ann. Public Health Res. 2015, 2, 1012. [Google Scholar]
- Wei, H.J.; Sun, Y. Heteroskedasticity-robust semi-parametric GMM estimation of a spatial model with space-varying coefficients. Spat. Econ. Anal. 2016, 12, 113–128. [Google Scholar] [CrossRef]
- Krisztin, T. The determinants of regional freight transport: A spatial, semiparametric approach. Geogr. Anal. 2017, 49, 268–308. [Google Scholar] [CrossRef]
- Krisztin, T. Semi-parametric spatial autoregressive models in freight generation modeling. Transp. Res. Part E Logist. Transp. Rev. 2018, 114, 121–143. [Google Scholar] [CrossRef]
- Du, J.; Sun, X.Q.; Cao, R.Y.; Zhang, Z.Z. Statistical inference for partially linear additive spatial autoregressive models. Spat. Stat. 2018, 25, 52–67. [Google Scholar] [CrossRef]
- Chen, J.B.; Cheng, S.L. GMM estimation of a partially linear additive spatial error model. Mathematics 2021, 9, 622. [Google Scholar] [CrossRef]
- Liang, H.; Thurston, S.W.; Ruppert, D.; Apanasovich, T.; Hauser, R. Additive partial linear models with measurement errors. Biometrika 2008, 95, 667–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, G.H.; Liang, H. Model averaging for semiparametric additive partial linear models. Sci. China Math. 2010, 53, 1363–1376. [Google Scholar] [CrossRef]
- Wang, L.; Yang, L.J. Spline-backfitted kernel smoothing of nonlinear additive autoregression model. Ann. Stat. 2007, 35, 2474–2503. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Lian, H. Partially linear additive models with Unknown Link Functions. Scand. J. Stat. 2018, 45, 255–282. [Google Scholar] [CrossRef]
- Hu, Y.A.; Zhao, K.F.; Lian, H. Bayesian Quantile Regression for Partially Linear Additive Models. Stat. Comput. 2015, 25, 651–668. [Google Scholar] [CrossRef] [Green Version]
- Lian, H. Semiparametric estimation of additive quantile regression models by twofold penalty. J. Bus. Econ. Stat. 2012, 30, 337–350. [Google Scholar] [CrossRef]
- Sherwood, B.; Wang, L. Partially linear additive quantile regression in ultra-high dimension. Ann. Stat. 2016, 44, 288–317. [Google Scholar] [CrossRef]
- Yu, K.M.; Lu, Z.D. Local linear additive quantile regression. Scand. J. Stat. 2004, 31, 333–346. [Google Scholar] [CrossRef]
- Du, P.; Cheng, G.; Liang, H. Semiparametric regression models with additive nonparametric components and high dimensional parametric components. Comput. Stat. Data Anal. 2012, 56, 2006–2017. [Google Scholar] [CrossRef]
- Guo, J.; Tang, M.L.; Tian, M.Z.; Zhu, K. Variable selection in high-dimensional partially linear additive models for composite quantile regression. Comput. Stat. Data Anal. 2013, 65, 56–67. [Google Scholar] [CrossRef]
- Liu, X.; Wang, L.; Liang, H. Estimation and variable selection for semiparametric additive partial linear models. Stat. Sin. 2011, 21, 1225–1248. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liu, X.; Liang, H.; Carroll, R.J. Estimation and variable selection for generalized additive partial linear models. Ann. Stat. 2011, 39, 1827–1851. [Google Scholar] [CrossRef] [PubMed]
- Denison, D.G.T.; Mallick, B.K.; Smith, A.F.M. Automatic Bayesian curving fitting. J. R. Stat. B 1998, 60, 333–350. [Google Scholar] [CrossRef]
- Dimatteo, I.; Genovese, C.R.; Kass, R.E. Bayesian curve fitting with free-knot splines. Biometrika 2001, 88, 1055–1071. [Google Scholar] [CrossRef]
- Holmes, C.C.; Mallick, B.K. Bayesian regression with multivariate linear splines. J. R. Stat. B 2001, 63, 3–17. [Google Scholar] [CrossRef]
- Holmes, C.C.; Mallick, B.K. Generalized nonlinear modeling with multivariate free-knot regression splines. J. Am. Stat. Assoc. 2003, 98, 352–368. [Google Scholar] [CrossRef]
- Lindstrom, M.J. Bayesian estimation of free-knot splines using reversible jump. Comput. Stat. Data Anal. 2002, 41, 255–269. [Google Scholar] [CrossRef]
- Poon, W.-Y.; Wang, H.-B. Bayesian analysis of generalized partially linear single-index models. Comput. Stat. Data Anal. 2013, 68, 251–261. [Google Scholar] [CrossRef]
- Poon, W.Y.; Wang, H.B. Multivariate partially linear single-index models: Bayesian analysis. J. Nonparametr. Stat. 2014, 26, 755–768. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Wang, H.B. Latent single-index models for ordinal data. Stat. Comput. 2018, 28, 699–711. [Google Scholar] [CrossRef]
- Wang, H.B. A Bayesian multivariate partially linear single-index probit model for ordinal responses. J. Stat. Comput. Sim. 2018, 88, 1616–1636. [Google Scholar] [CrossRef]
- LeSage, P.J.; Pace, R.K. Introduction to Spatial Econometrics; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2009. [Google Scholar]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equations of state calculations by fast computing machine. J. Chem. Phys. 1953, 21, 1087–1091. [Google Scholar] [CrossRef] [Green Version]
- Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Tanner, M.A. Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions, 2nd ed.; Springer: New York, NY, USA, 1993. [Google Scholar]
- Panagiotelis, A.; Smith, M. Bayesian identification, selection and estimation of semiparametric functions in high-dimensional additive models. J. Econom. 2008, 143, 291–316. [Google Scholar] [CrossRef]
- Green, P. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 1995, 82, 711–732. [Google Scholar] [CrossRef]
- Chen, M.-H.; Schmeiser, B.W. General hit-and-run Monte Carlo sampling for evaluating multidimensional integrals. Oper. Res. Lett. 1996, 19, 161–169. [Google Scholar] [CrossRef]
- Su, L.J.; Yang, Z.L. Instrumental Variable Quantile Estimation of Spatial Autoregressive Models; Working Paper; Singapore Management University: Singapore, 2009. [Google Scholar]
- Gelman, A.; Rubin, D.B. Inference from iterative simulation using multiple sequences. Stat. Sci. 1992, 7, 457–511. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Chen, M.H.; Xing, G.D. Bayesian Estimation of Partially Linear Additive Spatial Autoregressive Models with P-Splines. Math. Probl. Eng. 2021, 2021, 1777469. [Google Scholar] [CrossRef]
- Harezlak, J.; Ruppert, D.; Wand, M. Semiparametric Regression with R; Springer: New York, NY, USA, 2018. [Google Scholar]
- Sun, Y.; Yan, H.J.; Zhang, W.Y.; Lu, Z. A Semiparametric spatial dynamic model. Ann. Stat. 2014, 42, 700–727. [Google Scholar] [CrossRef] [Green Version]
Parameter | n | Rook Weight Matrix | Case Weight Matrix | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SE | SD | CI | Mean | SE | SD | CI | |||
100 | (20, 5) | |||||||||
Total effect | ||||||||||
Total effect | ||||||||||
Total effect | ||||||||||
100 | (20, 5) | |||||||||
Total effect | ||||||||||
Total effect | ||||||||||
Total effect | ||||||||||
400 | ||||||||||
Total effect | ||||||||||
Total effect | ||||||||||
Total effect | ||||||||||
400 | ||||||||||
Total effect | ||||||||||
Total effect | ||||||||||
Total effect | ||||||||||
Functions | With GMME | With BE | |||
---|---|---|---|---|---|
Bias | SSE | Bias | SSE | ||
(60, 5) | 0.006 | 0.146 | |||
0.007 | 0.141 | ||||
(80, 5) | |||||
Parameter | Mean | SE | 95% CI |
---|---|---|---|
Total effect | |||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Chen, J. Bayesian Analysis of Partially Linear Additive Spatial Autoregressive Models with Free-Knot Splines. Symmetry 2021, 13, 1635. https://doi.org/10.3390/sym13091635
Chen Z, Chen J. Bayesian Analysis of Partially Linear Additive Spatial Autoregressive Models with Free-Knot Splines. Symmetry. 2021; 13(9):1635. https://doi.org/10.3390/sym13091635
Chicago/Turabian StyleChen, Zhiyong, and Jianbao Chen. 2021. "Bayesian Analysis of Partially Linear Additive Spatial Autoregressive Models with Free-Knot Splines" Symmetry 13, no. 9: 1635. https://doi.org/10.3390/sym13091635
APA StyleChen, Z., & Chen, J. (2021). Bayesian Analysis of Partially Linear Additive Spatial Autoregressive Models with Free-Knot Splines. Symmetry, 13(9), 1635. https://doi.org/10.3390/sym13091635