The Transmuted Muth Generated Class of Distributions with Applications
<p>Curves of the pdf of the TMLL distribution by varying (<b>a</b>) <math display="inline"><semantics> <mi>λ</mi> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mi>α</mi> </semantics></math> and (<b>c</b>) <math display="inline"><semantics> <mi>θ</mi> </semantics></math>.</p> "> Figure 2
<p>Curves of the hrf of the TMLL distribution for some values of <math display="inline"><semantics> <mi>λ</mi> </semantics></math>, <math display="inline"><semantics> <mi>α</mi> </semantics></math> and <math display="inline"><semantics> <mi>θ</mi> </semantics></math>.</p> "> Figure 3
<p>Curves of the estimated cdfs of the considered models over the empirical cdf for data set I.</p> "> Figure 4
<p>Curves of the estimated cdfs of the considered models over the empirical cdf for data set II.</p> "> Figure 5
<p>Curves of the estimated pdfs of the considered models over the histogram for data set I.</p> "> Figure 6
<p>Curves of the estimated pdfs of the considered models over the histogram for data set II.</p> ">
Abstract
:1. Introduction
2. The TM-G Class
2.1. New Facts about the Former M-G Class
- can be defined as a continuous function; only an extension of continuity at the greater point such that is required when , depending on the support of ,
- Standard arguments give and , the infinite limits being possibly adjusted according to the support of ,
- In view of the definition of the pdf given as (3), it is clear that for ; the sign of does not affect its positivity, implying that is an increasing function with respect to x.
2.2. Distribution Functions
2.3. Reliability Functions
2.4. Quantile Function
3. Diverse Results
3.1. Critical Points
3.2. Series Expansions
3.3. Maximum Likelihood Approach: Theory and Practice
4. Practice of a Special TM-G Model
4.1. Transmuted Muth Log-Logistic Distribution
4.2. Parametric Estimation
4.3. Applications
5. Concluding Remarks and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Muth, J.E. Reliability models with positive memory derived from the mean residual life function. In The Theory and Applications of Reliability; Tsokos, C.P., Shimi, I., Eds.; Academic Press: New York, NY, USA, 1977; Volume 2, pp. 401–435. [Google Scholar]
- Jodrá, P.; Jiménez-Gamero, M.D.; Alba-Fernández, M.V. On the Muth distribution. Math. Model. Anal. 2015, 20, 291–310. [Google Scholar] [CrossRef]
- Leemis, L.M.; McQueston, J.T. Univariate distribution relationships. Am. Stat. 2008, 62, 45–53. [Google Scholar] [CrossRef]
- Jodrá, P.; Gómez, H.W.; Jiménez-Gamero, M.D.; Alba-Fernández, M.V. The power Muth distribution. Math. Model. Anal. 2017, 22, 186–201. [Google Scholar] [CrossRef]
- Almarashi, A.M.; Elgarhy, M. A new Muth generated family of distributions with applications. J. Nonlinear Sci. Appl. 2018, 11, 1171–1184. [Google Scholar] [CrossRef] [Green Version]
- Alzaatreh, A.; Lee, C.; Famoye, F. A new method for generating families of continuous distributions. Metron 2013, 71, 63–79. [Google Scholar] [CrossRef] [Green Version]
- Abouelmagd, T.H.M.; Al-mualim, S.; Elgarhy, M.; Afify, A.Z.; Ahmad, M. Properties of the four-parameter Weibull distribution and its applications. Pak. J. Stat. 2017, 33, 449–466. [Google Scholar]
- Lee, C.; Famoye, F.; Olumolade, O. Beta-Weibull distribution: Some properties and applications to censored data. J. Mod. Appl. Stat. Meth. 2007, 6, 173–186. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; Hashimoto, E.M.; Ortega, E.M.M. The McDonald Weibull model. Statistics 2014, 48, 256–278. [Google Scholar] [CrossRef]
- Mudholkar, G.S.; Srivastava, D.K. Exponentiated Weibull family for analysing bathtub failure rate data. IEEE Trans. Reliab. 1993, 42, 299–302. [Google Scholar] [CrossRef]
- Al-babtain, A.; Elbatal, I.; Yousof, H.M. A new flexible three-parameter model: Properties, Clayton copula, and modeling real data. Symmetry 2020, 12, 440. [Google Scholar] [CrossRef] [Green Version]
- Almarashi, A.M.; Elgarhy, M.; Jamal, F.; Chesneau, C. The exponentiated truncated inverse Weibull generated family of distributions with applications. Symmetry 2020, 12, 650. [Google Scholar] [CrossRef] [Green Version]
- Bantan, R.A.R.; Jamal, F.; Chesneau, C.; Elgarhy, M. Type II Power Topp-Leone generated family of distributions with statistical inference and applications. Symmetry 2020, 12, 75. [Google Scholar] [CrossRef] [Green Version]
- ZeinEldin, R.A.; Jamal, F.; Chesneau, C.; Elgarhy, M. Type II Topp-Leone inverted Kumaraswamy distribution with statistical inference and applications. Symmetry 2019, 11, 1459. [Google Scholar] [CrossRef] [Green Version]
- Shaw, W.T.; Buckley, I.R. The alchemy of probability distributions: Beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map. arXiv 2009, arXiv:0901.0434. [Google Scholar]
- Gupta, R.D.; Kundu, D. Exponentiated exponential family: An alternative to Gamma and Weibull distributions. Biom. J. 2001, 43, 117–130. [Google Scholar] [CrossRef]
- Sangsanit, Y.; Bodhisuwan, W. The Topp-Leone generator of distributions: Properties and inferences. Songklanakarin J. Sci. Technol. 2016, 38, 537–548. [Google Scholar]
- Alizadeh, M.; Rasekhi, M.; Yousof, H.M.; Hamedani, G.G. The transmuted Weibull-G family of distributions. Hacet. J. Math. Stat. 2018, 47, 1671–1689. [Google Scholar] [CrossRef]
- Badr, M.A.; Elbatal, I.; Jamal, F.; Chesneau, C.; Elgarhy, M. The transmuted odd Fréchet-G family of distributions: Theory and applications. Mathematics 2020, 8, 958. [Google Scholar] [CrossRef]
- Nofal, Z.M.; Afify, A.Z.; Yousof, H.M.; Cordeiro, G.M. The generalized transmuted-G family of distributions. Commun. Stat. Theory Methods 2017, 46, 4119–4136. [Google Scholar] [CrossRef]
- Reyad, H.; Jamal, F.; Othman, S.; Hamedani, G.G. The transmuted Gompertz-G family of distributions: Properties and applications. Tbil. Math. J. 2018, 11, 47–67. [Google Scholar] [CrossRef]
- Reyad, H.; Othman, S.; Ul Haq, M.A. The transmuted generalized odd generalized exponential-G family of distributions: Theory and applications. J. Data Sci. 2019, 17, 279–300. [Google Scholar]
- Yousof, H.M.; Afify, A.Z.; Alizadeh, M.; Butt, N.S.; Hamedani, G.G.; Ali, M.M. The transmuted exponentiated generalized-G family of distributions. Pak. J. Stat. Oper. Res. 2015, 11, 441–464. [Google Scholar] [CrossRef]
- Haq, M.A.; Elgarhy, M. The odd Fréchet-G family of probability distributions. J. Stat. Appl. Probab. 2018, 7, 189–203. [Google Scholar] [CrossRef]
- Aarset, M.V. How to identify bathtub hazard rate. IEEE Trans. Reliab. 1987, 36, 106–108. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; Silva, R.B.; Nascimento, A.D.C. Recent Advances in Lifetime and Reliability Models; Bentham Sciences Publishers: Sharjah, UAE, 2020. [Google Scholar]
- Casella, G.; Berger, R.L. Statistical Inference; Brooks/Cole Publishing Company: Bel Air, CA, USA, 1990. [Google Scholar]
- Marinho, P.R.D.; Silva, R.B.; Bourguignon, M.; Cordeiro, G.M.; Nadarajah, S. AdequacyModel: An R package for probability distributions and general purpose optimization. PLoS ONE 2019, 14, e0221487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, S. Log-logistic regression models for survival data. Appl. Stat. 1983, 32, 165–171. [Google Scholar] [CrossRef]
- Shoukri, M.M.; Mian, I.U.M.; Tracy, D.S. Sampling properties of estimators of the log-logistic distribution with application to Canadian precipitation data. Can. J. Stat. 1988, 16, 223–236. [Google Scholar] [CrossRef]
- Ashkar, F.; Mahdi, S. Fitting the log-logistic distribution by generalized moments. J. Hydrol. 2006, 328, 694–703. [Google Scholar] [CrossRef]
- Hinkley, D. On quick choice of power transformations. J. R. Stat. Soc. Ser. Appl. Stat. 1977, 26, 67–69. [Google Scholar] [CrossRef]
- Bjerkedal, T. Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli. Am. J. Hyg. 1960, 72, 130–148. [Google Scholar]
- Lemonte, A.J. The beta log-logistic distribution. Braz. J. Probab. Stat. 2014, 28, 313–332. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
n | par | MLE | MSE | Level 90% | Level 95% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AL | CP | AL | CP | ||||||||
20 | 0.4360 | 0.2005 | −0.5415 | 1.4134 | 1.9548 | 0.5921 | −0.7286 | 1.6006 | 2.3292 | 0.6208 | |
−0.4365 | 0.2050 | −2.3971 | 1.9241 | 4.3212 | 0.6242 | −2.8108 | 2.3378 | 5.1486 | 0.6310 | ||
0.9415 | 0.1400 | 0.0365 | 1.8465 | 1.8100 | 0.7012 | −0.1368 | 2.0198 | 2.1567 | 0.7112 | ||
50 | 0.3404 | 0.1773 | 0.1178 | 0.9630 | 0.8453 | 0.6451 | 0.0369 | 1.0440 | 1.0071 | 0.6523 | |
−0.3804 | 0.1419 | −0.7885 | 0.0276 | 0.8160 | 0.6551 | −0.8666 | 0.1057 | 0.9723 | 0.6702 | ||
0.9694 | 0.1182 | 0.6082 | 1.2707 | 0.6625 | 0.7332 | 0.5448 | 1.3341 | 0.7894 | 0.7382 | ||
100 | 0.1628 | 0.1420 | −0.2318 | 0.3573 | 0.5891 | 0.6822 | −0.2882 | 0.4137 | 0.7019 | 0.7015 | |
−0.1720 | 0.1136 | −0.3389 | 0.1949 | 0.5338 | 0.6998 | −0.3900 | 0.2460 | 0.6360 | 0.7124 | ||
1.0131 | 0.0411 | 0.9900 | 1.4363 | 0.4463 | 0.7401 | 0.9473 | 1.4790 | 0.5317 | 0.7726 | ||
200 | 0.1629 | 0.1134 | −0.0558 | 0.3816 | 0.4374 | 0.8013 | −0.0977 | 0.4235 | 0.5211 | 0.8459 | |
−0.2285 | 0.0739 | −0.4217 | 0.0048 | 0.4264 | 0.8533 | −0.4625 | 0.0456 | 0.5081 | 0.8624 | ||
1.1433 | 0.0420 | 0.9701 | 1.3166 | 0.3466 | 0.8212 | 0.9369 | 1.3498 | 0.4129 | 0.8907 | ||
300 | 0.1884 | 0.0477 | 0.1272 | 0.4696 | 0.3424 | 0.8665 | 0.0944 | 0.5024 | 0.4079 | 0.9004 | |
−0.2073 | 0.0552 | −0.4626 | −0.0519 | 0.4106 | 0.8727 | −0.5019 | −0.0126 | 0.4893 | 0.9148 | ||
1.1714 | 0.0334 | 0.9778 | 1.2851 | 0.3073 | 0.8704 | 0.9483 | 1.3145 | 0.3662 | 0.9065 | ||
1000 | 0.1910 | 0.0429 | 0.1649 | 0.4171 | 0.2522 | 0.8934 | 0.1408 | 0.4413 | 0.3005 | 0.9395 | |
−0.2035 | 0.0402 | −0.4435 | −0.1234 | 0.3201 | 0.8901 | −0.4742 | −0.0928 | 0.3814 | 0.9413 | ||
1.1875 | 0.0277 | 1.0032 | 1.2319 | 0.2287 | 0.8941 | 0.9813 | 1.2538 | 0.2725 | 0.9420 |
n | par | MLE | MSE | Level 90% | Level 95% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AL | CP | AL | CP | ||||||||
20 | 0.1146 | 0.4112 | −0.7105 | 0.8197 | 1.5301 | 0.7008 | −0.8570 | 0.9662 | 1.8231 | 0.7154 | |
−0.1034 | 0.2164 | −0.6624 | 0.4556 | 1.1180 | 0.6542 | −0.7694 | 0.5626 | 1.3321 | 0.6712 | ||
1.2189 | 0.2340 | 0.7031 | 1.7347 | 1.0316 | 0.6831 | 0.6044 | 1.8335 | 1.2291 | 0.7020 | ||
50 | 0.0122 | 0.2647 | −0.0305 | 0.7554 | 0.7859 | 0.7198 | −0.1057 | 0.8306 | 0.9364 | 0.7352 | |
−0.2200 | 0.1948 | −0.5348 | 0.0948 | 0.6296 | 0.6928 | −0.5951 | 0.1551 | 0.7502 | 0.7221 | ||
1.1291 | 0.1969 | 0.8248 | 1.4334 | 0.6086 | 0.7353 | 0.7665 | 1.4917 | 0.7252 | 0.7519 | ||
100 | 0.0148 | 0.0604 | −0.2415 | 0.2712 | 0.5127 | 0.7402 | −0.2906 | 0.3203 | 0.6109 | 0.7649 | |
0.1411 | 0.0440 | −0.1570 | 0.4192 | 0.5763 | 0.7550 | −0.2122 | 0.4744 | 0.6866 | 0.7711 | ||
1.1448 | 0.0132 | 0.9439 | 1.3456 | 0.4017 | 0.7841 | 0.9055 | 1.3841 | 0.4786 | 0.8005 | ||
200 | 0.0328 | 0.0483 | −0.0172 | 0.2887 | 0.3059 | 0.8436 | −0.0465 | 0.3180 | 0.3645 | 0.8627 | |
0.0763 | 0.0688 | −0.1359 | 0.2884 | 0.4243 | 0.8532 | −0.1765 | 0.3290 | 0.5055 | 0.8658 | ||
1.1589 | 0.0256 | 0.9808 | 1.2570 | 0.2762 | 0.8401 | 0.9544 | 1.2834 | 0.3290 | 0.8749 | ||
300 | 0.0695 | 0.0024 | −0.0549 | 0.1939 | 0.2489 | 0.8673 | −0.0788 | 0.2178 | 0.2965 | 0.9064 | |
0.0871 | 0.0088 | −0.1021 | 0.2764 | 0.3784 | 0.8792 | −0.1383 | 0.3126 | 0.4509 | 0.9064 | ||
1.1682 | 0.0026 | 1.0794 | 1.3171 | 0.2377 | 0.8798 | 1.0566 | 1.3398 | 0.2832 | 0.9121 | ||
1000 | 0.0805 | 0.0010 | 0.0078 | 0.2132 | 0.2054 | 0.8902 | −0.0119 | 0.2328 | 0.2447 | 0.9442 | |
0.0915 | 0.0011 | −0.1288 | 0.1719 | 0.3008 | 0.8890 | −0.1576 | 0.2007 | 0.3583 | 0.9381 | ||
1.1920 | 0.0014 | 1.0681 | 1.2558 | 0.1878 | 0.8956 | 1.0501 | 1.2738 | 0.2237 | 0.9425 |
n | par | MLE | MSE | Level 90% | Level 95% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AL | CP | AL | CP | ||||||||
20 | 0.2021 | 1.3511 | −1.7312 | 2.1354 | 3.8666 | 0.6104 | −2.1014 | 2.5056 | 4.6070 | 0.6451 | |
0.0356 | 0.9516 | −3.4211 | 3.4924 | 6.9135 | 0.5923 | −4.0831 | 4.1543 | 8.2374 | 0.6048 | ||
1.2562 | 1.3025 | 0.6648 | 1.8475 | 1.1827 | 0.6826 | 0.5516 | 1.9607 | 1.4092 | 0.7025 | ||
50 | 0.4018 | 0.6149 | −0.1362 | 0.9997 | 1.1359 | 0.6531 | −0.2449 | 1.1085 | 1.3534 | 0.6821 | |
−0.2286 | 0.8551 | −1.2861 | 0.4288 | 1.7149 | 0.6223 | −1.4503 | 0.5930 | 2.0433 | 0.6473 | ||
1.0176 | 0.0212 | 0.4496 | 1.4256 | 0.9760 | 0.7055 | 0.3561 | 1.5190 | 1.1629 | 0.7224 | ||
100 | 0.4209 | 0.5360 | 0.1773 | 0.6645 | 0.4872 | 0.7270 | 0.1307 | 0.7111 | 0.5804 | 0.7305 | |
−0.3615 | 0.6607 | −0.5020 | −0.2209 | 0.2812 | 0.6969 | −0.5290 | −0.1939 | 0.3350 | 0.7095 | ||
1.0351 | 0.6346 | 0.8569 | 1.2134 | 0.3564 | 0.7532 | 0.8228 | 1.2475 | 0.4247 | 0.7610 | ||
200 | 0.5365 | 0.4155 | 0.3647 | 0.7082 | 0.3436 | 0.8316 | 0.3318 | 0.7411 | 0.4094 | 0.8454 | |
−0.3646 | 0.4301 | −0.4944 | −0.2347 | 0.2597 | 0.8253 | −0.5193 | −0.2099 | 0.3094 | 0.8611 | ||
0.9970 | 0.4514 | 0.8556 | 1.1383 | 0.2828 | 0.8570 | 0.8285 | 1.1654 | 0.3369 | 0.8911 | ||
300 | 0.6506 | 0.3953 | 0.5141 | 0.7871 | 0.2730 | 0.8753 | 0.4880 | 0.8133 | 0.3253 | 0.9141 | |
−0.5095 | 0.4003 | −0.5916 | −0.4274 | 0.1642 | 0.8892 | −0.6073 | −0.4116 | 0.1957 | 0.9274 | ||
0.9148 | 0.3868 | 0.8086 | 1.0209 | 0.2123 | 0.8685 | 0.7883 | 1.0412 | 0.2530 | 0.9207 | ||
1000 | 0.6105 | 0.3308 | 0.4987 | 0.7224 | 0.2237 | 0.8944 | 0.4773 | 0.7438 | 0.2665 | 0.9453 | |
−0.5053 | 0.2671 | −0.5570 | −0.4537 | 0.1033 | 0.8978 | −0.5668 | −0.4438 | 0.1230 | 0.9485 | ||
0.9058 | 0.3095 | 0.8252 | 0.9863 | 0.1612 | 0.8901 | 0.8097 | 1.0018 | 0.1920 | 0.9422 |
Data Set | n | Mean | Median | Standard Deviation | Skewness | Excess of Kurtosis |
---|---|---|---|---|---|---|
I | 30 | 1.68 | 1.47 | 1.00 | 1.03 | 0.93 |
II | 72 | 1.77 | 1.50 | 1.04 | 1.31 | 1.85 |
Model | ||||
---|---|---|---|---|
TMLL | −0.9716 | −0.1834 | 2.6321 | - |
(0.6601) | (0.5570) | (0.4147) | - | |
BXII | - | 3.2554 | - | 0.5769 |
- | (0.6454) | - | (0.1371) | |
BLL | 37.4470 | 32.9595 | 0.3851 | - |
(6.2045) | (7.6753) | (0.7332) | - | |
M | - | 0.1846 | - | - |
- | (0.0906) | - | - |
Model | ||||
---|---|---|---|---|
TMLL | −0.7209 | −0.5432 | 2.8084 | - |
(0.2989) | (0.2616) | (0.2220) | - | |
BXII | - | 3.8132 | - | 0.4782 |
- | (0.5440) | - | (0.0792) | |
BLL | 4.2308 | 2.6652 | 1.3490 | - |
(5.4761) | (4.2066) | (1.1359) | - | |
M | - | 0.1492 | - | - |
- | (0.0555) | - | - |
Model | AIC | BIC | W | A |
---|---|---|---|---|
TMLL | 84.2478 | 88.4514 | 0.0357 | 0.2313 |
BXII | 85.7804 | 88.5827 | 0.0696 | 0.4299 |
BLL | 85.0294 | 89.2330 | 0.0377 | 0.2427 |
M | 99.4455 | 100.8467 | 0.2470 | 0.8927 |
Model | AIC | BIC | W | A |
---|---|---|---|---|
TMLL | 191.9918 | 198.8218 | 0.0491 | 0.3234 |
BXII | 200.8386 | 205.3920 | 0.1193 | 0.8993 |
BLL | 200.3750 | 207.2050 | 0.0964 | 0.7178 |
M | 251.0743 | 253.3510 | 0.1651 | 0.9750 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Babtain, A.A.; Elbatal, I.; Chesneau, C.; Jamal, F. The Transmuted Muth Generated Class of Distributions with Applications. Symmetry 2020, 12, 1677. https://doi.org/10.3390/sym12101677
Al-Babtain AA, Elbatal I, Chesneau C, Jamal F. The Transmuted Muth Generated Class of Distributions with Applications. Symmetry. 2020; 12(10):1677. https://doi.org/10.3390/sym12101677
Chicago/Turabian StyleAl-Babtain, Abdulhakim A., Ibrahim Elbatal, Christophe Chesneau, and Farrukh Jamal. 2020. "The Transmuted Muth Generated Class of Distributions with Applications" Symmetry 12, no. 10: 1677. https://doi.org/10.3390/sym12101677
APA StyleAl-Babtain, A. A., Elbatal, I., Chesneau, C., & Jamal, F. (2020). The Transmuted Muth Generated Class of Distributions with Applications. Symmetry, 12(10), 1677. https://doi.org/10.3390/sym12101677