Application of Gamma Attenuation Technique and Artificial Intelligence to Detect Scale Thickness in Pipelines in Which Two-Phase Flows with Different Flow Regimes and Void Fractions Exist
<p>A schematic of the modeled flows for void fraction percentage of 25% and scale-thickness of 1.5 cm. The patterns: (<b>a</b>) annular, (<b>b</b>) homogenous, and (<b>c</b>) stratified.</p> "> Figure 2
<p>The architecture of a standard RBFNN with one input layer and hidden and output layer.</p> "> Figure 3
<p>The NaI detector system and recorded signals from the detectors.</p> "> Figure 4
<p>Three recorded signals in two detectors versus different void fractions and scale thicknesses for annular flow: (<b>a</b>) counts under photopeak of Ba-133 (<b>b</b>) counts under photopeak of Cs-137 (<b>c</b>) total counts from scattered photons detector.</p> "> Figure 4 Cont.
<p>Three recorded signals in two detectors versus different void fractions and scale thicknesses for annular flow: (<b>a</b>) counts under photopeak of Ba-133 (<b>b</b>) counts under photopeak of Cs-137 (<b>c</b>) total counts from scattered photons detector.</p> "> Figure 5
<p>Three recorded signals in two detectors versus different void fractions and scale thicknesses homogenous flow: (<b>a</b>) counts under photopeak of Ba-133 (<b>b</b>) counts under photopeak of Cs-137 (<b>c</b>) total counts from scattered photons detector.</p> "> Figure 5 Cont.
<p>Three recorded signals in two detectors versus different void fractions and scale thicknesses homogenous flow: (<b>a</b>) counts under photopeak of Ba-133 (<b>b</b>) counts under photopeak of Cs-137 (<b>c</b>) total counts from scattered photons detector.</p> "> Figure 6
<p>Three recorded signals in two detectors versus different void fractions and scale thicknesses for stratified flow: (<b>a</b>) counts under photopeak of Ba-133, (<b>b</b>) counts under photopeak of Cs-137, (<b>c</b>) total counts from scattered photon detector.</p> "> Figure 6 Cont.
<p>Three recorded signals in two detectors versus different void fractions and scale thicknesses for stratified flow: (<b>a</b>) counts under photopeak of Ba-133, (<b>b</b>) counts under photopeak of Cs-137, (<b>c</b>) total counts from scattered photon detector.</p> "> Figure 7
<p>A simplified flowchart showing how the RBFNN predicted the scale thickness in the pipe with the 3 extracted signals from NaI detectors.</p> "> Figure 8
<p>The Schematic of optimized RBFNN.</p> "> Figure 9
<p>Error value versus the number of hidden layer neurons.</p> "> Figure 10
<p>Performance graph (MSE versus number of epochs).</p> "> Figure 11
<p>The Comparison of the actual and predicted values for: (<b>a</b>) training set (<b>b</b>) testing data set.</p> "> Figure 12
<p>Predicted scale values versus actual data for: (<b>a</b>) training sets (<b>b</b>) testing sets.</p> ">
Abstract
:1. Introduction
2. Numerical Tools
2.1. Monte Carlo Simulation
2.2. RBFNN
3. Application and Results
3.1. Monte Carlo Simulation
3.2. RBFNN
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bahadori, A.; Zahedi, G.; Zendehboudi, S. Estimation of potential barium sulfate (barite) precipitation in oilfield brines using a simple predictive tool. Environ. Prog. Sustain. Energy 2013, 32, 860–865. [Google Scholar] [CrossRef]
- BinMerdhah, A.B. Inhibition of barium sulfate scale at high-barium formation water. J. Pet. Sci. Eng. 2012, 90, 124–130. [Google Scholar] [CrossRef]
- Zabihi, R.; Schaffie, M.; Nezamabadi-Pour, H.; Ranjbar, M. Artificial neural network for permeability damage prediction due to sulfate scaling. J. Pet. Sci. Eng. 2011, 78, 575–581. [Google Scholar] [CrossRef]
- Candeias, J.P.; De Oliveira, D.F.; Dos Anjos, M.J.; Lopes, R.T. Scale analysis using X-ray microfluorescence and computed radiography. Radiat. Phys. Chem. 2014, 95, 408–411. [Google Scholar] [CrossRef]
- Oliveira, D.F.; Santos, R.S.; Machado, A.S.; Silva, A.S.; Anjos, M.J.; Lopes, R.T. Characterization of scale deposition in oil pipelines through X-Ray Microfluorescence and X-Ray microtomography. Appl. Radiat. Isot. 2019, 151, 247–255. [Google Scholar] [CrossRef]
- Abdul-Majid, S. Determination of wax deposition and corrosion in pipelines by neutron back diffusion collimation and neutron capture gamma rays. Appl. Radiat. Isot. 2013, 74, 102–108. [Google Scholar] [CrossRef]
- Oliveira, D.F.; Nascimento, J.R.; Marinho, C.A.; Lopes, R.T. Gamma transmission system for detection of scale in oil exploration pipelines. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 784, 616–620. [Google Scholar] [CrossRef]
- Teixeira, T.P.; Salgado, C.M.; Dam, R.S.D.F.; Salgado, W.L. Inorganic scale thickness prediction in oil pipelines by gamma-ray attenuation and artificial neural network. Appl. Radiat. Isot. 2018, 141, 44–50. [Google Scholar] [CrossRef]
- Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [Google Scholar] [CrossRef]
- Salgado, W.L.; Dam, R.S.D.F.; Teixeira, T.P.; Conti, C.C.; Salgado, C.M. Application of artificial intelligence in scale thickness prediction on offshore petroleum using a gamma-ray densitometer. Radiat. Phys. Chem. 2020, 168, 108549. [Google Scholar] [CrossRef]
- Pelowitz, D.B. MCNP-X TM User’s Manual, Version 2.5.0; LA-CP-05e0369; Los Alamos National Laboratory: New Mexico, NM, USA, 2005. [Google Scholar]
- Vlasák, P.; Chára, Z.; Matoušek, V.; Konfršt, J.; Kesely, M. Experimental investigation of fine-grained settling slurry flow behaviour in inclined pipe sections. J. Hydrol. Hydromech. 2019, 67, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Roshani, M.; Phan, G.; Roshani, G.H.; Hanus, R.; Nazemi, B.; Corniani, E.; Nazemi, E. Combination of X-ray tube and GMDH neural network as a nondestructive and potential technique for measuring characteristics of gas-oil–water three phase flows. Measurement 2021, 168, 108427. [Google Scholar] [CrossRef]
- Mosorov, V.; Zych, M.; Hanus, R.; Sankowski, D.; Saoud, A. Improvement of flow velocity measurement algorithms based on correlation function and twin plane electrical capacitance tomography. Sensors 2020, 20, 306. [Google Scholar] [CrossRef] [Green Version]
- Salgado, C.M.; Brandão, L.E.B.; Conti, C.C.; Salgado, W.L. Density prediction for petroleum and derivatives by gamma-ray attenuation and artificial neural networks. Appl. Radiat. Isot. 2016, 116, 143–149. [Google Scholar] [CrossRef]
- Roshani, M.; Phan, G.T.; Ali, P.J.M.; Roshani, G.H.; Hanus, R.; Duong, T.; Corniani, E.; Nazemi, E.; Kalmoun, E.M. Evaluation of flow pattern recognition and void fraction measurement in two phase flow independent of oil pipeline’s scale layer thickness. Alex. Eng. J. 2021, 60, 1955–1966. [Google Scholar] [CrossRef]
- Sattari, M.A.; Roshani, G.H.; Hanus, R.; Nazemi, E. Applicability of time-domain feature extraction methods and artificial intelligence in two-phase flow meters based on gamma-ray absorption technique. Measurement 2021, 168, 108474. [Google Scholar] [CrossRef]
- Roshani, G.; Hanus, R.; Khazaei, A.; Zych, M.; Nazemi, E.; Mosorov, V. Density and velocity determination for single-phase flow based on radiotracer technique and neural networks. Flow Meas. Instrum. 2018, 61, 9–14. [Google Scholar] [CrossRef]
- Hanus, R.; Zych, M.; Mosorov, V.; Golijanek-Jędrzejczyk, A.; Jaszczur, M.; Andruszkiewicz, A. Evaluation of liquid-gas flow in pipeline using gamma-ray absorption technique and advanced signal processing. Metrol. Meas. Syst. 2021, 28, 145–159. [Google Scholar]
- Vlasák, P.; Matoušek, V.; Chára, Z.; Krupička, J.; Konfršt, J.; Kesely, M. Concentration distribution and deposition limit of medium-coarse sand-water slurry in inclined pipe. J. Hydrol. Hydromech. 2020, 68, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Mosorov, V.; Zych, M.; Hanus, R.; Petryka, L. Modelling of dynamic experiments in MCNP5 environment. Appl. Radiat. Isot. 2016, 112, 136–140. [Google Scholar] [CrossRef]
- El Abd, A. Intercomparison of gamma ray scattering and transmission techniques for gas volume fraction measurements in two phase pipe flow. Nucl. Instrum. Methods Phys. Res. A 2014, 735, 260–266. [Google Scholar] [CrossRef]
- Mosorov, V.; Rybak, G.; Sankowski, D. Plug regime flow velocity measurement problem based on correlability notion and twin plane electrical capacitance tomography: Use case. Sensors 2021, 21, 2189. [Google Scholar] [CrossRef]
- Abro, E.; Johansen, G.A. Improved void fraction determination by means of multibeam gamma-ray attenuation measurements. Flow Meas. Instrum. 1999, 10, 99–108. [Google Scholar] [CrossRef]
- Roshani, M.; Phan, G.; Faraj, R.H.; Phan, N.-H.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E. Proposing a gamma ra-diation based intelligent system for simultaneous analyzing and detecting type and amount of petroleum by-products. Nucl. Eng. Technol. 2021. [Google Scholar] [CrossRef]
- Sætre, C.; Tjugum, S.A.; Johansen, G.A. Tomographic segmentation in multiphase flow measurement. Radiat. Phys. Chem. 2014, 95, 420–423. [Google Scholar] [CrossRef]
- Salgado, W.L.; Dam, R.S.F.; Salgado, C.M. Optimization of a flow regime identification system and prediction of volume fractions in three-phase systems using gamma-rays and artificial neural network. Appl. Radiat. Isot. 2021, 169, 109552. [Google Scholar] [CrossRef]
- Hanus, R.; Zych, M.; Kusy, M.; Jaszczur, M.; Petryka, L. Identification of liquid-gas flow regime in a pipeline using gamma-ray absorption technique and computational intelligence methods. Flow Meas. Instrum. 2018, 60, 17–23. [Google Scholar] [CrossRef]
- Cong, T.; Chen, R.; Su, G.; Qiu, S.; Tian, W. Analysis of CHF in saturated forced convective boiling on a heated surface with impinging jets using artificial neural network and genetic algorithm. Nucl. Eng. Des. 2011, 9, 241. [Google Scholar] [CrossRef]
- Salgado, C.M.; Pereira, C.M.N.A.; Schirru, R.; Brandao, L.E.B. Flow regime identification and volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks. Prog. Nucl. Energy 2010, 52, 555–562. [Google Scholar] [CrossRef]
- Barbosa, C.M.; Kenup-Hernandes, H.O.; Raitz, C.; Dam, R.S.D.F.; Salgado, W.L.; Braz, D.; Salgado, C.M. Development of a non-invasive method for monitoring variations in salt concentrations of seawater using nuclear technique and Monte Carlo simulation. Appl. Radiat. Isot. 2021, 174, 109784. [Google Scholar] [CrossRef] [PubMed]
- Golijanek-Jędrzejczyk, A.; Mrowiec, A.; Hanus, R.; Zych, M.; Świsulski, D. Uncertainty of mass flow measurement using centric and eccentric orifice for Reynolds number in the range 10,000 ≤ Re ≤ 20,000. Measurement 2020, 160, 107851. [Google Scholar] [CrossRef]
- Karami, A.; Roshani, G.H.; Khazaei, A.; Nazemi, E.; Fallahi, M. Investigation of different sources in order to optimize the nuclear metering system of gas–oil–water annular flows. Neural Comput. Appl. 2020, 32, 3619–3631. [Google Scholar] [CrossRef]
- Roshani, M.; Sattari, M.A.; Ali, P.J.M.; Roshani, M.; Sattari, M.A.; Ali, P.J.M.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E. Application of GMDH neural network technique to improve measuring precision of a simplified photon attenuation based two-phase flowmeter. Flow Meas. Instrum. 2020, 75, 101804. [Google Scholar] [CrossRef]
- Rodriguez-Eguia, I.; Errasti, I.; Fernandez-Gamiz, U.; Blanco, J.M.; Zulueta, E.; Saenz-Aguirre, A. A parametric study of trailing edge flap implementation on three different airfoils through an artificial neuronal network. Symmetry 2020, 12, 828. [Google Scholar] [CrossRef]
- Moradi, M.J.; Roshani, M.M.; Shabani, A.; Kioumarsi, M. Prediction of the load-bearing behavior of spsw with rectangular opening by RBF net-work. Appl. Sci. 2020, 10, 1185. [Google Scholar] [CrossRef] [Green Version]
- Karami, A.; Veysi, F. A novel metaheuristic combinatorial algorithm to optimize the natural convection across a vertical enclosure divided by perforated flat horizontal louvers inside. Eur. Phys. J. Plus 2021, 136, 700. [Google Scholar] [CrossRef]
- Jamshidi, M.; Lalbakhsh, A.; Talla, J.; Peroutka, Z.; Hadjilooei, F.; Lalbakhsh, P.; Jamshidi, M.; La Spada, L.; Mirmozafari, M.; Dehghani, M. Artificial intelligence and COVID-19: Deep learning approaches for diagnosis and treatment. IEEE Access 2020, 8, 109581–109595. [Google Scholar] [CrossRef]
- Xue, H.; Yu, P.; Zhang, M.; Zhang, H.; Wang, E.; Wu, G.; Li, Y.; Zheng, X. A wet gas metering system based on the extended-throat venturi tube. Sensors 2021, 21, 2120. [Google Scholar] [CrossRef]
- Roshani, S.; Roshani, S. Design of a high efficiency class-F power amplifier with large signal and small signal measurements. Measurement 2020, 149, 106991. [Google Scholar] [CrossRef]
- Aghakhani, M.; Ghaderi, M.R.; Karami, A.; Derakhshan, A.A. Combined effect of TiO2 nanoparticles and input welding parameters on the weld bead penetration in submerged arc welding process using fuzzy logic. Int. J. Adv. Manuf. Technol. 2014, 70, 63–72. [Google Scholar] [CrossRef]
- Jamshidi, M.B.; Roshani, S.; Talla, J.; Roshani, S.; Peroutka, Z. Size reduction and performance improvement of a microstrip Wilkinson power divider using a hybrid design technique. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Di Nunno, F.; Alves Pereira, F.; de Marinis, G.; Di Felice, F.; Gargano, R.; Miozzi, M.; Granata, F. Deformation of air bubbles near a plunging jet using a machine learning approach. Appl. Sci. 2020, 10, 3879. [Google Scholar] [CrossRef]
- Pirasteh, A.; Roshani, S.; Roshani, S. A modified class-F power amplifier with miniaturized harmonic control circuit. AEU Int. J. Electron. Commun. 2018, 97, 202–209. [Google Scholar] [CrossRef]
- Lotfi, S.; Roshani, S.; Roshani, S. Design of a miniaturized planar microstrip Wilkinson power divider with harmonic cancellation. Turk. J. Electr. Eng. Comput. Sci. 2020, 28, 3126–3136. [Google Scholar] [CrossRef]
- Jahanshahi, A.; Sabzi, H.Z.; Lau, C.; Wong, D. GPU-NEST: Characterizing energy efficiency of multi-GPU inference servers. IEEE Comput. Archit. Lett. 2020, 19, 139–142. [Google Scholar] [CrossRef]
- Khaleghi, M.; Salimi, J.; Farhangi, V.; Moradi, M.J.; Karakouzian, M. Application of artificial neural network to predict load bearing capacity and stiffness of perforated masonry walls. CivilEng 2021, 2, 4. [Google Scholar] [CrossRef]
- Pirasteh, A.; Roshani, S.; Roshani, S. Compact microstrip lowpass filter with ultrasharp response using a square-loaded modified T-shaped resonator. Turk. J. Electr. Eng. Comput. Sci. 2018, 26, 1736–1746. [Google Scholar] [CrossRef]
- Arief, H.A.; Wiktorski, T.; Thomas, P.J. A survey on distributed fibre optic sensor data modelling techniques and machine learning algorithms for multiphase fluid flow estimation. Sensors 2021, 21, 2801. [Google Scholar] [CrossRef]
- Jahanshahi, A.; Taram, M.K.; Eskandari, N. Blokus duo game on FPGA. In Proceedings of the 17th CSI International Symposium on Computer Architecture & Digital Systems (CADS 2013), October 2013; pp. 149–152. [Google Scholar]
- Rushd, S.; Hafsa, N.; Al-Faiad, M.; Arifuzzaman, M. Modeling the settling velocity of a sphere in Newtonian and non-Newtonian fluids with machine-learning algorithms. Symmetry 2021, 13, 71. [Google Scholar] [CrossRef]
- Moradi, M.J.; Hariri-Ardebili, M.A. Developing a library of shear walls database and the neural network based predictive meta-model. Appl. Sci. 2019, 9, 2562. [Google Scholar] [CrossRef] [Green Version]
- Roshani, S.; Jamshidi, M.B.; Mohebi, F.; Roshani, S. Design and modeling of a compact power divider with squared resonators using artificial intelligence. Wirel. Pers. Commun. 2020. [Google Scholar] [CrossRef]
- Jahanshahi, A. TinyCNN: A tiny modular CNN accelerator for embedded FPGA. arXiv 2019, arXiv:1911.0677. [Google Scholar]
- Roshani, S.; Roshani, S. Two-section impedance transformer design and modeling for power amplifier applications. Appl. Comput. Electromagn. Soc. J. 2017, 32, 1042–1047. [Google Scholar]
- Nabavi, M.; Elveny, M.; Danshina, S.D.; Behroyan, I.; Babanezhad, M. Velocity prediction of Cu/water nanofluid convective flow in a circular tube: Learning CFD data by differential evolution algorithm based fuzzy inference system (DEFIS). Int. Commun. Heat Mass Transf. 2021, 126, 105373. [Google Scholar] [CrossRef]
- Pourjabar, S.; Choi, G.S. A high-throughput multi-mode LDPC decoder for 5G NR. arXiv 2021, arXiv:2102.13228. [Google Scholar]
- Karami, A.; Yousefi, T.; Harsini, I.; Maleki, E.; Mahmoudinezhad, S. Neuro-fuzzy modeling of the free convection heat transfer from a wavy surface. Heat Transf. Eng. 2015, 36, 847–855. [Google Scholar] [CrossRef]
- Darbandi, M.; Ramtin, A.R.; Sharafi, O.K. Tasks mapping in the network on a chip using an improved optimization algorithm. Int. J. Pervasive Comput. Commun. 2020, 16, 165–182. [Google Scholar] [CrossRef]
- Roshani, G.H.; Roshani, S.; Nazemi, E.; Roshani, S. Online measuring density of oil products in annular regime of gas-liquid two phase flows. Measurement 2018, 129, 296–301. [Google Scholar] [CrossRef]
- Arabi, M.; Dehshiri, A.M.; Shokrgozar, M. Modeling transportation supply and demand forecasting using artificial intelligence parameters (Bayesian model). J. Appl. Eng. Sci. 2018, 16, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Roshani, S.; Roshani, S. Design of a very compact and sharp bandpass diplexer with bended lines for GSM and LTE applications. AEU Int. J. Electron. Commun. 2019, 99, 354–360. [Google Scholar] [CrossRef]
- Juliani, C.; Ellefmo, S.L. Prospectivity mapping of mineral deposits in Northern Norway using radial basis function neural networks. Minerals 2019, 9, 131. [Google Scholar] [CrossRef] [Green Version]
- Broomhead, D.S.; Lowe, D. Multivariable functional interpolation and adaptive networks. Complex Syst. 1988, 2, 321–355. [Google Scholar]
- Moody, J.E.; Darken, C.J. Fast learning in networks of locally-tuned processing units. Neural Comput. 1989, 1, 281–294. [Google Scholar] [CrossRef]
- Schwenker, F.; Kestler, H.A.; Palm, G. Three learning phases for radial-basis-function networks. Neural Netw. 2001, 14, 439–458. [Google Scholar] [CrossRef]
- MATLAB 8.0 and Statistics Toolbox 8.1; The MathWorks, Inc.: Natick, MA, USA, 2012.
ANN Type | RBFNN |
---|---|
Mean squared error (MSE) goal | 0 |
Spread of radial basis functions | 2 |
Maximum number of neurons | 15 |
Number of neurons to add between displays | 1 |
Error | Training Data | Testing Data |
---|---|---|
MAE | 0.18 | 0.16 |
MRE% | 0.29 | 0.16 |
RMSE | 0.22 | 0.19 |
0.969 | 0.974 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamoudi, M.; Sattari, M.A.; Balubaid, M.; Eftekhari-Zadeh, E.; Nazemi, E.; Taylan, O.; Kalmoun, E.M. Application of Gamma Attenuation Technique and Artificial Intelligence to Detect Scale Thickness in Pipelines in Which Two-Phase Flows with Different Flow Regimes and Void Fractions Exist. Symmetry 2021, 13, 1198. https://doi.org/10.3390/sym13071198
Alamoudi M, Sattari MA, Balubaid M, Eftekhari-Zadeh E, Nazemi E, Taylan O, Kalmoun EM. Application of Gamma Attenuation Technique and Artificial Intelligence to Detect Scale Thickness in Pipelines in Which Two-Phase Flows with Different Flow Regimes and Void Fractions Exist. Symmetry. 2021; 13(7):1198. https://doi.org/10.3390/sym13071198
Chicago/Turabian StyleAlamoudi, Mohammed, Mohammad Amir Sattari, Mohammed Balubaid, Ehsan Eftekhari-Zadeh, Ehsan Nazemi, Osman Taylan, and El Mostafa Kalmoun. 2021. "Application of Gamma Attenuation Technique and Artificial Intelligence to Detect Scale Thickness in Pipelines in Which Two-Phase Flows with Different Flow Regimes and Void Fractions Exist" Symmetry 13, no. 7: 1198. https://doi.org/10.3390/sym13071198