Modified Harris Hawks Optimizer for Solving Machine Scheduling Problems
<p>The stages of the proposed method.</p> "> Figure 2
<p>Average of the improvement of modiffied HHO (MHHO) along the number of machines and jobs. SSA is Salp Swarm Algorithm. HHO is Harris Hawks Optimizer. (<b>a</b>) No. of machines; (<b>b</b>) No. of jobs.</p> "> Figure 3
<p>Average of CPU time for the SSA, HHO, and MHHO on all machines. SSA is Salp Swarm Algorithm. HHO is Harris Hawks Optimizer. MHHO is the proposed hybridization of HHO and SSA.</p> ">
Abstract
:1. Introduction
- The improved HHO with SSA is adopted to solve the UPMSPS problem for small and large jobs on different machines with setup time.
- The results of numeric experiments is presented to validate the proposed method with different conditions.
- We compare the MHHO method with known methods in order to demonstrate the superiority of the MHHO over existing methods.
2. Literature Review
3. Preliminaries
3.1. Problem Definition
3.2. Harris Hawks Optimization
3.3. Salp Swarm Algorithm
4. Proposed Method
4.1. Solution Representations
4.2. Updating Stage
5. Experiments and Results
5.1. Dataset Description
5.2. Performance Measure
- Relative percentage deviation (): It is defined in Equation (4) to compare the results of all methods.
- Improvement ratio (): It measures the ratio of enhancement of the proposed algorithm against the others and it is defined as:
5.3. Parameter Settings
5.4. Comparison with Basic HHO and SSA
5.5. Results of over Small-Size Problems
5.6. Comparison with Other MH Methods Using Large-Size Problems
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ostrowski, J.; Anjos, M.F.; Vannelli, A. Symmetry in Scheduling Problems; Cahier du GERAD G-2010-69; GERAD: Montreal, QC, Canada, 2010. [Google Scholar]
- Trindade, R.S.; de Araújo, O.C.B.; Fampa, M.H.C.; Müller, F.M. Modelling and symmetry breaking in scheduling problems on batch processing machines. Int. J. Prod. Res. 2018, 56, 7031–7048. [Google Scholar] [CrossRef]
- Zhou, E.; Zhu, J.; Deng, L. Flexible job-shop scheduling based on genetic algorithm and simulation validation. In MATEC Web of Conferences; EDP Sciences: Zhengzhou, China, 2017; Volume 100, p. 02047. [Google Scholar]
- Afzalirad, M.; Rezaeian, J. Resource-constrained unrelated parallel machine scheduling problem with sequence dependent setup times, precedence constraints and machine eligibility restrictions. Comput. Ind. Eng. 2016, 98, 40–52. [Google Scholar] [CrossRef]
- Li, J.; Qi, Y.; Wei, W.; Lin, J.; Wozniak, M.; Damasevicius, R. dCCPI-predictor: A state-aware approach for effectively predicting cross-core performance interference. Future Gener. Comput. Syst. 2020, 105, 184–195. [Google Scholar] [CrossRef]
- Allahverdi, A.; Ng, C.; Cheng, T.E.; Kovalyov, M.Y. A survey of scheduling problems with setup times or costs. Eur. J. Oper. Res. 2008, 187, 985–1032. [Google Scholar] [CrossRef] [Green Version]
- Allahverdi, A. The third comprehensive survey on scheduling problems with setup times/costs. Eur. J. Oper. Res. 2015, 246, 345–378. [Google Scholar] [CrossRef]
- Allahverdi, A. A survey of scheduling problems with no-wait in process. Eur. J. Oper. Res. 2016, 255, 665–686. [Google Scholar] [CrossRef]
- Lin, Y.K.; Pfund, M.E.; Fowler, J.W. Heuristics for minimizing regular performance measures in unrelated parallel machine scheduling problems. Comput. Oper. Res. 2011, 38, 901–916. [Google Scholar] [CrossRef]
- Fanjul-Peyro, L.; Perea, F.; Ruiz, R. Models and matheuristics for the unrelated parallel machine scheduling problem with additional resources. Eur. J. Oper. Res. 2017, 260, 482–493. [Google Scholar] [CrossRef]
- Şen, H.; Bülbül, K. A strong preemptive relaxation for weighted tardiness and earliness/tardiness problems on unrelated parallel machines. INFORMS J. Comput. 2015, 27, 135–150. [Google Scholar] [CrossRef] [Green Version]
- Detienne, B.; Dauzere-Péres, S.; Yugma, C. Scheduling jobs on parallel machines to minimize a regular step total cost function. J. Sched. 2011, 14, 523–538. [Google Scholar] [CrossRef]
- Zuo, X.; Tan, W.; Lin, H. Cigarette Production Scheduling by Combining Workflow Model and Immune Algorithm. IEEE Trans. Autom. Sci. Eng. 2014, 11, 251–264. [Google Scholar] [CrossRef]
- Silva, C.; Magalhaes, J.M. Heuristic lot size scheduling on unrelated parallel machines with applications in the textile industry. Comput. Ind. Eng. 2006, 50, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Sheremetov, L.; Martínez-Muñoz, J.; Chi-Chim, M. Two-stage genetic algorithm for parallel machines scheduling problem: Cyclic steam stimulation of high viscosity oil reservoirs. Appl. Soft Comput. 2018, 64, 317–330. [Google Scholar] [CrossRef]
- Yu, S.; Yang, D.; Zhu, K.; Lu, S. Scheduling method for tire building based on heuristic algorithm. In Proceedings of the 2013 25th Chinese Control and Decision Conference (CCDC), Guiyang, China, 25–27 May 2013. [Google Scholar] [CrossRef]
- Fanjul-Peyro, L.; Ruiz, R. Iterated greedy local search methods for unrelated parallel machine scheduling. Eur. J. Oper. Res. 2010, 207, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Alfa, A.A.; Misra, S.; Ogwueleka, F.N.; Ahuja, R.; Adewumi, A.; Damasevicius, R.; Maskeliunas, R. Implications of Job Loading and Scheduling Structures on Machine Memory Effectiveness. In Lecture Notes in Electrical Engineering; Springer: Singapore, 2019; pp. 383–393. [Google Scholar] [CrossRef]
- Alfa, A.A.; Misra, S.; Ogwueleka, F.N.; Ahuja, R.; Adewumi, A.; Damasevicius, R.; Maskeliunas, R. An Effective Instruction Execution and Processing Model in Multiuser Machine Environment. In Advances in Intelligent Systems and Computing; Springer: Singapore, 2020; pp. 805–817. [Google Scholar] [CrossRef]
- Połap, D.; Kęsik, K.; Woźniak, M.; Damaševičius, R. Parallel Technique for the Metaheuristic Algorithms Using Devoted Local Search and Manipulating the Solutions Space. Appl. Sci. 2018, 8, 293. [Google Scholar] [CrossRef] [Green Version]
- Fanjul-Peyro, L.; Ruiz, R. Scheduling unrelated parallel machines with optional machines and jobs selection. Comput. Oper. Res. 2012, 39, 1745–1753. [Google Scholar] [CrossRef] [Green Version]
- Gara-Ali, A.; Finke, G.; Espinouse, M.L. Parallel-machine scheduling with maintenance: Praising the assignment problem. Eur. J. Oper. Res. 2016, 252, 90–97. [Google Scholar] [CrossRef]
- Zhang, X.; Bard, J.F. Equipment scheduling at mail processing and distribution centers. IIE Trans. 2005, 37, 175–187. [Google Scholar] [CrossRef]
- Huang, S.; Cai, L.; Zhang, X. Parallel dedicated machine scheduling problem with sequence-dependent setups and a single server. Comput. Ind. Eng. 2010, 58, 165–174. [Google Scholar] [CrossRef]
- Dauod, H.; Li, D.; Yoon, S.W.; Srihari, K. Multi-objective optimization of the order scheduling problem in mail-order pharmacy automation systems. Int. J. Adv. Manuf. Technol. 2016, 99, 73–83. [Google Scholar] [CrossRef]
- Wu, Q.; Fan, X.; Wei, W.; Wozniak, M. Dynamic Scheduling Algorithm for Delay-Sensitive Vehicular Safety Applications in Cellular Network. Inf. Technol. Control 2020, 49, 161–178. [Google Scholar] [CrossRef]
- Szenasi, S. Static load balancing on heterogeneous systems containing CPU and GPU. In Proceedings of the 18th International Multidisciplinary Scientific GeoConference SGEM 2018, Albena, Bulgaria, 2–8 July 2018; pp. 717–722. [Google Scholar] [CrossRef]
- Arnaout, J.P.; Musa, R.; Rabadi, G. Ant colony optimization algorithm to parallel machine scheduling problem with setups. In Proceedings of the 2008 IEEE International Conference on Automation Science and Engineering, Arlington, VA, USA, 23–26 August 2008; pp. 578–582. [Google Scholar]
- Arnaout, J.P.; Musa, R.; Rabadi, G. A two-stage Ant Colony optimization algorithm to minimize the makespan on unrelated parallel machines—Part II: Enhancements and experimentations. J. Intell. Manuf. 2014, 25, 43–53. [Google Scholar] [CrossRef]
- Ezugwu, A.E. Enhanced symbiotic organisms search algorithm for unrelated parallel machines manufacturing scheduling with setup times. Knowl. Based Syst. 2019, 172, 15–32. [Google Scholar] [CrossRef]
- Sels, V.; Coelho, J.; Dias, A.M.; Vanhoucke, M. Hybrid tabu search and a truncated branch-and-bound for the unrelated parallel machine scheduling problem. Comput. Oper. Res. 2015, 53, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Ezugwu, A.E.; Akutsah, F. An Improved Firefly Algorithm for the Unrelated Parallel Machines Scheduling Problem With Sequence-Dependent Setup Times. IEEE Access 2018, 6, 54459–54478. [Google Scholar] [CrossRef]
- Mir, M.S.S.; Rezaeian, J. A robust hybrid approach based on particle swarm optimization and genetic algorithm to minimize the total machine load on unrelated parallel machines. Appl. Soft Comput. 2016, 41, 488–504. [Google Scholar]
- Lei, D.; Yuan, Y.; Cai, J. An improved artificial bee colony for multi-objective distributed unrelated parallel machine scheduling. Int. J. Prod. Res. 2020, 1–13. [Google Scholar] [CrossRef]
- Rajkumar, R.; Robert, R.J. A Hybrid Algorithm for Multi-Objective Optimization of Minimizing Makespan and Total Flow Time in Permutation Flow Shop Scheduling Problems. Inf. Technol. Control 2019, 48. [Google Scholar] [CrossRef] [Green Version]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris Hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Thaher, T.; Heidari, A.A.; Mafarja, M.; Dong, J.S.; Mirjalili, S. Binary Harris Hawks Optimizer for High-Dimensional, Low Sample Size Feature Selection. In Evolutionary Machine Learning Techniques; Springer: Berlin/Heidelberg, Germany, 2020; pp. 251–272. [Google Scholar]
- Yousri, D.; Allam, D.; Eteiba, M.B. Optimal photovoltaic array reconfiguration for alleviating the partial shading influence based on a modified harris hawks optimizer. Energy Convers. Manag. 2020, 206, 112470. [Google Scholar] [CrossRef]
- Essa, F.; Abd Elaziz, M.; Elsheikh, A.H. An enhanced productivity prediction model of active solar still using artificial neural network and Harris Hawks optimizer. Appl. Therm. Eng. 2020, 170, 115020. [Google Scholar] [CrossRef]
- Shehabeldeen, T.A.; Abd Elaziz, M.; Elsheikh, A.H.; Zhou, J. Modeling of friction stir welding process using adaptive neuro-fuzzy inference system integrated with harris hawks optimizer. J. Mater. Res. Technol. 2019, 8, 5882–5892. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Heidari, A.A.; Fujita, H.; Moayedi, H. A competitive chain-based Harris Hawks Optimizer for global optimization and multi-level image thresholding problems. Appl. Soft Comput. 2020, 106347. [Google Scholar] [CrossRef]
- Ewees, A.A.; Abd Elaziz, M. Performance analysis of chaotic multi-verse harris hawks optimization: A case study on solving engineering problems. Eng. Appl. Artif. Intell. 2020, 88, 103370. [Google Scholar] [CrossRef]
- Yıldız, A.R.; Yıldız, B.S.; Sait, S.M.; Bureerat, S.; Pholdee, N. A new hybrid harris hawks-Nelder-Mead optimization algorithm for solving design and manufacturing problems. Mater. Test. 2019, 61, 735–743. [Google Scholar] [CrossRef]
- Golilarz, N.A.; Gao, H.; Demirel, H. Satellite Image De-Noising with Harris Hawks Meta Heuristic Optimization Algorithm and Improved Adaptive Generalized Gaussian Distribution Threshold Function. IEEE Access 2019, 7, 57459–57468. [Google Scholar] [CrossRef]
- Hu, H.; Li, Y.; Bai, Y.; Zhang, J.; Liu, M. The Improved Antlion Optimizer and Artificial Neural Network for Chinese Influenza Prediction. Complexity 2019, 2019, 1480392. [Google Scholar] [CrossRef] [Green Version]
- Attiya, I.; Abd Elaziz, M.; Xiong, S. Job scheduling in cloud computing using a modified harris hawks optimization and simulated annealing algorithm. Comput. Intell. Neurosci. 2020, 2020, 3504642. [Google Scholar] [CrossRef] [Green Version]
- Kanoosh, H.M.; Houssein, E.H.; Selim, M.M. Salp Swarm Algorithm for Node Localization in Wireless Sensor Networks. J. Comput. Networks Commun. 2019, 2019, 1028723. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, R.A.; Ewees, A.A.; Oliva, D.; Abd Elaziz, M.; Lu, S. Improved salp swarm algorithm based on particle swarm optimization for feature selection. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 3155–3169. [Google Scholar] [CrossRef]
- Tubishat, M.; Idris, N.; Shuib, L.; Abushariah, M.A.; Mirjalili, S. Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection. Expert Syst. Appl. 2020, 145, 113122. [Google Scholar] [CrossRef]
- Neggaz, N.; Ewees, A.A.; Abd Elaziz, M.; Mafarja, M. Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection. Expert Syst. Appl. 2020, 145, 113103. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Ewees, A.A.; Alameer, Z. Improving adaptive neuro-fuzzy inference system based on a modified salp swarm algorithm using genetic algorithm to forecast crude oil price. Nat. Resour. Res. 2019, 29, 1–16. [Google Scholar] [CrossRef]
- Alresheedi, S.S.; Lu, S.; Abd Elaziz, M.; Ewees, A.A. Improved multiobjective salp swarm optimization for virtual machine placement in cloud computing. Hum. Centric Comput. Inf. Sci. 2019, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.; Ahmed, A.; Hussein, S.; Hassanien, A.E. Fish image segmentation using salp swarm algorithm. In International Conference on Advanced Machine Learning Technologies and Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 42–51. [Google Scholar]
- Alwerfali, H.S.N.; Elaziz, M.A.; Al-Qaness, M.A.; Abbasi, A.A.; Lu, S.; Liu, F.; Li, L. A Multilevel Image Thresholding Based on Hybrid Salp Swarm Algorithm and Fuzzy Entropy. IEEE Access 2019, 7, 181405–181422. [Google Scholar] [CrossRef]
- Chang, P.C.; Chen, S.H. Integrating dominance properties with genetic algorithms for parallel machine scheduling problems with setup times. Appl. Soft Comput. 2011, 11, 1263–1274. [Google Scholar] [CrossRef]
- Rodriguez, F.J.; Blum, C.; García-Martínez, C.; Lozano, M. GRASP with path-relinking for the non-identical parallel machine scheduling problem with minimising total weighted completion times. Ann. Oper. Res. 2012, 201, 383–401. [Google Scholar] [CrossRef]
- Rodriguez, F.J.; Lozano, M.; Blum, C.; GarcíA-MartíNez, C. An iterated greedy algorithm for the large-scale unrelated parallel machines scheduling problem. Comput. Oper. Res. 2013, 40, 1829–1841. [Google Scholar] [CrossRef]
- Bitar, A.; Dauzère-Pérès, S.; Yugma, C.; Roussel, R. A memetic algorithm to solve an unrelated parallel machine scheduling problem with auxiliary resources in semiconductor manufacturing. J. Sched. 2016, 19, 367–376. [Google Scholar] [CrossRef] [Green Version]
- González, M.A.; Vela, C.R. An efficient memetic algorithm for total weighted tardiness minimization in a single machine with setups. Appl. Soft Comput. 2015, 37, 506–518. [Google Scholar] [CrossRef]
- Wang, S.Y.; Wang, L. An estimation of distribution algorithm-based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 139–149. [Google Scholar] [CrossRef]
- Shao, W.; Pi, D.; Shao, Z. Memetic algorithm with node and edge histogram for no-idle flow shop scheduling problem to minimize the makespan criterion. Appl. Soft Comput. 2017, 54, 164–182. [Google Scholar] [CrossRef]
- Pan, Q.K.; Wang, L.; Sang, H.Y.; Li, J.Q.; Liu, M. A high performing memetic algorithm for the flowshop scheduling problem with blocking. IEEE Trans. Autom. Sci. Eng. 2013, 10, 741–756. [Google Scholar]
- Deng, J.; Wang, L. A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem. Swarm Evol. Comput. 2017, 32, 121–131. [Google Scholar] [CrossRef]
- Liang, P.; Yang, H.D.; Liu, G.S.; Guo, J.H. An ant optimization model for unrelated parallel machine scheduling with energy consumption and total tardiness. Math. Probl. Eng. 2015, 2015, 907034. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, J.; Porras, S.; Casado, S.; Baruque, B. Variable neighborhood search with memory for a single-machine scheduling problem with periodic maintenance and sequence-dependent set-up times. Knowl. Based Syst. 2018, 145, 236–249. [Google Scholar] [CrossRef]
- Li, K.; Zhang, X.; Leung, J.Y.T.; Yang, S.L. Parallel machine scheduling problems in green manufacturing industry. J. Manuf. Syst. 2016, 38, 98–106. [Google Scholar] [CrossRef]
- Özpeynirci, S.; Gökgür, B.; Hnich, B. Parallel machine scheduling with tool loading. Appl. Math. Model. 2016, 40, 5660–5671. [Google Scholar] [CrossRef]
- Li, Z.; Yang, H.; Zhang, S.; Liu, G. Unrelated parallel machine scheduling problem with energy and tardiness cost. Int. J. Adv. Manuf. Technol. 2016, 84, 213–226. [Google Scholar] [CrossRef]
- Fanjul-Peyro, L.; Ruiz, R.; Perea, F. Reformulations and an exact algorithm for unrelated parallel machine scheduling problems with setup times. Comput. Oper. Res. 2019, 101, 173–182. [Google Scholar] [CrossRef]
- Wang, H.; Alidaee, B. Effective heuristic for large-scale unrelated parallel machines scheduling problems. Omega 2019, 83, 261–274. [Google Scholar] [CrossRef]
- Ding, J.Y.; Song, S.; Zhang, R.; Chiong, R.; Wu, C. Parallel machine scheduling under time-of-use electricity prices: New models and optimization approaches. IEEE Trans. Autom. Sci. Eng. 2016, 13, 1138–1154. [Google Scholar] [CrossRef]
- Wu, X.; Che, A. A memetic differential evolution algorithm for energy-efficient parallel machine scheduling. Omega 2019, 82, 155–165. [Google Scholar] [CrossRef]
- Arroyo, J.E.C.; Leung, J.Y.T.; Tavares, R.G. An iterated greedy algorithm for total flow time minimization in unrelated parallel batch machines with unequal job release times. Eng. Appl. Artif. Intell. 2019, 77, 239–254. [Google Scholar] [CrossRef]
- Helal, M.; Rabadi, G.; Al-Salem, A. A tabu search algorithm to minimize the makespan for the unrelated parallel machines scheduling problem with setup times. Int. J. Oper. Res. 2006, 3, 182–192. [Google Scholar]
- Jouhari, H.; Lei, D.; Al-qaness, M.A.; Elaziz, M.A.; Ewees, A.A.; Farouk, O. Sine-Cosine Algorithm to Enhance Simulated Annealing for Unrelated Parallel Machine Scheduling with Setup Times. Mathematics 2019, 7, 1120. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Lin, S.W.; Ying, K.C. ABC-based manufacturing scheduling for unrelated parallel machines with machine-dependent and job sequence-dependent setup times. Comput. Oper. Res. 2014, 51, 172–181. [Google Scholar] [CrossRef]
- Ying, K.C.; Lee, Z.J.; Lin, S.W. Makespan minimization for scheduling unrelated parallel machines with setup times. J. Intell. Manuf. 2012, 23, 1795–1803. [Google Scholar] [CrossRef]
- Ezugwu, A.E.; Adeleke, O.J.; Viriri, S. Symbiotic organisms search algorithm for the unrelated parallel machines scheduling with sequence-dependent setup times. PLoS ONE 2018, 13, e0200030. [Google Scholar] [CrossRef]
Parameter | Values |
---|---|
SSA | , |
HHO | |
MHHO | , , |
m | Job | SSA | HHO | MHHO | Improvement | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Time | Time | Time | ||||||||||
2 | 20 | 1.27 | 28.44 | 6.11 | 2.70 | 109.23 | 14.11 | 0.34 | 15.50 | 9.96 | 2.75 | 7.00 |
40 | 2.68 | 37.01 | 17.57 | 4.82 | 38.82 | 44.79 | 0.48 | 17.80 | 29.96 | 4.61 | 9.10 | |
60 | 3.18 | 51.32 | 35.26 | 6.90 | 238.64 | 97.38 | 1.32 | 15.50 | 58.34 | 1.41 | 4.23 | |
80 | 3.48 | 45.87 | 59.12 | 4.73 | 395.73 | 178.21 | 0.86 | 32.30 | 101.24 | 3.03 | 4.48 | |
100 | 4.39 | 69.76 | 88.67 | 8.24 | 88.46 | 238.95 | 0.02 | 31.95 | 149.14 | 208.91 | 393.22 | |
120 | 3.34 | 56.10 | 126.00 | 6.60 | 176.09 | 350.64 | 0.04 | 54.01 | 208.26 | 79.14 | 157.41 | |
4 | 20 | 6.39 | 71.97 | 6.88 | 5.33 | 134.79 | 17.34 | 0.40 | 69.27 | 11.68 | 15.04 | 12.40 |
40 | 8.39 | 24.54 | 20.00 | 6.58 | 479.95 | 47.68 | 0.84 | 24.33 | 31.94 | 8.99 | 6.83 | |
60 | 7.87 | 18.80 | 37.07 | 8.31 | 704.47 | 138.16 | 1.09 | 15.18 | 61.37 | 6.22 | 6.62 | |
80 | 7.00 | 22.99 | 61.27 | 20.38 | 333.94 | 580.06 | 2.55 | 22.99 | 317.26 | 1.74 | 6.98 | |
100 | 9.77 | 32.66 | 106.28 | 19.88 | 35.08 | 880.00 | 0.82 | 26.47 | 474.33 | 10.96 | 23.33 | |
120 | 8.26 | 8.49 | 180.86 | 3.54 | 101.79 | 1206.66 | 2.49 | 18.37 | 652.04 | 2.32 | 0.42 | |
6 | 20 | 25.00 | 141.87 | 7.66 | 6.83 | 152.95 | 56.04 | 2.27 | 5.20 | 41.81 | 10.02 | 2.01 |
40 | 24.34 | 122.15 | 20.43 | 7.04 | 127.96 | 151.05 | 0.70 | 7.05 | 103.42 | 33.58 | 9.00 | |
60 | 24.28 | 116.25 | 39.11 | 9.79 | 364.91 | 342.87 | 0.79 | 6.90 | 189.15 | 29.89 | 11.45 | |
80 | 13.83 | 92.21 | 63.80 | 22.31 | 36.06 | 194.24 | 3.34 | 7.60 | 131.58 | 3.14 | 5.68 | |
100 | 16.91 | 129.52 | 93.72 | 14.80 | 192.00 | 292.54 | 2.80 | 24.91 | 166.74 | 5.04 | 4.29 | |
120 | 14.58 | 7.37 | 130.63 | 13.75 | 164.65 | 407.38 | 3.64 | 19.96 | 230.84 | 3.00 | 2.78 | |
8 | 20 | 42.08 | 85.79 | 8.66 | 14.88 | 74.77 | 22.91 | 0.73 | 31.12 | 15.05 | 56.62 | 19.38 |
40 | 40.21 | 184.82 | 21.89 | 6.27 | 68.77 | 60.02 | 0.65 | 17.20 | 38.58 | 60.76 | 8.64 | |
60 | 23.65 | 29.28 | 41.00 | 4.92 | 89.07 | 112.34 | 3.30 | 27.42 | 73.38 | 6.17 | 0.49 | |
80 | 25.10 | 99.37 | 66.15 | 7.02 | 98.45 | 183.88 | 1.73 | 66.67 | 116.28 | 13.52 | 3.06 | |
100 | 21.94 | 58.53 | 97.32 | 10.41 | 308.32 | 261.27 | 3.20 | 57.05 | 168.23 | 5.85 | 2.25 | |
120 | 16.52 | 31.75 | 133.67 | 35.20 | 97.15 | 431.87 | 5.00 | 25.49 | 245.40 | 2.30 | 6.04 | |
10 | 20 | 182.66 | 220.69 | 9.55 | 9.20 | 53.57 | 66.84 | 2.16 | 26.53 | 48.76 | 83.40 | 3.25 |
40 | 81.80 | 314.56 | 23.38 | 3.72 | 58.00 | 178.11 | 0.21 | 25.27 | 111.81 | 396.83 | 17.09 | |
60 | 28.36 | 221.70 | 43.30 | 13.34 | 68.00 | 323.09 | 0.92 | 41.02 | 257.12 | 29.94 | 13.55 | |
80 | 42.93 | 102.97 | 68.88 | 13.10 | 142.50 | 674.73 | 1.489 | 46.99 | 359.23 | 27.83 | 7.80 | |
100 | 28.97 | 164.06 | 100.13 | 4.88 | 57.97 | 267.53 | 0.77 | 29.51 | 175.23 | 36.69 | 5.34 | |
120 | 21.21 | 53.67 | 138.14 | 5.60 | 63.62 | 377.34 | 5.06 | 40.67 | 237.81 | 3.19 | 0.11 | |
12 | 20 | 189.68 | 75.35 | 10.61 | 19.42 | 16.99 | 25.13 | 15.89 | 9.74 | 17.90 | 10.94 | 0.22 |
40 | 185.00 | 229.31 | 25.19 | 8.31 | 77.41 | 61.38 | 6.90 | 16.00 | 43.02 | 25.80 | 0.20 | |
60 | 78.85 | 346.51 | 45.61 | 10.94 | 56.59 | 111.72 | 0.73 | 4.58 | 78.69 | 106.89 | 13.97 | |
80 | 35.13 | 362.36 | 71.41 | 13.59 | 68.43 | 191.42 | 2.15 | 10.50 | 124.31 | 15.37 | 5.33 | |
100 | 48.98 | 154.08 | 101.16 | 27.11 | 78.55 | 284.76 | 6.09 | 26.31 | 177.38 | 7.05 | 3.45 | |
120 | 39.48 | 121.48 | 134.24 | 6.24 | 54.90 | 360.79 | 3.92 | 25.77 | 248.83 | 9.08 | 0.59 |
m | Jobs | HHO | SSA | SA | T9 | T8 |
---|---|---|---|---|---|---|
2 | 6 | 0.130 | 0.253 | 0.045 | 0.144 | 0.139 |
7 | 0.012 | 0.234 | 0.165 | 0.244 | 0.226 | |
8 | 0.026 | 0.100 | 0.130 | 0.149 | 0.147 | |
9 | 0.014 | 0.006 | 0.141 | 0.123 | 0.110 | |
10 | 0.005 | 0.045 | 0.215 | 0.140 | 0.133 | |
11 | 0.020 | 0.024 | 0.217 | 0.119 | 0.116 | |
4 | 6 | 0.009 | 0.116 | 0.184 | 0.192 | 0.203 |
7 | 0.008 | 0.099 | 0.329 | 0.294 | 0.318 | |
8 | 0.015 | 0.500 | 0.748 | 0.437 | 0.445 | |
9 | 0.007 | 0.278 | 0.394 | 0.287 | 0.282 | |
10 | 0.016 | 0.108 | 0.289 | 0.175 | 0.165 | |
11 | 0.025 | 0.154 | 0.347 | 0.164 | 0.165 | |
6 | 8 | 0.004 | 0.253 | 0.189 | 0.144 | 0.167 |
9 | 0.028 | 0.359 | 0.223 | 0.116 | 0.139 | |
10 | 0.012 | 0.304 | 0.368 | 0.180 | 0.201 | |
11 | 0.011 | 0.291 | 0.238 | 0.030 | 0.060 | |
8 | 10 | 0.002 | 0.305 | 0.113 | 0.016 | 0.024 |
11 | 0.018 | 0.326 | 0.416 | 0.006 | 0.016 |
m | Job | MHHO | FA | SOS-LPT | SOS | HSOSSA | ESA | ESOS | ACO | GA | IWO | RSA | HABC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 20 | 0.166 | 1.319 | 1.267 | 3.229 | 0.250 | 3.505 | 1.667 | 13.580 | 3.719 | 1.976 | 4.450 | 4.140 |
40 | 0.478 | 2.185 | 1.346 | 1.414 | 0.542 | 3.365 | 1.574 | 20.860 | 3.789 | 3.035 | 2.840 | 2.370 | |
60 | 1.147 | 2.901 | 1.325 | 1.579 | 1.323 | 4.434 | 1.670 | 23.153 | 5.480 | 4.143 | 2.530 | 2.100 | |
80 | 0.863 | 3.155 | 1.294 | 1.501 | 0.960 | 6.113 | 1.440 | 24.828 | 5.270 | 4.397 | 2.390 | 1.940 | |
100 | 0.021 | 3.499 | 0.175 | 0.337 | 0.907 | 6.055 | 1.811 | 25.524 | 5.416 | 4.803 | 2.030 | 1.800 | |
120 | 0.042 | 3.909 | 0.193 | 0.599 | 1.287 | 7.208 | 2.688 | 25.954 | 5.233 | 4.806 | 1.950 | 1.690 | |
4 | 20 | 0.398 | 0.944 | 0.445 | 5.604 | −5.890 | 0.814 | 0.814 | 27.904 | 5.473 | 2.717 | 8.740 | 8.480 |
40 | 0.840 | 4.155 | 2.492 | 2.745 | −0.498 | 5.365 | 3.114 | 39.658 | 9.129 | 7.827 | 5.740 | 5.130 | |
60 | 1.090 | 4.269 | 3.331 | 4.116 | 1.361 | 8.158 | 3.287 | 45.495 | 22.523 | 8.796 | 4.750 | 4.080 | |
80 | 2.554 | 6.565 | 3.772 | 4.317 | 2.703 | 9.926 | 4.212 | 48.055 | 9.823 | 8.887 | 4.590 | 3.880 | |
100 | 0.817 | 5.331 | 2.932 | 3.654 | 3.922 | 11.191 | 4.878 | 50.013 | 12.750 | 9.977 | 4.080 | 3.450 | |
120 | 2.489 | 5.963 | 3.216 | 3.450 | 3.591 | 12.233 | 4.369 | 50.606 | 12.190 | 10.221 | 3.620 | 3.330 | |
6 | 20 | 2.270 | 12.288 | 6.570 | 6.584 | 4.857 | 11.755 | 7.009 | 44.445 | 17.163 | 15.582 | 23.120 | 23.050 |
40 | 0.704 | 7.050 | 3.450 | 4.733 | 0.732 | 7.179 | 3.411 | 58.658 | 12.566 | 11.412 | 9.370 | 8.770 | |
60 | 0.786 | 4.989 | 3.223 | 4.347 | 0.963 | 9.923 | 3.409 | 65.317 | 12.536 | 9.668 | 6.510 | 5.790 | |
80 | 3.342 | 9.970 | 5.164 | 5.412 | 3.476 | 13.202 | 5.393 | 70.939 | 14.280 | 11.084 | 6.910 | 5.950 | |
100 | 2.800 | 8.972 | 5.115 | 5.434 | 4.227 | 14.771 | 5.236 | 71.113 | 15.526 | 13.611 | 5.630 | 4.840 | |
120 | 3.642 | 6.677 | 5.000 | 5.532 | 3.874 | 15.148 | 5.492 | 77.632 | 16.948 | 12.930 | 5.370 | 4.570 | |
8 | 20 | 0.730 | 12.463 | 3.235 | 5.596 | 1.712 | 8.897 | 4.706 | 64.831 | 13.163 | 15.034 | 27.140 | 27.040 |
40 | 0.651 | 2.324 | 1.629 | 5.967 | −2.824 | 5.709 | −0.181 | 77.577 | 14.492 | 12.768 | 9.030 | 8.100 | |
60 | 3.301 | 11.223 | 3.852 | 5.202 | 3.569 | 13.774 | 5.034 | 88.479 | 15.593 | 13.724 | 10.490 | 9.620 | |
80 | 1.729 | 8.633 | 3.712 | 6.037 | 3.411 | 14.654 | 5.823 | 85.424 | 15.255 | 11.736 | 6.900 | 6.000 | |
100 | 3.202 | 14.269 | 3.500 | 4.783 | 4.228 | 17.091 | 5.110 | 91.589 | 16.549 | 15.059 | 7.530 | 6.720 | |
120 | 5.000 | 13.988 | 5.026 | 6.420 | 5.364 | 17.679 | 6.364 | 94.596 | 18.046 | 16.215 | 6.660 | 5.330 | |
10 | 20 | 2.164 | −9.828 | 6.790 | 9.612 | −19.660 | −10.554 | −13.779 | 78.038 | 10.157 | −5.399 | 15.790 | 15.130 |
40 | 0.206 | 2.963 | 1.423 | 6.572 | −5.403 | 5.124 | −0.306 | 90.544 | 16.477 | 11.697 | 10.550 | 9.350 | |
60 | 0.917 | 7.477 | 1.084 | 3.611 | 0.294 | 11.356 | 3.779 | 98.990 | 15.364 | 11.272 | 9.070 | 7.620 | |
80 | 1.489 | 14.762 | 3.258 | 4.704 | 2.069 | 16.750 | 5.135 | 111.036 | 21.404 | 16.669 | 7.950 | 6.960 | |
100 | 0.769 | 12.225 | 3.462 | 7.680 | 4.710 | 18.286 | 7.514 | 116.667 | 21.692 | 17.698 | 7.070 | 6.350 | |
120 | 5.063 | 9.938 | 5.219 | 6.904 | 6.223 | 19.865 | 6.879 | 116.214 | 19.635 | 17.757 | 6.660 | 6.230 | |
12 | 20 | 15.891 | 7.836 | 3.804 | 31.876 | 0.923 | 8.025 | 3.099 | 96.691 | 11.387 | 6.003 | 32.430 | 32.310 |
40 | 6.649 | 28.823 | 9.776 | 25.047 | 8.436 | 16.045 | 9.762 | 106.705 | 24.865 | 21.156 | 24.940 | 24.270 | |
60 | 0.244 | 31.407 | 3.491 | 9.396 | 1.078 | 12.711 | 3.427 | 115.136 | 22.456 | 21.301 | 9.850 | 8.220 | |
80 | 2.192 | 10.842 | 5.032 | 10.824 | 3.061 | 17.833 | 5.030 | 121.426 | 21.783 | 14.657 | 10.980 | 10.400 | |
100 | 6.088 | 13.665 | 7.400 | 11.222 | 6.470 | 19.324 | 7.397 | 124.443 | 23.184 | 22.636 | 11.670 | 11.330 | |
120 | 3.918 | 14.045 | 6.522 | 8.447 | 5.123 | 20.372 | 8.447 | 130.772 | 24.560 | 18.891 | 7.290 | 6.870 | |
Avg. | 2.380 | 8.367 | 3.570 | 6.514 | 1.594 | 10.647 | 3.742 | 72.025 | 14.330 | 11.243 | 9.073 | 8.423 |
m | Job | FA | SOS-LPT | SOS | HSOSSA | ESA | ESOS | ACO | GA | IWO | RSA | HABC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 20 | 6.95 | 6.64 | 18.46 | 0.51 | 20.13 | 9.05 | 80.87 | 21.42 | 10.92 | 25.83 | 23.96 |
40 | 3.57 | 1.82 | 1.96 | 0.13 | 6.04 | 2.29 | 42.67 | 6.93 | 5.35 | 4.95 | 3.96 | |
60 | 1.53 | 0.15 | 0.38 | 0.15 | 2.86 | 0.46 | 19.18 | 3.78 | 2.61 | 1.20 | 0.83 | |
80 | 2.66 | 0.50 | 0.74 | 0.11 | 6.08 | 0.67 | 27.77 | 5.11 | 4.10 | 1.77 | 1.25 | |
100 | 166.33 | 7.35 | 15.14 | 42.36 | 288.54 | 85.58 | 1219.46 | 257.97 | 228.66 | 96.07 | 85.07 | |
120 | 92.84 | 3.62 | 13.39 | 29.89 | 172.04 | 63.52 | 622.02 | 124.61 | 114.38 | 45.81 | 39.57 | |
4 | 20 | 1.37 | 0.12 | 13.07 | −15.79 | 1.04 | 1.04 | 69.07 | 12.74 | 5.82 | 20.95 | 20.29 |
40 | 3.95 | 1.97 | 2.27 | −1.59 | 5.39 | 2.71 | 46.24 | 9.87 | 8.32 | 5.84 | 5.11 | |
60 | 2.92 | 2.06 | 2.78 | 0.25 | 6.48 | 2.02 | 40.74 | 19.66 | 7.07 | 3.36 | 2.74 | |
80 | 1.57 | 0.48 | 0.69 | 0.06 | 2.89 | 0.65 | 17.82 | 2.85 | 2.48 | 0.80 | 0.52 | |
100 | 5.52 | 2.59 | 3.47 | 3.80 | 12.70 | 4.97 | 60.22 | 14.61 | 11.21 | 3.99 | 3.22 | |
120 | 1.40 | 0.29 | 0.39 | 0.44 | 3.91 | 0.76 | 19.33 | 3.90 | 3.11 | 0.45 | 0.34 | |
6 | 20 | 4.41 | 1.89 | 1.90 | 1.14 | 4.18 | 2.09 | 18.58 | 6.56 | 5.87 | 9.19 | 9.16 |
40 | 9.01 | 3.90 | 5.72 | 0.04 | 9.20 | 3.85 | 82.32 | 16.85 | 15.21 | 12.31 | 11.46 | |
60 | 5.35 | 3.10 | 4.53 | 0.23 | 11.62 | 3.34 | 82.10 | 14.95 | 11.30 | 7.28 | 6.37 | |
80 | 1.98 | 0.55 | 0.62 | 0.04 | 2.95 | 0.61 | 20.23 | 3.27 | 2.32 | 1.07 | 0.78 | |
100 | 2.20 | 0.83 | 0.94 | 0.51 | 4.28 | 0.87 | 24.40 | 4.55 | 3.86 | 1.01 | 0.73 | |
120 | 0.83 | 0.37 | 0.52 | 0.06 | 3.16 | 0.51 | 20.32 | 3.65 | 2.55 | 0.47 | 0.25 | |
8 | 20 | 16.07 | 3.43 | 6.66 | 1.34 | 11.18 | 5.44 | 87.78 | 17.02 | 19.59 | 36.16 | 36.03 |
40 | 2.57 | 1.50 | 8.17 | −5.34 | 7.77 | −1.28 | 118.17 | 21.26 | 18.61 | 12.87 | 11.44 | |
60 | 2.40 | 0.17 | 0.58 | 0.08 | 3.17 | 0.53 | 25.81 | 3.72 | 3.16 | 2.18 | 1.91 | |
80 | 3.99 | 1.15 | 2.49 | 0.97 | 7.48 | 2.37 | 48.42 | 7.83 | 5.79 | 2.99 | 2.47 | |
100 | 3.46 | 0.09 | 0.49 | 0.32 | 4.34 | 0.60 | 27.60 | 4.17 | 3.70 | 1.35 | 1.10 | |
120 | 1.80 | 0.01 | 0.28 | 0.07 | 2.54 | 0.27 | 17.92 | 2.61 | 2.24 | 0.33 | 0.07 | |
10 | 20 | −5.54 | 2.14 | 3.44 | −10.08 | −5.88 | −7.37 | 35.06 | 3.69 | −3.49 | 6.30 | 5.99 |
40 | 13.41 | 5.92 | 30.96 | −27.28 | 23.92 | −2.49 | 439.38 | 79.14 | 55.89 | 50.31 | 44.48 | |
60 | 7.16 | 0.18 | 2.94 | −0.68 | 11.39 | 3.12 | 106.99 | 15.76 | 11.30 | 8.89 | 7.31 | |
80 | 8.91 | 1.19 | 2.16 | 0.39 | 10.25 | 2.45 | 73.57 | 13.37 | 10.19 | 4.34 | 3.67 | |
100 | 14.91 | 3.50 | 8.99 | 5.13 | 22.79 | 8.78 | 150.79 | 27.22 | 22.03 | 8.20 | 7.26 | |
120 | 0.96 | 0.03 | 0.36 | 0.23 | 2.92 | 0.36 | 21.96 | 2.88 | 2.51 | 0.32 | 0.23 | |
12 | 20 | −0.51 | −0.76 | 1.01 | −0.94 | −0.49 | −0.80 | 5.08 | −0.28 | −0.62 | 1.04 | 1.03 |
40 | 3.34 | 0.47 | 2.77 | 0.27 | 1.41 | 0.47 | 15.05 | 2.74 | 2.18 | 2.75 | 2.65 | |
60 | 127.90 | 13.33 | 37.56 | 3.42 | 51.17 | 13.07 | 471.53 | 91.16 | 86.42 | 39.43 | 32.74 | |
80 | 3.95 | 1.30 | 3.94 | 0.40 | 7.14 | 1.30 | 54.40 | 8.94 | 5.69 | 4.01 | 3.75 | |
100 | 1.24 | 0.22 | 0.84 | 0.06 | 2.17 | 0.22 | 19.44 | 2.81 | 2.72 | 0.92 | 0.86 | |
120 | 2.58 | 0.66 | 1.16 | 0.31 | 4.20 | 1.16 | 32.38 | 5.27 | 3.82 | 0.86 | 0.75 |
Parameter | Values |
---|---|
ACO | Pheromone evaporation = 0.01, Global update rate = 0.081, NP = 60, Pheromone amounts = 1, LocalIter = 31 |
SADP | Initial temperature = LB + (UB − LB)/10, final temperature = LB, temperature reduction rate = 0.99 |
GADP2 | Crossover rate = 0.6, NP = 50, Mutation rate = 0.5 |
ESOS | Number of random move = [0.5 m, 0.9 m], NP = 50 |
GADP | Crossover rate = 0.6, NP = 50, Mutation rate = 0.5 |
FA | Selection pressure = 3, NP = 100, Max generation = 1000, Uniform mutation rate = 3, = 0.2, Light absorption = 1 |
SOS | Number of random move = [0.5 m, 0.9 m], NP = 50 |
IWO | Min seeds = 0, Max seeds = 5, NP = 15, Initial Standard deviation = 1, Final standard deviation = 0.001, Variance reduction exponent = 2 |
GA | Crossover rate = 0.6, Mutation rate = 0.5, Np = 15, Selection pressure = 5 |
ESA | Initial temperature = 0.025, Temperature reduction rate = 0.99 |
SOS-LPT | Number of random move = [0.5 m, 0.9 m], NP = 50 |
HSOSSA | Number of random move = [0.5 m, 0.9 m], NP = 50, Initial temperature = 0.025, Temperature reduction rate = 0.99 |
RSA | Initial temperature = 1.5, final temperature = 0.02, Iter = (jobs + machines−1) × 1500, Cooling schedule = 0.98, Boltzmann constant = 0.1, Non-improving = 28 |
HABC | Initial temperature = 0.25 × (sum of processing time and average setup time for each job on each machine)/(jobs × machines), NP = 10, limits = 1000, = (jobs × machines × 35)/100, Cooling schedule = 0.90 |
ACO [32] | SADP [55] | GADP2 [55] | ESOS [30] | GADP [55] | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m | n | Min | Avg. | Max | Min | Avg. | Max | Min | Avg. | Max | Min | Avg. | Max | Min | Avg. | Max | |||||
2 | 20 | 1283 | 1347 | 1348 | 13.6 | 1196 | 1255 | 1338 | 5.8 | 1242 | 1254 | 1266 | 5.7 | 1190 | 1213 | 1236 | 2.3 | 1242 | 1255 | 1267 | 5.8 |
40 | 2772 | 2834 | 2889 | 20.8 | 2371 | 2462 | 2550 | 5.0 | 2441 | 2459 | 2474 | 4.9 | 2363 | 2378 | 2393 | 1.4 | 2446 | 2469 | 2487 | 5.3 | |
60 | 4223 | 4323 | 4404 | 23.2 | 3588 | 3680 | 3764 | 4.8 | 3652 | 3675 | 3695 | 4.7 | 3519 | 3575 | 3631 | 1.9 | 3664 | 3695 | 3734 | 5.3 | |
80 | 5701 | 5823 | 5911 | 24.8 | 4753 | 4879 | 5045 | 4.6 | 4846 | 4872 | 4896 | 4.4 | 4705 | 4730 | 4754 | 1.4 | 4859 | 4892 | 4923 | 4.9 | |
6 | 20 | 466 | 523 | 561 | 44.6 | 441 | 455 | 481 | 25.7 | 448 | 454 | 459 | 25.4 | 381 | 387 | 393 | 6.9 | 448 | 456 | 463 | 26.0 |
40 | 992 | 1137 | 1269 | 58.6 | 796 | 841 | 892 | 17.3 | 809 | 831 | 853 | 15.9 | 734 | 742 | 750 | 3.5 | 815 | 838 | 861 | 16.9 | |
60 | 1171 | 1771 | 1910 | 65.4 | 1210 | 1259 | 1295 | 17.6 | 1219 | 1246 | 1270 | 16.3 | 1100 | 1107 | 1113 | 3.3 | 1225 | 1252 | 1277 | 16.9 | |
80 | 2200 | 2443 | 2609 | 71.0 | 1606 | 1662 | 1705 | 16.3 | 1622 | 1648 | 1672 | 15.3 | 1500 | 1507 | 1514 | 5.5 | 1623 | 1655 | 1684 | 15.8 | |
12 | 20 | 266 | 343 | 356 | 96.2 | 229 | 241 | 265 | 37.7 | 235 | 239 | 244 | 36.6 | 177 | 183 | 189 | 4.6 | 234 | 240 | 247 | 37.1 |
40 | 643 | 717 | 796 | 106.7 | 440 | 466 | 493 | 34.3 | 444 | 455 | 468 | 31.1 | 377 | 382 | 386 | 9.9 | 444 | 456 | 471 | 31.4 | |
60 | 1047 | 1117 | 1217 | 115.2 | 628 | 669 | 715 | 28.9 | 809 | 649 | 667 | 25.1 | 534 | 538 | 542 | 3.7 | 629 | 652 | 673 | 25.6 | |
80 | 1352 | 1528 | 1639 | 121.4 | 819 | 891 | 959 | 29.1 | 819 | 849 | 884 | 23.0 | 713 | 723 | 733 | 4.8 | 821 | 852 | 889 | 23.5 | |
FA [32] | IWO [32] | GA [32] | ESA [30] | MHHO | |||||||||||||||||
m | n | Min | Avg. | Max | Min | Avg. | Max | Min | Avg. | Max | Min | Avg. | Max | Min | Avg. | Max | |||||
2 | 20 | 1156 | 1201 | 1256 | 1.3 | 1152 | 1209 | 1270 | 2.0 | 1176 | 1224 | 1331 | 3.2 | 1202 | 1235 | 1268 | 4.1 | 1162 | 1188 | 1211 | 0.2 |
40 | 2330 | 2396 | 2462 | 2.2 | 2343 | 2416 | 2500 | 3.0 | 2364 | 2434 | 2507 | 3.8 | 2416 | 2428 | 2440 | 3.5 | 2346 | 2355 | 2400 | 0.4 | |
60 | 3523 | 3612 | 3676 | 2.9 | 3543 | 3656 | 3739 | 4.1 | 3608 | 3703 | 3814 | 5.5 | 3601 | 3667 | 3733 | 4.5 | 3533 | 3556 | 3582 | 1.3 | |
80 | 4738 | 4813 | 4965 | 3.2 | 4769 | 4870 | 5008 | 4.4 | 4796 | 4911 | 5049 | 5.3 | 4905 | 4959 | 5013 | 6.3 | 4690 | 4705 | 4790 | 0.9 | |
6 | 20 | 386 | 407 | 435 | 12.4 | 392 | 419 | 453 | 15.7 | 390 | 425 | 486 | 17.3 | 397 | 406 | 414 | 12.0 | 369 | 371 | 380 | 2.4 |
40 | 752 | 767 | 1192 | 7.0 | 765 | 796 | 825 | 11.1 | 681 | 807 | 891 | 12.5 | 754 | 765 | 776 | 6.7 | 720 | 722 | 733 | 0.6 | |
60 | 1111 | 1125 | 1142 | 5.0 | 1120 | 1175 | 1208 | 9.7 | 1131 | 1206 | 1284 | 12.6 | 1163 | 1177 | 1190 | 9.9 | 1078 | 1080 | 1094 | 0.8 | |
80 | 1552 | 2346 | 2388 | 64.2 | 1533 | 1588 | 1661 | 11.1 | 1597 | 1633 | 1672 | 14.3 | 1613 | 1619 | 1624 | 13.3 | 1474 | 1477 | 1505 | 3.4 | |
12 | 20 | 176 | 188 | 205 | 7.6 | 171 | 185 | 206 | 5.8 | 181 | 194 | 214 | 11.1 | 187 | 189 | 191 | 8.0 | 189 | 202 | 212 | 15.6 |
40 | 365 | 447 | 538 | 28.8 | 382 | 420 | 467 | 21.1 | 371 | 433 | 488 | 24.8 | 394 | 404 | 413 | 16.3 | 368 | 371 | 402 | 6.9 | |
60 | 624 | 682 | 775 | 31.5 | 569 | 640 | 848 | 23.3 | 597 | 636 | 719 | 22.5 | 578 | 590 | 601 | 13.6 | 520 | 523 | 530 | 0.8 | |
80 | 695 | 765 | 793 | 10.9 | 719 | 792 | 846 | 14.7 | 723 | 841 | 991 | 21.9 | 808 | 813 | 818 | 17.8 | 701 | 706 | 731 | 2.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jouhari, H.; Lei, D.; Al-qaness, M.A.A.; Elaziz, M.A.; Damaševičius, R.; Korytkowski, M.; Ewees, A.A. Modified Harris Hawks Optimizer for Solving Machine Scheduling Problems. Symmetry 2020, 12, 1460. https://doi.org/10.3390/sym12091460
Jouhari H, Lei D, Al-qaness MAA, Elaziz MA, Damaševičius R, Korytkowski M, Ewees AA. Modified Harris Hawks Optimizer for Solving Machine Scheduling Problems. Symmetry. 2020; 12(9):1460. https://doi.org/10.3390/sym12091460
Chicago/Turabian StyleJouhari, Hamza, Deming Lei, Mohammed A. A. Al-qaness, Mohamed Abd Elaziz, Robertas Damaševičius, Marcin Korytkowski, and Ahmed A. Ewees. 2020. "Modified Harris Hawks Optimizer for Solving Machine Scheduling Problems" Symmetry 12, no. 9: 1460. https://doi.org/10.3390/sym12091460
APA StyleJouhari, H., Lei, D., Al-qaness, M. A. A., Elaziz, M. A., Damaševičius, R., Korytkowski, M., & Ewees, A. A. (2020). Modified Harris Hawks Optimizer for Solving Machine Scheduling Problems. Symmetry, 12(9), 1460. https://doi.org/10.3390/sym12091460