A New SLM-UFMC Model for Universal Filtered Multi-Carrier to Reduce Cubic Metric and Peak to Average Power Ratio in 5G Technology
<p>The main features of the 5G networks.</p> "> Figure 2
<p>Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM-based Selected Mapping (SLM) scheme.</p> "> Figure 3
<p>Simulation design.</p> "> Figure 4
<p>Universal Filtered Multicarrier (UFMC) baseband transceiver.</p> "> Figure 5
<p>The 4-Quadrature Amplitude Modification (QAM) and 4-Phase Rotation Vector (PRV) results of scenario 1.</p> "> Figure 6
<p>The 4-QAM and 6-PRV results of scenario 1.</p> "> Figure 7
<p>The 4-QAM and 8-PRV results of scenario 1.</p> "> Figure 8
<p>The 16-QAM and 4-PRV results of scenario 2.</p> "> Figure 9
<p>The 16-QAM and 6-PRV results of scenario 2.</p> "> Figure 10
<p>The 16-QAM and 8-PRV results of scenario 2.</p> "> Figure 11
<p>The 64-QAM and 4-PRV results of scenario 3.</p> "> Figure 12
<p>The 64-QAM and 6-PRV results of scenario 3.</p> "> Figure 13
<p>The 64-QAM and 8-PRV results of scenario 3.</p> "> Figure 14
<p>The 256-QAM and 4-PRV results of scenario 4.</p> "> Figure 15
<p>The 256-QAM and 6-PRV results of scenario 4.</p> "> Figure 16
<p>The 256-QAM and 8-PRV results of scenario 4.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation Model and Parameters
2.2. The Evaluation Metric
3. Mathematical Models
3.1. UFMC System Model
3.2. UFMC Based SLM System
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.; Lozano, A.; Soong, A.C.K.; Zhang, J.C. What Will 5G Be? arXiv 2014, arXiv:1405.2957. [Google Scholar] [CrossRef]
- Al-Jawhar, Y.A.; Ramli, K.N.; Mustapha, A.; Mostafa, S.A.; Shah, N.S.M.; Taher, M.A. Reducing PAPR with Low Complexity for 4G and 5G Waveform Designs. IEEE Access 2019, 7, 97673–97688. [Google Scholar] [CrossRef]
- Sexton, C.; Kaminski, N.J.; Marquez-Barja, J.M.; Marchetti, N.; Da Silva, L.A. 5G: Adaptable Networks Enabled by Versatile Radio Access Technologies. IEEE Commun. Surv. Tutor. 2017, 19, 688–720. [Google Scholar] [CrossRef]
- Agiwal, M.; Roy, A.; Saxena, N. Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2016, 18, 1617–1655. [Google Scholar] [CrossRef]
- Medjahdi, Y.; Traverso, S.; Gerzaguet, R.; Shaiek, H.; Zayani, R.; Demmer, D.; Zakaria, R.; Dore, J.B.; Mabrouk, M.B.; Le Ruyet, D.; et al. On the Road to 5G: Comparative Study of Physical Layer in MTC Context. IEEE Access. 2017, 5, 26556–26581. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, L.; Liu, S.; Zhang, Z. A Survey: Several Technologies of Non-Orthogonal Transmission for 5G. China Commun. 2015, 12, 1–15. [Google Scholar] [CrossRef]
- Nissel, R.; Schwarz, S.; Rup, M. Filter Bank Multicarrier Modulation Schemes for Future Mobile Communications. IEEE J. Sel. Areas Commun. 2017, 35, 1768–1782. [Google Scholar] [CrossRef]
- Sheikh, J.A.; Mir, Z.I.; Parah, S.A.; Bhat, G.M. A New Filter Bank Multicarrier (FBMC) Based Cognitive Radio for 5G Networks Using Optimization Techniques. Wirel. Pers. Commun. 2020. [Google Scholar] [CrossRef]
- Farhang-Boroujeny, B. OFDM Versus Filter Bank Multicarrier. IEEE Signal. Process. Mag. 2011, 28, 92–112. [Google Scholar] [CrossRef]
- Abdoli, J.; Jia, M.; Jianglei Ma, J. Filtered OFDM: A New Waveform for Future Wireless Systems. In Proceedings of the IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Stockholm, Sweden, 28 June–1 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 66–70. [Google Scholar]
- Wild, T.; Schaich, F.; Yejian Chen, Y. 5G Air Interface Design Based on Universal Filtered (UF-) OFDM. In Proceedings of the 19th International Conference on Digital Signal. Processing (DSP), Hong Kong, China, 20–23 August 2014; IEEE: Piscataway, NJ. USA, 2014; pp. 699–704. [Google Scholar]
- Wunder, G.; Fischer, R.F.; Boche, H.; Litsyn, S.; No, J.S. The PAPR Problem in OFDM Transmission: New Directions for a Long-Lasting Problem. IEEE Signal. Process. Mag. 2013, 30, 130–144. [Google Scholar] [CrossRef] [Green Version]
- Chafii, M.; Palicot, J.; Gribonval, R.; Bader, F. A Necessary Condition for Waveforms with Better PAPR Than OFDM. IEEE Trans. Commun. 2016, 64, 3395–3405. [Google Scholar] [CrossRef]
- Markku, R.; Yli-Kaakinen, J.; Valkama, M. Power Amplifier Effects on Frequency Localized 5G Candidate Waveforms. In Proceedings of the 22nd European Wireless Conference, Oulu, Finland, 18–20 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar]
- Sendrei, L.; Marchevský, S.; Michailow, N.; Fettweis, G. Iterative Receiver for Clipped GFDM Signals. In Proceedings of the 24th International Conference Radioelektronika, Bratislava, Slovakia, 15–16 April 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–4. [Google Scholar]
- Rahmatallah, Y.; Mohan, S. Peak-To-Average Power Ratio Reduction in OFDM Systems: A Survey and Taxonomy. IEEE Commun. Surv. Tutor. 2013, 15, 1567–1592. [Google Scholar] [CrossRef]
- Jiang, T.; Yang, Y.; Song, Y.H. Exponential Companding Technique for PAPR Reduction in OFDM Systems. IEEE Trans. Broadcasting 2005, 51, 244–248. [Google Scholar] [CrossRef]
- Omidi, M.J.; Minasian, A.; Saeedi-Sourck, H.; Kasiri, K.; Hosseini, I. PAPR Reduction in OFDM Systems: Polynomial-Based Compressing and Iterative Expanding. Wirel. Pers. Commun. 2014, 75, 103–118. [Google Scholar] [CrossRef]
- Gopal, R.; Kumar Patra, S. Combining Tone Injection and Companding Techniques for PAPR Reduction of FBMC-OQAM System. In Proceedings of the Global Conference on Communication Technologies (GCCT), Thuckalay, India, 23–24 April 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 709–713. [Google Scholar]
- Skrzypczak, A.; Javaudin, J.P.; Siohan, P. Reduction of the Peak-to-Average Power Ratio for the OFDM/OQAM Modulation. In Proceedings of the IEEE 63rd Vehicular Technology Conference, Melbourne, Australia, 7–10 May 2006; IEEE: Piscataway, NJ, USA, 2006; Volume 4, pp. 2018–2022. [Google Scholar]
- Skrzypczak, A.; Javaudin, J.P.; Siohan, P. Overlapped Selective Mapping for Pulse-Shaped Multi-Carrier Modulations. In Proceedings of the IEEE Vehicular Technology Conference, Montreal, QC, Canada, 25–28 September 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 1–5. [Google Scholar]
- Shukla, J.; Joshi, A.; Tyagi, R. PAPR Analysis of OFDM System Using AI Based Multiple Signal Representation Methods. Telecommun. Comput. Electron. Control 2019, 17, 2983. [Google Scholar] [CrossRef]
- Müller, S.H.; Huber, J.B. OFDM with Reduced Peak-to-Average Power Ratio by Optimum Combination of Partial Transmit Sequences. Electron. Lett. 1997, 33, 368. [Google Scholar] [CrossRef] [Green Version]
- Bäuml, R.W.; Fischer, R.F.H.; Huber, J.B. Reducing the Peak-to-Average Power Ratio of Multicarrier Modulation by Selected Mapping. Electron. Lett. 1996, 32, 2056. [Google Scholar] [CrossRef] [Green Version]
- Joo, H.S.; Heo, S.J.; Jeon, H.B.; No, J.S.; Shin, D.J. A New Blind SLM Scheme with Low Decoding Complexity for OFDM Systems. IEEE Trans. Broadcast. 2012, 58, 669–676. [Google Scholar] [CrossRef]
- Ji, J.; Ren, G.; Zhang, H. A Semi-Blind SLM Scheme for PAPR Reduction in OFDM Systems with Low-Complexity Transceiver. IEEE Trans. Veh. Technol. 2015, 64, 2698–2703. [Google Scholar] [CrossRef]
- Jeon, H.B.; No, J.S.; Shin, D.J. A Low-Complexity SLM Scheme Using Additive Mapping Sequences for PAPR Reduction of OFDM Signals. IEEE Trans. Broadcast. 2011, 57, 866–875. [Google Scholar] [CrossRef]
- Tsai, Y.R.; Lin, C.H.; Chen, Y.C. A Low-Complexity SLM Approach Based on Time-Domain Sub-Block Conversion Matrices for OFDM PAPR Reduction. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC), Kerkyra, Greece, 28 June–1 July 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 579–584. [Google Scholar]
- Yoo, H.; Guilloud, F.; Pyndiah, R. Low Complexity SLM Technique with an Interleaver-Butterfly Ensemble for PAPR Reduction of Power Limited OFDM System. In Proceedings of the IEEE 73rd Vehicular Technology Conference (VTC Spring), Yokohama, Japan, 15–18 May 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–5. [Google Scholar]
- Wang, C.L.; Ku, S.J. Novel Conversion Matrices for Simplifying the IFFT Computation of an SLM-Based PAPR Reduction Scheme for OFDM Systems. IEEE Trans. Commun. 2009, 57, 1903–1907. [Google Scholar] [CrossRef]
- Hu, W.; Yang, X.; Hu, X. Chaos-Based Selected Mapping Scheme for Physical Layer Security in OFDM-PON. Electron. Lett. 2015, 51, 1429–1431. [Google Scholar] [CrossRef]
- Lim, D.W.; Heo, S.J.; No, J.S.; Chung, H. On the Phase Sequence Set of SLM OFDM Scheme for a Crest Factor Reduction. IEEE Trans. Signal Process. 2006, 54, 1931–1935. [Google Scholar] [CrossRef]
- Yuewen, W.; Akansu, A.N. Low-Complexity Peak-to-Average Power Ratio Reduction Method for Orthogonal Frequency-Division Multiplexing Communications. IET Commun. 2015, 9, 2153–2159. [Google Scholar] [CrossRef]
- Wang, S.H.; Lee, K.C.; Li, C.P. A Low-Complexity Architecture for PAPR Reduction in OFDM Systems with Near-Optimal Performance. IEEE Trans. Veh. Technol. 2016, 65, 169–179. [Google Scholar] [CrossRef]
- Hu, W.W.; Huang, W.J.; Ciou, Y.C.; Li, C.P. Reduction of PAPR Without Side Information for SFBC MIMO-OFDM Systems. IEEE Trans. Broadcast. 2019, 65, 316–325. [Google Scholar] [CrossRef]
- Bulusu, S.K.C.; Shaiek, H.; Roviras, D.; Zayani, R. Reduction of PAPR for FBMC-OQAM Systems Using Dispersive SLM Technique. In Proceedings of the 11th International Symposium on Wireless Communications Systems (ISWCS), Barcelona, Spain, 26–29 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 568–572. [Google Scholar] [CrossRef]
- Krishna Chaitanya Bulusu, S.S.; Shaiek, H.; Roviras, D. Potency of Trellis-Based SLM over Symbol-by-Symbol Approach in Reducing PAPR for FBMC-OQAM Signals. In Proceedings of the IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 4757–4762. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, T.; Huang, C.; Cui, S. Peak-to-Average Power Ratio Reduction for OFDM/OQAM Signals via Alternative-Signal Method. IEEE Trans. Veh. Technol. 2014, 63, 494–499. [Google Scholar] [CrossRef]
- Kim, H.; Rautio, T. Weighted Selective Mapping Algorithm for FBMC-OQAM Systems. In Proceedings of the International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 19–21 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 214–219. [Google Scholar]
- Afrasiabi-Gorgani, S.; Wunder, G. The Method of Conditional Expectations for PAPR and Cubic Metric Reduction. arXiv 2020, arXiv:1909.10639. [Google Scholar]
- Eli-Chukwu, N.C.; Onoh, G.N. Experimental Study on the Impact of Weather Conditions on Wide Code Division Multiple Access Signals in Nigeria. Eng. Tech. Appl. Sci. Res. 2019, 9, 4. [Google Scholar]
- Behravan, A.; Eriksson, T. Some Statistical Properties of Multicarrier Signals and Related Measures. In Proceedings of the IEEE 63rd Vehicular Technology Conference, Melbourne, Australia, 7–10 May 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 1854–1858. [Google Scholar]
- Wu, M.; Qiu, Z. Power De-Rating Reduction for DFT-S-OFDM System. In Proceedings of the IET International Conference on Wireless Mobile and Multimedia Networks (ICWMMN), Hangzhou, China, 6–9 November 2006; Institute of Engineering and Technology: Stevenage, UK, 2006; p. 234. [Google Scholar]
- Zhao, Y.; Liu, J.; Xie, S. Cubic Metric Reduction for Repetitive CAZAC Sequences in Frequency Domain. arXiv 2019, arXiv:1910.11184. [Google Scholar]
- Wang, X.; Mei, L.; Wang, Z.; Sha, X. Enhanced Clipping and Filtering with WFRFT for PAPR Reduction in OFDM Systems. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Setiawan, D.; Gunawan, D.; Sirat, D. Interference Analysis of Guard Band and Geographical Separation between DVB-T and E-UTRA in Digital Dividend UHF Band. In Proceedings of the International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering (ICICI-BME), Bandung, Indonesia, 23–25 November 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–6. [Google Scholar]
- Hammoodi, A.; Audah, L.; Abas Taher, M. Green Coexistence for 5G Waveform Candidates: A Review. IEEE Access. 2019, 7, 10103–10126. [Google Scholar] [CrossRef]
N Size of IFFT | No. of Subcarriers | No. of PRB | M Constellation Order | No. of PRV |
---|---|---|---|---|
512 | 14 | 20 | 4 | 4, 6, and 8 |
512 | 14 | 20 | 16 | 4, 6, and 8 |
512 | 14 | 20 | 64 | 4, 6, and 8 |
512 | 14 | 20 | 256 | 4, 6, and 8 |
No. of PRV | PAPR Before Reduction in dB | CM Before Reduction in dB | PAPR After Reduction in dB | CM After Reduction in dB | PAPR Reduction in dB | CM Reduction in dB |
---|---|---|---|---|---|---|
4 | 12 | 4 | 11 | 3.5 | 1 | 0.5 |
6 | 12 | 4 | 11 | 3.25 | 1 | 0.75 |
8 | 12 | 4 | 10.75 | 3.25 | 1.25 | 0.75 |
No. of PRV | PAPR Before Reduction in dB | CM Before Reduction in dB | PAPR After Reduction in dB | CM After Reduction in dB | PAPR Reduction in dB | CM Reduction in dB |
---|---|---|---|---|---|---|
4 | 12 | 4 | 10.75 | 3.5 | 1.25 | 0.5 |
6 | 12.25 | 4.25 | 11 | 3.5 | 1.25 | 0.75 |
8 | 12.29 | 4.2 | 10.82 | 3.4 | 1.47 | 0.8 |
No. of PRV | PAPR Before Reduction in dB | CM Before Reduction in dB | PAPR After Reduction in dB | CM After Reduction in dB | PAPR Reduction in dB | CM Reduction in dB |
---|---|---|---|---|---|---|
4 | 12.25 | 4.6 | 11 | 3.4 | 1.25 | 1.2 |
6 | 12.4 | 4.2 | 11.1 | 3.4 | 1.3 | 1.2 |
8 | 12 | 4.4 | 10.7 | 3.2 | 1.3 | 1.2 |
No. of PRV | PAPR Before Reduction in dB | CM Before Reduction in dB | PAPR After Reduction in dB | CM After Reduction in dB | PAPR Reduction in dB | CM Reduction in dB |
---|---|---|---|---|---|---|
4 | 12.4 | 4 | 11.2 | 3.5 | 1.2 | 0.5 |
6 | 12.5 | 4 | 10.75 | 3.4 | 1.75 | 0.6 |
8 | 12.3 | 4.2 | 10.4 | 3.4 | 1.9 | 0.8 |
Mapping Order | 4-Phase Rotation Vectors | 6-Phase Rotation Vectors | 8-Phase Rotation Vectors | |||
---|---|---|---|---|---|---|
PAPR Reduction in dB | CM Reduction in dB | PAPR Reduction in dB | CM Reduction in dB | PAPR Reduction in dB | CM Reduction in dB | |
4-QAM | 1 | 0.5 | 1 | 0.75 | 1.25 | 0.75 |
16-QAM | 1.25 | 0.5 | 1.25 | 0.75 | 1.47 | 0.8 |
64-QAM | 1.25 | 1.2 | 1.3 | 1.2 | 1.5 | 1.2 |
256-QAM | 1.2 | 0.5 | 1.75 | 0.6 | 1.9 | 0.8 |
N | B | δ | μSLM | αSLM | PAPR Reduction (QAM) | CM Reduction (QAM) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 16 | 64 | 256 | 4 | 16 | 64 | 256 | |||||
512 | 4 | 2 | 9216 | 18432 | 1 | 1.25 | 1.25 | 1.2 | 0.5 | 0.5 | 1.2 | 0.5 |
512 | 6 | 3 | 13824 | 27648 | 1 | 1.25 | 1.3 | 1.75 | 0.75 | 0.75 | 1.2 | 0.6 |
512 | 8 | 3 | 18432 | 36864 | 1.25 | 1.47 | 1.5 | 1.9 | 0.75 | 0.8 | 1.2 | 0.8 |
Reference | Method/Waveform | Remarks |
---|---|---|
Jeon et al. [27] |
|
|
Wang and Sheng-Ju Ku [30] |
|
|
Hu et al. [31] |
|
|
Wang and Akansu [33] |
|
|
Hu et al. [35] |
|
|
Skrzypczak, et al. [20] |
|
|
Yang Zhou et al. [38] |
|
|
Our Approach |
|
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shawqi, F.S.; Audah, L.; Mostafa, S.A.; Gunasekaran, S.S.; Baz, A.; Hammoodi, A.T.; Alhakami, H.; Hassan, M.H.; Jubair, M.A.; Alhakami, W. A New SLM-UFMC Model for Universal Filtered Multi-Carrier to Reduce Cubic Metric and Peak to Average Power Ratio in 5G Technology. Symmetry 2020, 12, 909. https://doi.org/10.3390/sym12060909
Shawqi FS, Audah L, Mostafa SA, Gunasekaran SS, Baz A, Hammoodi AT, Alhakami H, Hassan MH, Jubair MA, Alhakami W. A New SLM-UFMC Model for Universal Filtered Multi-Carrier to Reduce Cubic Metric and Peak to Average Power Ratio in 5G Technology. Symmetry. 2020; 12(6):909. https://doi.org/10.3390/sym12060909
Chicago/Turabian StyleShawqi, Farooq Sijal, Lukman Audah, Salama A. Mostafa, Saraswathy Shamini Gunasekaran, Abdullah Baz, Ahmed Talaat Hammoodi, Hosam Alhakami, Mustafa Hamid Hassan, Mohammed Ahmed Jubair, and Wajdi Alhakami. 2020. "A New SLM-UFMC Model for Universal Filtered Multi-Carrier to Reduce Cubic Metric and Peak to Average Power Ratio in 5G Technology" Symmetry 12, no. 6: 909. https://doi.org/10.3390/sym12060909
APA StyleShawqi, F. S., Audah, L., Mostafa, S. A., Gunasekaran, S. S., Baz, A., Hammoodi, A. T., Alhakami, H., Hassan, M. H., Jubair, M. A., & Alhakami, W. (2020). A New SLM-UFMC Model for Universal Filtered Multi-Carrier to Reduce Cubic Metric and Peak to Average Power Ratio in 5G Technology. Symmetry, 12(6), 909. https://doi.org/10.3390/sym12060909