Bimetallic Mo–Fe Co-Catalyst-Based Nano-Carbon Impregnated on PAC for Optimum Super-Hydrophobicity
"> Figure 1
<p>Parity plot of experimental and predicted values of: (<b>a</b>) <span class="html-italic">CY</span> (%) and (<b>b</b>) <span class="html-italic">CA</span> (°).</p> "> Figure 2
<p>Response surface plots for the effects of the catalyst amount at a fixed reaction time of 40 min on: (<b>a</b>) Yield (%) and (<b>b</b>) <span class="html-italic">CA</span> (°).</p> "> Figure 3
<p><span class="html-italic">CA</span> (°) of carbon nanomaterials (CNMs) (<b>a</b>) S9 (<b>b</b>) S15.</p> "> Figure 4
<p>Response surface plots for the effects of the reaction time at fixed Mo% amount (2%) on: (<b>a</b>) <span class="html-italic">CY</span> (%) and (<b>c</b>) <span class="html-italic">CA</span> (°), and at fixed Fe% amount (5%) on: (<b>b</b>) <span class="html-italic">CY</span> (%) and (<b>d</b>) <span class="html-italic">CA</span> (°).</p> "> Figure 4 Cont.
<p>Response surface plots for the effects of the reaction time at fixed Mo% amount (2%) on: (<b>a</b>) <span class="html-italic">CY</span> (%) and (<b>c</b>) <span class="html-italic">CA</span> (°), and at fixed Fe% amount (5%) on: (<b>b</b>) <span class="html-italic">CY</span> (%) and (<b>d</b>) <span class="html-italic">CA</span> (°).</p> "> Figure 5
<p>Field emission scanning electron microscopic (FESEM) images of CNMs (<b>a</b>) S2 (<b>b</b>) S4 (<b>c</b>) S6 (<b>d</b>) S9 (<b>e</b>) S13 (<b>f</b>) S15.</p> "> Figure 6
<p>Transmission electron microscopic (TEM) images of S15.</p> "> Figure 7
<p>Raman spectra of S9 and S15.</p> "> Figure 8
<p>Thermogravimetric analysis (TGA) spectra of S9 and S15.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of Binary Metal Catalyst
2.3. Impregnation Powdered Activated Carbon (PAC)
2.4. Synthesis of Nanostructured Carbon (CNMs)
2.5. Equipment and Measurements
2.6. Response Surface Methodology and Process Optimization
3. Results and Discussion
3.1. Modeling and Statistical Analysis
3.2. Effect of Catalysts Composition on CNMs Yield% and Contact Angle (CA)
3.3. Effect of Reaction Time on Yield% and Contact Angle (CA)
3.4. Optimization Study
3.5. Surface Morphology Analysis
3.6. Raman Analysis
3.7. TGA Analyses
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Terms | Abbreviation |
Contact Angle | CA |
Carbon Nanomaterials Yield | CY |
Powder Activated Carbon | PAC |
Carbon Nanomaterials | CNMs |
Chemical Vapor Deposition | CVD |
Response Surface Method | RSM |
Box–Behnken Design | BBD |
Field Emission Scanning Electron Microscopy | FESEM |
Transmission Electron Microscopy | TEM |
Carbon Nanofibers | CNFs |
Carbon Nanotubes | CNTs |
Analysis of Variance | ANOVA |
Growth Time | tr |
Radial Breathing Mode | RBM |
Thermogravimetric Analysis | TGA |
References
- Odom, T.W.; Huang, J.L.; Kim, P.; Lieber, C.M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62–64. [Google Scholar] [CrossRef]
- Dillon, A.C.; Jones, K.M.; Bekkedahl, T.A.; Kiang, C.H.; Bethune, D.S.; Heben, M.J. Storage of hydrogen in single-walled carbon nanotubes. Nature 1997, 386, 377–379. [Google Scholar] [CrossRef]
- Treacy, M.M.J.; Ebbesen, T.W.; Gibson, J.M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680. [Google Scholar] [CrossRef]
- Lu, J.P. Novel magnetic properties of carbon nanotubes. Phys. Rev. Lett. 1995, 74, 1123–1126. [Google Scholar] [CrossRef] [Green Version]
- Yohe, S.T.; Colson, Y.L.; Grinstaff, M.W. Superhydrophobic materials for tunable drug release: Using displacement of air to control delivery rates. J. Am. Chem. Soc. 2012, 134, 2016–2019. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, Z.Z.; Hamid, S.B.A.; Das, R.; Hasan, M.R.; Zain, S.M.; Khalid, K.; Uddin, M.N. Preparation of carbonaceous adsorbents from lignocellulosic biomass and their use in removal of contaminants from aqueous solution. BioResources 2013, 8, 6523–6555. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Krishnan, B.; Sagadevan, S.; Rafique, R.F.; Hamizi, N.A.B.; Abdul Wahab, Y.; Khan, A.A.; Johan, R.B.; Al-douri, Y.; Kazi, S.N.; et al. Effect of Temperature on the Physical, Electro-Chemical and Adsorption Properties of Carbon Micro-Spheres Using Hydrothermal Carbonization Process. Nanomaterials 2018, 8, 597. [Google Scholar] [CrossRef]
- Huang, F.Y.C.; Medin, C.; Arning, A. Mechanical Vibration for the Control of Membrane Fouling in Direct Contact Membrane Distillation. Symmetry 2019, 11, 126. [Google Scholar] [CrossRef] [Green Version]
- Das, R.; Ali, M.E.; Hamid, S.B.A.; Ramakrishna, S.; Chowdhury, Z.Z. Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination 2014, 336, 97–109. [Google Scholar] [CrossRef]
- Ma, M.; Mao, Y.; Gupta, M.; Gleason, K.K.; Rutledge, G.C. Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules 2005, 38, 9742–9748. [Google Scholar] [CrossRef]
- Nakajima, A.; Hashimoto, K.; Watanabe, T. Recent studies on super-hydrophobic films. Monatsh. Chem. 2001, 132, 31–41. [Google Scholar] [CrossRef]
- Aljumaily, M.M.; Alsaadi, M.A.; Das, R.; Hamid, S.B.A.; Hashim, N.A.; AlOmar, M.K.; Alayan, H.M.; Novikov, M.; Alsalhy, Q.F.; Hashim, M.A. Optimization of the Synthesis of Superhydrophobic Carbon Nanomaterials by Chemical Vapor Deposition. Sci. Rep. 2018, 8, 2778–2789. [Google Scholar] [CrossRef] [PubMed]
- Alayan, H.M.; Alsaadi, M.A.; Das, R.; Abo-Hamad, A.; Ibrahim, R.K.; AlOmar, M.K.; Hashim, M.A. The formation of hybrid carbon nanomaterial by chemical vapor deposition: An efficient adsorbent for enhanced removal of methylene blue from aqueous solution. Water Sci. Technol. 2018, 77, 1714–1723. [Google Scholar] [CrossRef] [Green Version]
- Mamun, A.A.; Ahmed, Y.M.; Muyibi, S.A.; Al-Khatib, M.F.R.; Jameel, A.T.; AlSaadi, M.A. Synthesis of carbon nanofibers on impregnated powdered activated carbon as cheap substrate. Arab. J. Chem. 2016, 9, 532–536. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, Z.Z.; Abd Hamid, S.B.; Rahman, M.M.; Rafique, R.F. Catalytic Activation and Application of Micro-Spherical Carbon Derived from Hydrothermal Carbonization of Lignocellulosic Biomass: Statistical Analysis Using Box—Behnken Design. RSC Adv. 2016, 6, 102680–102694. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Rakibul, M.H.; Abd Hamid, S.B.; Samsudin, E.M.; Zain, S.M.; Khalid, K. Catalytic Pretreatment of Biochar residues derived from Lignocellulosic Feedstock for Equilibrium Studies of Manganese, Mn (II) cations from aqueous solution. RSC Adv. 2015, 5, 6345–6356. [Google Scholar] [CrossRef]
- Chen, X.W.; Timpe, O.; Hamid, S.B.; Schlögl, R.; Su, D.S. Direct synthesis of carbon nanofibers on modified biomass-derived activated carbon. Carbon 2009, 47, 340–343. [Google Scholar] [CrossRef]
- Delgado, J.J.; Chen, X.-W.; Su, D.S.; Hamid, S.; Schlögl, R. A novel catalyst for synthesis of styrene: Carbon nanofibers immobilized on activated carbon. J Nanosci. Nanotechnol. 2007, 7, 3495–3501. [Google Scholar] [CrossRef]
- Chen, X.W.; Su, D.S.; Schlögl, R. Immobilization of CNFs on the surface and inside of the modified activated carbon. Phys. Status Solidi B 2006, 243, 3533–3536. [Google Scholar] [CrossRef] [Green Version]
- Su, D.S.; Chen, X.; Weinberg, G.; Klein-Hofmann, A.; Timpe, O.; Abd Hamid, S.B.; Schlögl, R. Hierarchically structured carbon: Synthesis of carbon nanofibers nested inside or immobilized onto modified activated carbon. Angew. Chem. Int. Ed. Engl. 2005, 44, 5488–5492. [Google Scholar] [CrossRef]
- Akbarzadeh, O.; Zabidi, N.A.M.; Abdul Wahab, Y.; Hamizi, N.A.; Chowdhury, Z.Z.; Merican, Z.M.A.; Ab Rahman, M.; Akhter, S.; Rasouli, E.; Johan, M.R. Effect of Cobalt Catalyst Confinement in Carbon Nanotubes Support on Fischer-Tropsch Synthesis Performance. Symmetry 2018, 10, 572. [Google Scholar] [CrossRef] [Green Version]
- Das, R.; Ali, M.E.; Hamid, S.B.A.; Annuar, M.; Ramakrishna, S. Common wet chemical agents for purifying multiwalled carbon nanotubes. J Nanomater. 2014, 2014. [Google Scholar] [CrossRef]
- Ding, F.; Larsson, P.; Larsson, J.A.; Ahuja, R.; Duan, H.; Rosen, A.; Bolton, K. The importance of strong carbon–metal adhesion for catalytic nucleation of single-walled carbon nanotubes. Nano Lett. 2008, 8, 463–468. [Google Scholar] [CrossRef]
- Rümmeli, M.H.; Kramberger, C.; Schäffel, F.; Borowiak-Palen, E.; Gemming, T.; Rellinghaus, B.; Jost, O.; Löffler, M.; Ayala, P.; Pichler, T.; et al. Catalyst size dependencies for carbon nanotube synthesis. Phys. Status Solidi B 2007, 244, 3911–3915. [Google Scholar] [CrossRef]
- Li, W.Z.; Wen, J.G.; Ren, Z.F. Straight carbon nanotube Y junctions. Appl. Phys. Lett. 2001, 79, 1879–1881. [Google Scholar] [CrossRef]
- Huang, Z.P.; Wang, D.Z.; Wen, J.G.; Sennett, M.; Gibson, H.; Ren, Z.F. Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes. Appl. Phys. A 2002, 74, 387–391. [Google Scholar] [CrossRef]
- Cassell, A.M.; Raymakers, J.A.; Kong, J.; Dai, H. Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes. J. Phys. Chem. B 1999, 103, 6484–6492. [Google Scholar] [CrossRef]
- Flahaut, E.; Govindaraj, A.; Peigney, A.; Laurent, C.H.; Rousset, A.; Rao, C.N.R. Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions. Chem. Phys. Lett. 1999, 300, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Kiang, C.H.; Goddard III, W.A.; Beyers, R.; Salem, J.S.; Bethune, D.S. Catalytic effects of heavy metals on the growth of carbon nanotubes and nanoparticles. J. Phys. Chem. Solids 1996, 57, 35–39. [Google Scholar] [CrossRef]
- Sugime, H.; Noda, S.; Maruyama, S.; Yamaguchi, Y. Multiple “optimum” conditions for Co–Mo catalyzed growth of vertically aligned single-walled carbon nanotube forests. Carbon 2009, 47, 234–241. [Google Scholar] [CrossRef]
- Biris, A.R.; Li, Z.; Dervishi, E.; Lupu, D.; Xu, Y.; Saini, V.; Watanabe, F.; Biris, A.S. Effect of hydrogen on the growth and morphology of single wall carbon nanotubes synthesized on a Fe–Mo/MgO catalytic system. Phys. Lett. A 2008, 372, 3051–3057. [Google Scholar] [CrossRef]
- Cui, Y.; Wu, X.; Wu, H.; Tian, Y.; Chen, Y. Optimization of synthesis condition for carbon nanotubes by chemical vapor deposition on Fe–Ni–Mo/MgO catalyst. Mater. Lett. 2008, 62, 3878–3880. [Google Scholar] [CrossRef]
- Niu, Z.; Fang, Y. Effect of temperature for synthesizing single-walled carbon nanotubes by catalytic chemical vapor deposition over Mo–Co–MgO catalyst. Mater. Res. Bull. 2008, 43, 1393–1400. [Google Scholar] [CrossRef]
- Saito, T.; Ohshima, S.; Xu, W.C.; Ago, H.; Yumura, M.; Iijima, S. Size control of metal nanoparticle catalysts for the gas-phase synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 2005, 109, 10647–10652. [Google Scholar] [CrossRef]
- Karim, M.Z.; Chowdhury, Z.Z.; Abd Hamid, S.B.; Ali, M.E. Statistical Optimization for Acid Hydrolysis of Microcrystalline Cellulose and Its Physiochemical Characterization by Using Metal Ion Catalyst. Materials 2014, 7, 6982–6999. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Chandran, R.R.R.; Jahan, A.; Khalid, K.; Rahman, M.M.; Al-Amin, M.; Akbarzadeh, O.; Badruddin, I.A.; Khan, T.M.Y.; Kamangar, S.; et al. Extraction of Cellulose Nano-Whiskers Using Ionic Liquid-Assisted Ultra-Sonication: Optimization and Mathematical Modelling Using Box—Behnken Design. Symmetry 2019, 11, 1148. [Google Scholar] [CrossRef] [Green Version]
- Adebisi, G.A.; Chowdhury, Z.Z.; Alaba, P.A. Equilibrium, Kinetic, and Thermodynamic Studies of Lead Ion and Zinc Ion Adsorption from Aqueous Solution onto Activated Carbon Prepared from Palm Oil Mill Effluent. J. Clean. Prod. 2017, 148, 958–968. [Google Scholar] [CrossRef]
- Aljumaily, M.M.; Alsaadi, M.A.; Hashim, N.A.; Alsalhy, Q.F.; Mjalli, F.S.; Atieh, M.A.; Al-Harrasi, A. PVDF-co-HFP/superhydrophobic acetylene-based nanocarbon hybrid membrane for seawater desalination via DCMD. Chem. Eng. Res. Des. 2018, 138, 248–259. [Google Scholar] [CrossRef]
- Das, R.; Hamid, S.B.A.; Annuar, M.S.M. Highly efficient and stable novel nanobiohybrid catalyst to avert 3,4-dihydroxybenzoic acid pollutant in water. Sci. Rep. 2016, 6, 33572. [Google Scholar] [CrossRef] [Green Version]
- AlSaadi, M.A.; Al-Mamun, A.; Muyibi, S.A.; Alam, M.Z.; Sopyan, I.; Atieh, M.A.; Ahmed, Y.M. Synthesis of various carbon nanomaterials (CNMs) on powdered activated carbon. Afr. J. Biotechnol. 2011, 10, 18892–18905. [Google Scholar]
- Dupuis, A.C. The catalyst in the CCVD of carbon nanotubes—A review. Prog. Mater. Sci. 2005, 50, 929–961. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Q.; Zhang, Q.; Wang, Q.; Ning, G.; Luo, G.; Wei, F. Effect of the reaction atmosphere on the diameter of single-walled carbon nanotubes produced by chemical vapor deposition. Carbon 2006, 44, 1706–1712. [Google Scholar] [CrossRef]
- Lu, Z.; Sun, M.; Xu, T.; Li, Y.; Xu, W.; Chang, Z.; Ding, Y.; Sun, X.; Jiang, L. Superaerophobic electrodes for direct hydrazine fuel cells. Adv. Mater. 2015, 27, 2361–2366. [Google Scholar] [CrossRef]
- Wenzel, R.N. Surface Roughness and Contact Angle. J. Phys. Chem. 1949, 53, 1466–1467. [Google Scholar] [CrossRef]
- Hiura, H.; Ebbesen, T.W.; Tanigaki, K.; Takahashi, H. Raman studies of carbon nanotubes. Chem. Phys. Lett. 1993, 202, 509–512. [Google Scholar] [CrossRef]
- Bahr, J.L.; Yang, J.; Kosynkin, D.V.; Bronikowski, M.J.; Smalley, R.E.; Tour, J.M. Functionalization of Carbon Nanotubes by Electrochemical Reduction of Aryl Diazonium Salts: A Bucky Paper Electrode. J. Am. Chem. Soc. 2001, 123, 6536–6542. [Google Scholar] [CrossRef]
- Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K.S.; Casiraghi, C. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 2012, 12, 3925–3930. [Google Scholar] [CrossRef] [Green Version]
- Maroto-Valer, M.M.; Dranca, I.; Lupascu, T.; Nastas, R. Effect of adsorbate polarity on thermodesorption profiles from oxidized and metal-impregnated activated carbons. Carbon 2004, 42, 2655–2659. [Google Scholar] [CrossRef]
Sample | Amount of Fe% | Amount of Mo% | Time (min) | CY (%) | CA (°) |
---|---|---|---|---|---|
(Fe)-A | (Mo)-B | (tr)-C | (CY) | (CA) | |
S1 | 0.00 | 2.00 | 60.00 | 55.3 | 133 |
S2 | 0.00 | 4.00 | 40.00 | 22.2 | 92 |
S3 | 2.50 | 4.00 | 20.00 | 90.4 | 127 |
S4 | 2.50 | 4.00 | 60.00 | 180.9 | 152 |
S5 | 2.50 | 0.00 | 20.00 | 35.6 | 98 |
S6 | 5.00 | 2.00 | 60.00 | 240.1 | 160 |
S7 | 5.00 | 2.00 | 20.00 | 167.5 | 155 |
S8 | 5.00 | 4.00 | 40.00 | 117.6 | 142 |
S9 | 5.00 | 0.00 | 40.00 | 76.4 | 176 |
S10 | 0.00 | 2.00 | 20.00 | 152.6 | 140 |
S11 | 2.50 | 2.00 | 40.00 | 193.9 | 144 |
S12 | 2.50 | 2.00 | 40.00 | 188.6 | 150 |
S13 | 2.50 | 2.00 | 40.00 | 189.4 | 146 |
S14 | 2.50 | 0.00 | 60.00 | 59 | 136 |
S15 | 5.00 | 2.00 | 40.00 | 320.6 | 172 |
Source | Sum of Squares | DF | Mean Square | F Value | Prob > F | R2 |
---|---|---|---|---|---|---|
Linear | 28,664.25 | 3 | 9554.75 | 1.56 | 0.2552 | 0.2981 |
2FI | 9239.03 | 3 | 3079.68 | 0.42 | 0.7419 | 0.3941 |
Quadratic | 13,599.38 | 3 | 4533.13 | 5.47 | 0.0491 | 0.8684 |
Source | Sum of Squares | DF | Mean Square | F Value | Prob > F | R2 |
---|---|---|---|---|---|---|
Linear | 2117.18 | 3 | 290.45 | 3.88 | 0.0408 | 0.5142 |
2FI | 351.18 | 3 | 117.06 | 0.57 | 0.6515 | 0.5995 |
Quadratic | 758.97 | 3 | 252.99 | 1.42 | 0.3403 | 0.8938 |
Source | Sum of Squares | df | Mean Square | F Value | Prob > F |
---|---|---|---|---|---|
A | 9970.02 | 1 | 9970.02 | 1221.32 | 0.0008 |
B | 15,165.92 | 1 | 15,165.92 | 1857.81 | 0.0005 |
C | 2.72 | 1 | 2.72 | 0.33 | 0.6220 |
AB | 10,397.70 | 1 | 10,397.70 | 1273.71 | 0.0008 |
AC | 7216.50 | 1 | 7216.50 | 884.01 | 0.0011 |
BC | 473.06 | 1 | 473.06 | 57.95 | 0.0168 |
A2 | 4056.43 | 1 | 4056.43 | 496.91 | 0.0020 |
B2 | 592.77 | 1 | 592.77 | 72.61 | 0.0135 |
C2 | 9110.41 | 1 | 9110.41 | 1116.02 | 0.0009 |
A2B | 13,452.27 | 1 | 13,452.27 | 1647.89 | 0.0006 |
A2C | 98.00 | 1 | 98.00 | 12.00 | 0.0742 |
AB2 | 11,999.82 | 1 | 11,999.82 | 1469.97 | 0.0007 |
Source | Sum of Squares | df | Mean Square | F Value | Prob > F |
---|---|---|---|---|---|
A | 441.00 | 1 | 441.00 | 47.25 | 0.0269 |
B | 210.25 | 1 | 210.25 | 22.53 | 0.0205 |
C | 552.25 | 1 | 552.25 | 59.17 | 0.0416 |
AB | 23.05 | 1 | 23.05 | 2.47 | 0.0165 |
AC | 36.00 | 1 | 36.00 | 3.86 | 0.2566 |
BC | 2.25 | 1 | 2.25 | 0.24 | 0.1885 |
A2 | 138.96 | 1 | 138.96 | 14.89 | 0.6720 |
B2 | 3.333 × 103 | 1 | 3.333 × 103 | 3.571 × 104 | 0.0611 |
C2 | 140.17 | 1 | 140.17 | 15.02 | 0.9866 |
A2B | 200.52 | 1 | 200.52 | 21.48 | 0.0435 |
A2C | 300.12 | 1 | 300.12 | 32.16 | 0.0297 |
AB2 | 30.66 | 1 | 30.66 | 3.28 | 0.2116 |
No. | Amount of Fe% | Amount of Mo% | Time (min) | CY | CA (°) | Desirability |
---|---|---|---|---|---|---|
1 | 5.00 | 2.18 | 42.26 | 315.139 | 173.62 | 1.000 |
2 | 5.00 | 1.80 | 43.06 | 319.296 | 167.31 | 0.996 |
3 | 5.00 | 1.78 | 43.84 | 318.729 | 163.62 | 0.990 |
4 | 5.00 | 1.79 | 40.34 | 316.753 | 166.66 | 0.987 |
5 | 5.00 | 1.80 | 42.66 | 319.311 | 164.64 | 0.981 |
Sample | Average Size (nm) | Particles Size Distribution (%) | |||
---|---|---|---|---|---|
0–50 nm | 50–100 nm | 100–150 nm | 150–200 nm | ||
S4 | 85.43 | 5 | 32 | 44 | 19 |
S6 | 117.71 | 7 | 19 | 41 | 33 |
S9 | 56.69 | 64 | 20 | 8 | 8 |
S13 | 70.94 | 37 | 50 | 10 | 3 |
S15 | 81.68 | 13 | 68 | 14 | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betar, B.O.; Alsaadi, M.A.; Chowdhury, Z.Z.; Aroua, M.K.; Mjalli, F.S.; Dimyati, K.; Hindia, M.N.; Elfghi, F.M.; Ahmed, Y.M.; Abbas, H.F. Bimetallic Mo–Fe Co-Catalyst-Based Nano-Carbon Impregnated on PAC for Optimum Super-Hydrophobicity. Symmetry 2020, 12, 1242. https://doi.org/10.3390/sym12081242
Betar BO, Alsaadi MA, Chowdhury ZZ, Aroua MK, Mjalli FS, Dimyati K, Hindia MN, Elfghi FM, Ahmed YM, Abbas HF. Bimetallic Mo–Fe Co-Catalyst-Based Nano-Carbon Impregnated on PAC for Optimum Super-Hydrophobicity. Symmetry. 2020; 12(8):1242. https://doi.org/10.3390/sym12081242
Chicago/Turabian StyleBetar, Bashir O, Mohammed A Alsaadi, Zaira Z. Chowdhury, Mohamed K Aroua, Farouq S. Mjalli, Kaharudin Dimyati, MHD N Hindia, Fawzi M. Elfghi, Yehya M. Ahmed, and Hazim F Abbas. 2020. "Bimetallic Mo–Fe Co-Catalyst-Based Nano-Carbon Impregnated on PAC for Optimum Super-Hydrophobicity" Symmetry 12, no. 8: 1242. https://doi.org/10.3390/sym12081242
APA StyleBetar, B. O., Alsaadi, M. A., Chowdhury, Z. Z., Aroua, M. K., Mjalli, F. S., Dimyati, K., Hindia, M. N., Elfghi, F. M., Ahmed, Y. M., & Abbas, H. F. (2020). Bimetallic Mo–Fe Co-Catalyst-Based Nano-Carbon Impregnated on PAC for Optimum Super-Hydrophobicity. Symmetry, 12(8), 1242. https://doi.org/10.3390/sym12081242