Cross-Sectional Performance of Hollow Square Prisms with Rounded Edges
<p>(<b>a</b>) Photo of the cross-section of a square bamboo: <span class="html-italic">Chimonobambusa quadrangularis</span> (Franceschi) Makino. (<b>b</b>) Approximate curve of the square bamboo’s cross-section. (<b>c</b>) Square cross-section of the mint stem; <span class="html-italic">Lamium album</span> var. <span class="html-italic">barbatum</span> [<a href="#B12-symmetry-12-00996" class="html-bibr">12</a>]. (<b>d</b>) Triangular cross-section of the papyrus stem; <span class="html-italic">Cyperus microiria</span> [<a href="#B13-symmetry-12-00996" class="html-bibr">13</a>].</p> "> Figure 2
<p>A rounded square model with a four-fold symmetry. Schematic definitions of the three parameters, <span class="html-italic">ℓ</span>, <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, and <span class="html-italic">h</span> are shown.</p> "> Figure 3
<p>(<b>a</b>) Geometric variation of a rounded square due to changes in the variables <math display="inline"><semantics> <mi>θ</mi> </semantics></math> and <span class="html-italic">ℓ</span> under the condition where the enclosed area <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mi>π</mi> <msubsup> <mi>a</mi> <mn>0</mn> <mn>2</mn> </msubsup> </mrow> </semantics></math> is fixed. The constant <math display="inline"><semantics> <msub> <mi>a</mi> <mn>0</mn> </msub> </semantics></math> serves as the unit of length. Dotted lines show the reference squares with side length <span class="html-italic">ℓ</span>. (<b>b</b>) Dependence of the small sector’s radius <span class="html-italic">h</span> on <math display="inline"><semantics> <mi>θ</mi> </semantics></math>. The value of <math display="inline"><semantics> <mrow> <mo>ℓ</mo> <mo>/</mo> <msub> <mi>a</mi> <mn>0</mn> </msub> </mrow> </semantics></math> is varied with an interval of <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>.</mo> <mn>2</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Improvement ratios, <math display="inline"><semantics> <mi>η</mi> </semantics></math> and <math display="inline"><semantics> <mi>ζ</mi> </semantics></math>, for the case of <math display="inline"><semantics> <mrow> <msub> <mo>ℓ</mo> <mi>out</mi> </msub> <mo>/</mo> <msub> <mi>a</mi> <mi>out</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>.</mo> <mn>2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mo>ℓ</mo> <mi>inn</mi> </msub> <mo>/</mo> <msub> <mi>a</mi> <mi>inn</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>8</mn> </mrow> </semantics></math>. (<b>a</b>) <math display="inline"><semantics> <mi>η</mi> </semantics></math> as a function of <math display="inline"><semantics> <msub> <mi>θ</mi> <mi>out</mi> </msub> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <mi>ζ</mi> </semantics></math> as a function of <math display="inline"><semantics> <msub> <mi>θ</mi> <mi>out</mi> </msub> </semantics></math>. Upper (black) and lower (gray) branches correspond to the results with respect to Axis-1 and Axis-2 depicted in <a href="#symmetry-12-00996-f001" class="html-fig">Figure 1</a>b, respectively.</p> "> Figure 5
<p>Improvement ratios for the case of <math display="inline"><semantics> <mrow> <msub> <mo>ℓ</mo> <mi>out</mi> </msub> <mo>/</mo> <msub> <mi>a</mi> <mi>out</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>8</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mo>ℓ</mo> <mi>inn</mi> </msub> <mo>/</mo> <msub> <mi>a</mi> <mi>inn</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>.</mo> <mn>2</mn> </mrow> </semantics></math>. (<b>a</b>) <math display="inline"><semantics> <mi>η</mi> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mi>ζ</mi> </semantics></math>.</p> "> Figure 6
<p>(<b>a</b>) A model of a triangular cross-section with rounded sides and filleted corners, mimicking the cross-section of a papyrus; see <a href="#symmetry-12-00996-f001" class="html-fig">Figure 1</a>. (<b>b</b>) A model of a non-symmetric hollow square cross-section.</p> "> Figure A1
<p>(<b>a</b>) Circular sector defined by the angles <math display="inline"><semantics> <mi>α</mi> </semantics></math> and <math display="inline"><semantics> <mi>β</mi> </semantics></math> and the radius <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>. (<b>b</b>) Right-angle triangle with the base <span class="html-italic">d</span> and the apex <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math>.</p> "> Figure A2
<p>Diagram of the four domains in the first quadrant (<math display="inline"><semantics> <mrow> <mi>x</mi> <mo>></mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>></mo> <mn>0</mn> </mrow> </semantics></math>) of the rounded square. Each domain is marked by a gray area. <math display="inline"><semantics> <msub> <mi>J</mi> <mi>i</mi> </msub> </semantics></math><math display="inline"><semantics> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <mn>2</mn> <mo>,</mo> <mspace width="3.33333pt"/> <mn>3</mn> <mo>,</mo> <mspace width="3.33333pt"/> <mn>4</mn> <mo>)</mo> </mrow> </semantics></math> represents the second moment of area of the <span class="html-italic">i</span>th domain with respect to the <span class="html-italic">x</span> axis. (<b>a</b>) Domain 1; the gray area obtained by excluding the shaded right triangle from the vertically elongated sector. (<b>b</b>) Domain 2; the gray area obtained by excluding the triangle from the long sector. (<b>c</b>) Domain 3 (the gray small sector at the upper right) and Domain 4 (the gray kite-shaped square obtained by excluding the two shaded triangles from the right square).</p> ">
Abstract
:1. Introduction
2. Modeling a Rounded Square with Filleted Corners
3. Cross-Sectional Performance
4. Numerical Conditions
5. Results: Improvement Ratio
6. Discussion
6.1. Variable Range Estimation of and
6.2. Effect of the Fillet at the Vertices
6.3. Implication for the Mechanical Rigidity and Strength
6.4. Versatility of the Theoretical Model
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Parameters | d | ||||
---|---|---|---|---|---|
Domain 1 | |||||
Domain 2 | 0 | ||||
Domain 3 | h | n/a | n/a | ||
Domain 4 | n/a | n/a | n/a |
Appendix C
References
- Galileo, G. Discorsi e Dimostrazioni Matematiche Intorno a Due Nuove Scienze Attenenti Alla Meccanica e i Movimenti Locali; Elzeviro, L., Ed.; Appresso gli Elsevirii: Leida, The Netherlands, 1638. [Google Scholar]
- Shima, H.; Sato, M.; Inoue, A. Self-adaptive formation of uneven node spacings in wild bamboo. Phys. Rev. E 2016, 93, 022406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, M.; Inoue, A.; Shima, H. Bamboo-inspired optimal design for functionally graded hollow cylinders. PLoS ONE 2017, 12, e0175029. [Google Scholar] [CrossRef] [PubMed]
- Scurlock, J.M.O.; Dayton, D.C.; Hames, B. Bamboo: An overlooked biomass resource? Biomass Bioenergy 2000, 19, 229–244. [Google Scholar] [CrossRef] [Green Version]
- Inoue, A.; Sato, M.; Shima, H. Maximum size-density relationship in bamboo forests: Case study of Phyllostachys pubescens forests in Japan. For. Ecol. Manag. 2018, 425, 138–144. [Google Scholar] [CrossRef]
- Inoue, A.; Shimada, M.; Sato, M.; Shima, H. Estimation of culm volume reduction factors in five bamboo species (Phyllostachys spp.). J. For. Res. 2019, 30, 2069–2078. [Google Scholar] [CrossRef]
- Song, X.; Peng, C.; Zhou, G.; Gu, H.; Li, Q.; Zhang, C. Dynamic allocation and transfer of non-structural carbohydrate, a possible mechanism for the explosive growth of moso bamboo (Phyllostachys heterocycle). Sci. Rep. 2016, 6, 25908. [Google Scholar] [CrossRef] [PubMed]
- Yen, T.M. Culm height development, biomass accumulation and carbon storage in an initial growth stage for a fast-growing moso bamboo (Phyllostachys pubescens). Bot. Stud. 2016, 57, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrelly, D. The Book of Bamboo; Sierra Club Books: San Francisco, CA, USA, 1984. [Google Scholar]
- Inoue, A.; Koshikawa, K.; Sato, M.; Shima, H. Allometric equations for predicting the aboveground biomass of square bamboo, Chimonobambusa quadrangularis. J. For. Res. 2019, 24, 376–381. [Google Scholar] [CrossRef]
- Gielis, J. The Geometrical Beauty of Plants; Atlantis Press: Paris, France, 2017. [Google Scholar]
- A Photo Taken from FUKUHARA’s Website. Available online: https://ww1.fukuoka-edu.ac.jp/~fukuhara/keitai/4-2.html (accessed on 21 May 2020).
- A Photo Taken from MATSUMOMUSHI’s Website. Available online: http://plants.minibird.jp/hydrophytes/plants/shissei/sa_gyou/sankakui/sankakui.html (accessed on 21 May 2020).
- Lamé, G. Examen de Differentes Méthodes Employées Pour Résoudre les Problèmes de Géometrie; M. V. Courcier Imprimeur Libraire: Paris, France, 1818. [Google Scholar]
- Shi, P.J.; Huang, J.G.; Hui, C.; Grissino-Mayer, H.D.; Tardif, J.C.; Zhai, L.H.; Wang, F.S.; Li, B.L. Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape. Front. Plant Sci. 2015, 6, 856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gielis, J. A generic geometric transformation that unifies a wide range of natural and abstract shapes. Am. J. Bot. 2003, 90, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Gielis, J.; Caratelli, D.; Fougerolle, Y.; Ricci, P.E.; Tavkelidze, I.; Gerats, T. Universal natural shapes: From unifying shape description to simple methods for shape analysis and boundary value problems. PLoS ONE 2012, 7, e3974968. [Google Scholar] [CrossRef]
- Shi, P.; Ratkowsky, D.A.; Gielis, J. The generalized Gielis geometric equation and its application. Symmetry 2020, 12, 645. [Google Scholar] [CrossRef] [Green Version]
- Jafari, M.; Chaleshtari, M.H.B.; Abdolalian, H.; Craciun, E.M.; Feo, L. Determination of forces and moments per unit length in symmetric exponential FG plates with a quasi-triangular hole. Symmetry 2020, 12, 834. [Google Scholar] [CrossRef]
- Klingenberg, C. Analyzing fluctuating asymmetry with geometric morphometrics: Concepts, methods, and applications. Symmetry 2015, 7, 843–934. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, D.; Kahlen, K. Towards more realistic leaf shapes in functional-structural plant models. Symmetry 2018, 10, 278. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.; Zheng, X.; Ratkowsky, D.; Li, Y.; Wang, P.; Cheng, L. A simple method for measuring the bilateral symmetry of leaves. Symmetry 2018, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Shi, P.J.; Li, L.; Chen, G. A new flexible sigmoidal growth model. Symmetry 2019, 11, 204. [Google Scholar] [CrossRef] [Green Version]
- Gielis, J.; Caratelli, D.; Shi, P.; Ricci, P.E. A note on spirals and curvature. Growth Form 2020, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Dargahi, M.; Newson, T.; Moore, J. Buckling behaviour of trees under self-weight loading. Forestry 2019, 92, 393–405. [Google Scholar] [CrossRef]
- Fiorello, I.; Dottore, E.D.; Tramacere, F.; Mazzolai, B. Taking inspiration from climbing plants: Methodologies and benchmarks—A review. Bioinspir. Biomim. 2020, 15, 031001. [Google Scholar] [CrossRef]
- Gere, J.M.; Timoshenko, S.P. Mechanics of Materials; Van Nostrand Reinhold Company: New York, NY, USA, 1972. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shima, H.; Furukawa, N.; Kameyama, Y.; Inoue, A.; Sato, M. Cross-Sectional Performance of Hollow Square Prisms with Rounded Edges. Symmetry 2020, 12, 996. https://doi.org/10.3390/sym12060996
Shima H, Furukawa N, Kameyama Y, Inoue A, Sato M. Cross-Sectional Performance of Hollow Square Prisms with Rounded Edges. Symmetry. 2020; 12(6):996. https://doi.org/10.3390/sym12060996
Chicago/Turabian StyleShima, Hiroyuki, Nao Furukawa, Yuhei Kameyama, Akio Inoue, and Motohiro Sato. 2020. "Cross-Sectional Performance of Hollow Square Prisms with Rounded Edges" Symmetry 12, no. 6: 996. https://doi.org/10.3390/sym12060996
APA StyleShima, H., Furukawa, N., Kameyama, Y., Inoue, A., & Sato, M. (2020). Cross-Sectional Performance of Hollow Square Prisms with Rounded Edges. Symmetry, 12(6), 996. https://doi.org/10.3390/sym12060996