The Entropic Dynamics of Quantum Scalar Fields Coupled to Gravity
Abstract
:1. Introduction
2. Statistical Model for Short Steps
2.1. On Microstates
2.2. Maximum Entropy
2.2.1. The Prior
2.2.2. The Global Constraint
2.3. The Transition Probability
3. Some Notation
4. Entropic Time
4.1. An Instant
4.2. Ordered Instants
4.3. Duration
4.4. The Local-Time Diffusion Equations
4.5. The Phase Functional
5. The Structure of Surface Deformations
6. Entropic Geometrodynamics
6.1. The Canonical Updating Scheme
6.2. The Canonical Variables
7. The Canonical Structure of Space-Time
Path Independence
8. The Canonical Representation
8.1. The Super-Momentum
8.1.1. Gravitational Super-Momentum
8.1.2. The “Matter” Super-Momentum
8.2. The Super-Hamiltonian
8.2.1. Modified Poisson Brackets
8.2.2. The “Matter” Super-Hamiltonian
8.2.3. The Gravitational Super-Hamiltonian
Total super-Hamiltonian
9. The Dynamical Equations
9.1. Some Formalism
9.2. The Evolution of the “Matter” Sector
9.2.1. Dynamical Equations for the Probability and Phase
9.2.2. The Local Time Hamilton-Jacobi Equations
9.3. The Evolution of the Geometrical Variables
9.3.1. Evolution of Metric
9.3.2. Evolution of Conjugate Momentum
10. Quantum Sources of Gravitation
10.1. Quantum Operators in ED
10.2. Geometrodynamics with Quantum Sources
10.3. Quantum Dynamics
But is it Quantum?
11. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carney, D.; Stamp, P.C.E.; Taylor, J.M. Tabletop experiments for quantum gravity: A user’s manual. Class. Quantum Gravity 2019, 36, 034001. [Google Scholar] [CrossRef] [Green Version]
- Surya, S. The causal set approach to quantum gravity. Living Rev. Relativ. 2019, 22, 5. [Google Scholar] [CrossRef] [Green Version]
- Loll, R. Quantum gravity from causal dynamical triangulations: A review. Class. Quantum Gravity 2019, 37, 013002. [Google Scholar] [CrossRef] [Green Version]
- Mukhi, S. String theory: A perspective over the last 25 years. Class. Quantum Gravity 2011, 28, 153001. [Google Scholar] [CrossRef] [Green Version]
- Rovelli, C. Loop quantum gravity: The first 25 years. Class. Quantum Gravity 2011, 28, 153002. [Google Scholar] [CrossRef]
- Henneaux, M.; Teitelboim, C. Quantization of Gauge Systems; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Jacobson, T. Thermodynamics of spacetime: The Einstein equation of state. Phys. Rev. Lett. 1995, 75, 1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verlinde, E.P. On the Origin of Gravity and the Laws of Newton. J. High Energy Phys. 2011, 2011. [Google Scholar] [CrossRef] [Green Version]
- Verlinde, E.P. Emergent gravity and the dark universe. arXiv 2017, arXiv:1611.02269. [Google Scholar] [CrossRef]
- Caticha, A. Geometry from information geometry. In Proceedings of the 35th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Potsdam, NY, USA, 19–24 July 2015; Giffin, A., Knuth, K.H., Eds.; Volume 1757. [Google Scholar]
- Caticha, A. The information geometry of space-time. In Proceedings of the 39th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Garching, Germany, 30 June–5 July 2019; von Toussaint, U., Preuss, R., Eds.; Volume 33. [Google Scholar]
- Hall, M.J.W. Exact uncertainty approach in quantum mechanics and quantum gravity. Gen. Relativ. Gravit. 2005, 37, 1505–1515. [Google Scholar] [CrossRef] [Green Version]
- Reginatto, M. Exact uncertainty principle and quantization: Implications for the gravitational field. Braz. J. Phys. 2005, 35, 476–480. [Google Scholar] [CrossRef] [Green Version]
- Hardy, L. Towards quantum gravity: A framework for probabilistic theories with non-fixed causal structure. J. Phys. A 2007, 40, 3081. [Google Scholar] [CrossRef]
- Hardy, L. The Construction Interpretation: Conceptual Roads to Quantum Gravity. arXiv 2018, arXiv:1807.10980. [Google Scholar]
- Döring, A.; Isham, C.J. A topos foundation for theories of physics: I. Formal languages for physics. J. Math. Phys. 2008, 49, 053515. [Google Scholar] [CrossRef] [Green Version]
- Döring, A.; Isham, C.J. A topos foundation for theories of physics: II. Daseinisation and the liberation of quantum theory. J. Math. Phys. 2008, 49, 053516. [Google Scholar] [CrossRef] [Green Version]
- Caticha, A. Entropic Physics: Probability, Entropy, and the Foundations of Physics. Available online: https://www.albany.edu/physics/faculty/ariel-caticha (accessed on 12 July 2020).
- Rosenkrantz, R.D. (Ed.) ET Jaynes: Papers on Probability, Statistics and Statistical Physics, 1st ed.; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Caticha, A. From entropic dynamics to quantum theory. In Proceedings of the 29th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Oxford, MS, USA, 5–10 July 2009; Goggans, P.M., Chan, C.Y., Eds.; Volume 1193. [Google Scholar]
- Caticha, A. Entropic dynamics, time, and quantum theory. J. Phys. A 2011, 44. [Google Scholar] [CrossRef] [Green Version]
- Caticha, A.; Bartolomeo, D.; Reginatto, M. Entropic Dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics. In Proceedings of the 34th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Amboise, France, 21–26 September 2014; Mohammad-Djafari, A., Barbaresco, F., Eds.; Volume 1641. [Google Scholar]
- Caticha, A. The Entropic Dynamics approach to Quantum Mechanics. Entropy 2019, 21, 943. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.T.; Caticha, A. Entropic dynamics and the quantum measurement problem. In Proceedings of the 31st International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Waterloo, ON, Canada, 9–16 July 2011; Goyal, P., Giffin, A., Knuth, K.H., Vrscay, E., Eds.; Volume 1443. [Google Scholar]
- Vanslette, K.; Caticha, A. Quantum measurement and weak values in entropic dynamics. In Proceedings of the 36th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Ghent, Belgium, 10–15 July 2016; Verdoolaege, G., Ed.; Volume 1853. [Google Scholar]
- Caticha, A. The entropic dynamics of relativistic quantum fields. In Proceedings of the 32nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Garching, Germany, 15–20 July 2012; von Toussaint, U., Ed.; Volume 1553. [Google Scholar]
- Caticha, A.; Ipek, S. Entropic Quantization of Relativistic Scalar Fields. In Proceedings of the 34th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Amboise, France, 21–26 September 2014; Mohammad-Djafari, A., Barbaresco, F., Eds.; Volume 1641. [Google Scholar]
- Ipek, S.; Abedi, M.; Caticha, A. A covariant approach to entropic dynamics. In Proceedings of the 36th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Ghent, Belgium, 10–15 July 2016; Verdoolaege, G., Ed.; Volume 1853. [Google Scholar]
- Ipek, S.; Abedi, M.; Caticha, A. Entropic dynamics: Reconstructing quantum field theory in curved space-time. Class. Quantum Gravity 2019, 36, 205013. [Google Scholar] [CrossRef] [Green Version]
- Ipek, S.; Caticha, A. An Entropic Dynamics Approach to Geometrodynamics. In Proceedings of the 39th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Garching, Germany, 30 June–5 July 2019; von Toussaint, U., Preuss, R., Eds.; Volume 33. [Google Scholar]
- Cox, R.T. Probability, frequency and reasonable expectation. Am. J. Phys. 1946, 14, 1–13. [Google Scholar] [CrossRef]
- Wigner, E.P. Symmetries and Reflections: Scientific Essays; Indiana University Press: Bloomington, Indiana, 1967. [Google Scholar]
- Jeffreys, H. An invariant form for the prior probability in estimation problems. Proc. R. Soc. Lond. A 1946, 186, 453–461. [Google Scholar]
- Jaynes, E.T. Prior probabilities. Syst. Sci. Control. Eng. 1968, 4, 227–241. [Google Scholar] [CrossRef]
- Nelson, E. Connection between Brownian motion and quantum mechanics. In Einstein Symposium Berlin; Springer: Berlin/Heidelberg, Germany, 1979; pp. 168–179. [Google Scholar]
- Kibble, T.W.B. Geometrization of quantum mechanics. Commun. Math. Phys. 1979, 65, 189–201. [Google Scholar] [CrossRef]
- Heslot, A. Quantum mechanics as a classical theory. Phys. Rev. D 1985, 31, 1341. [Google Scholar] [CrossRef]
- Cirelli, R.; Mania, A.; Pizzocchero, L. Quantum mechanics as an infinite-dimensional Hamiltonian system with uncertainty structure: Part I. J. Math. Phys. 1990, 31, 2891–2897. [Google Scholar] [CrossRef]
- Cirelli, R.; Mania, A.; Pizzocchero, L. Quantum mechanics as an infinite-dimensional Hamiltonian system with uncertainty structure: Part II. J. Math. Phys. 1990, 31, 2898–2903. [Google Scholar] [CrossRef]
- Ashtekar, A.; Schilling, T.A. Geometrical formulation of quantum mechanics. In On Einstein’s Path: Essays in Honor of Engelbert Schücking; Harvey, A., Ed.; Springer: New York, NY, USA, 1999; pp. 23–65. [Google Scholar]
- Wallstrom, T.C. Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations. Phys. Rev. A 1994, 49, 1613. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The Hamiltonian form of field dynamics. Can. J. Math. 1951, 3, 1–23. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Lectures on Quantum Mechanics, 2nd ed.; Courier Corporation: Chelmsford, MA, USA, 2013. [Google Scholar]
- Hojman, S.A.; Kuchař, K.; Teitelboim, C. Geometrodynamics regained. Ann. Phys. 1976, 96, 88–135. [Google Scholar] [CrossRef]
- Kuchař, K. A Bubble-Time Canonical Formalism for Geometrodynamics. J. Math. Phys. 1972, 13, 768–781. [Google Scholar] [CrossRef]
- Teitelboim, C. How commutators of constraints reflect the spacetime structure. Ann. Phys. 1973, 79, 542–557. [Google Scholar] [CrossRef]
- Weitzman, C.T. The Hamiltonian Structure of Spacetime. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 1973. [Google Scholar]
- Weiss, P. On the Hamilton-Jacobi theory and quantization of a dynamical continuum. Proc. R. Soc. Lond. A 1938, 169. [Google Scholar] [CrossRef] [Green Version]
- Tomonaga, S. On a relativistically invariant formulation of the quantum theory of wave fields. Prog. Theor. Exp. Phys. 1946, 1, 27–42. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Relativistic quantum mechanics. Proc. R. Soc. Lond. A 1932, 136. [Google Scholar] [CrossRef]
- Schwinger, J. Quantum electrodynamics. I. A covariant formulation. Phys. Rev. 1948, 74, 1439. [Google Scholar] [CrossRef]
- Wald, R.M. Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics; University of Chicago Press: Chicago, IL, USA, 1994. [Google Scholar]
- Stapp, H.P. The copenhagen interpretation. Am. J. Phys. 1972, 40, 1098–1116. [Google Scholar] [CrossRef] [Green Version]
- Leifer, M.S. Is the quantum state real? An extended review of ψ-ontology theorems. arXiv 2014, arXiv:1409.1570. [Google Scholar] [CrossRef]
- Everett, H., III. “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 1957, 29, 454. [Google Scholar] [CrossRef] [Green Version]
- Bartolomeo, D.; Caticha, A. Trading drift and fluctuations in entropic dynamics: Quantum dynamics as an emergent universality class. In Proceedings of the Emergent Quantum Mechanics 2015, Vienna, Austria, 23–25 October 2015; Volume 701. [Google Scholar]
- Dirac, P.A.M. The theory of gravitation in Hamiltonian form. Proc. R. Soc. Lond. A 1958, 246, 333–343. [Google Scholar]
- Arnowitt, R.; Deser, S.; Misner, C.W. Canonical variables for general relativity. Phys. Rev. 1960, 117, 1595. [Google Scholar] [CrossRef] [Green Version]
- Arnowitt, R.; Deser, S.; Misner, C.W. Republication of: The dynamics of general relativity. Gen. Relativ. Gravit. 2008, 40, 1997–2027. [Google Scholar] [CrossRef] [Green Version]
- Gourgoulhon, E. 3+ 1 formalism and bases of numerical relativity. arXiv 2007, arXiv:Gr-qc/0703035. [Google Scholar]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Macmillan: New York, NY, USA, 1973. [Google Scholar]
- Ferraris, M.; Kijowski, J. General relativity is a gauge type theory. Lett. Math. Phys. 1981, 5, 127–135. [Google Scholar] [CrossRef]
- Ashtekar, A. New variables for classical and quantum gravity. Phys. Rev. Lett. 1986, 57, 2244. [Google Scholar] [CrossRef]
- Schutz, B.F. Geometrical Methods of Mathematical Physics; Cambridge University Press: Cambridge, UK, 1980. [Google Scholar]
- Carroll, S.M. Spacetime and Geometry: An Introduction to General Relativity; Addison Wesley: Boston, MA, USA, 2004. [Google Scholar]
- Kibble, T.W.B.; Randjbar-Daemi, S. Non-linear coupling of quantum theory and classical gravity. J. Phys. A 1980, 13, 141. [Google Scholar] [CrossRef]
- Unruh, W.G. Steps towards a quantum theory of gravity. In Quantum Theory of Gravity. Essays in Honor of the 60th Birthday of Bryce S. DeWitt; DeWitt, B.S., Ed.; Adam Hilger Ltd.: Bristol, UK, 1984; pp. 234–242. [Google Scholar]
- Bahrami, M.; Großardt, A.; Donadi, S.; Bassi, A. The Schrödinger–Newton equation and its foundations. New J. Phys. 2014, 16, 115007. [Google Scholar] [CrossRef]
- Eppley, K.; Hannah, E. The necessity of quantizing the gravitational field. Found. Phys. 1977, 7, 51–68. [Google Scholar] [CrossRef]
- Page, D.N.; Geilker, C.D. Indirect evidence for quantum gravity. Phys. Rev. Lett. 1981, 47, 979. [Google Scholar] [CrossRef]
- Duff, M.J. Quantum Gravity 2: A Second Oxford Symposium; Isham, C.J., Penrose, R., Sciama, D.W., Eds.; Clarendon Press: Oxford, UK, 1981. [Google Scholar]
- Kibble, T.W.B. Relativistic models of nonlinear quantum mechanics. Commun. Math. Phys. 1978, 64, 73–82. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ipek, S.; Caticha, A. The Entropic Dynamics of Quantum Scalar Fields Coupled to Gravity. Symmetry 2020, 12, 1324. https://doi.org/10.3390/sym12081324
Ipek S, Caticha A. The Entropic Dynamics of Quantum Scalar Fields Coupled to Gravity. Symmetry. 2020; 12(8):1324. https://doi.org/10.3390/sym12081324
Chicago/Turabian StyleIpek, Selman, and Ariel Caticha. 2020. "The Entropic Dynamics of Quantum Scalar Fields Coupled to Gravity" Symmetry 12, no. 8: 1324. https://doi.org/10.3390/sym12081324
APA StyleIpek, S., & Caticha, A. (2020). The Entropic Dynamics of Quantum Scalar Fields Coupled to Gravity. Symmetry, 12(8), 1324. https://doi.org/10.3390/sym12081324