Software Security Estimation Using the Hybrid Fuzzy ANP-TOPSIS Approach: Design Tactics Perspective
Abstract
:1. Introduction
- Evaluate software security in a security design tactics perspective with the intent to provide guidelines for secure software development.
- Fuzzy-ANP and fuzzy-TOPSIS approach is used to assess the software security. Both approaches are well known and popular in the MCDM problem-solving domain. The proposed symmetrical technique in the study provides precise and efficient results while solving MCMD problems.
- The attribute (criteria) set used in this study to assess software security in the security design tactics perspective through fuzzy-ANP and fuzzy-TOPSIS approach is unique.
- Ten different software have been taken as alternatives for this case study to validate software security in the design tactics perspective.
- This study’s empirical initiative aims at providing insights about determining how formal and well-proven security design tactics are followed throughout the software development life cycle.
Related Work
- Jungwoo Ryoo et al. (2015) estimated the gap between security tactics (architect’s vision) and its actual implementation (source code) [7]. Security tactics are examined at the design level as well as implementation level and ideal solutions for the adoption of security tactics are provided. Open sources software has been taken for this assessment to access source code and documentation easily.
- G.P. Garcia et al. (2014) did a study in which they applied a set of security tactics in software system designing [8]. Early Tsunami-warning alert system is used by authors for a case study to achieve the applicability of security tactics. Authors of this study provide a systematic approach to address security as a quality attribute during software designing, and also describe the importance of tactics in software designing.
- Felipe Osses et al. (2018) presented a card game named as security tactics selection poker and a planning-porker based consensus building symmetrical technique that would help the developers to identify and select security tactics to satisfy maximum security requirements on the basis of priority and objectives [9]. The effectiveness of the symmetrical technique is examined in different scenarios by a security software team of 21 practitioners.
- J.J. Zhao and S.Y. Zhao (2010) used three security assessment approaches viz. web content analysis, information security auditing, and computer security network mapping to assess e-government websites of US to determine the opportunities for website threats in their study [12]. The study shows that there is a gap between stated privacy and security policies and implemented security measures of most of the e-government websites, and maximum websites use SSL encryption for data transmission. The study suggests the best possible solutions to improve e-government websites.
- Z. Ravasan and M.A. Zare (2018) proposed a hybrid model based on information system quality assessment and fuzz-ANP to evaluate the e-government website quality [13]. Six Iranian free trade zone portals were used to validate the proposed model and final evaluation results were determined.
- S. Kr. Jha and R. K. Mishra (2018), in their paper, proposed a framework of component security to determine and predict the functional and non-functional security factors for the development of secure and reliable component-based software. Security issues were examined at three different levels- component level, interface level and at application level [14].
- G. Marquez and H. Astudillo (2019) conducted an experimental study to analyze the availability tactics that would be beneficial for security-design decisions in micro-service based systems (MBS) [15]. 17 Open source MBS were inspected by using their source code and documentation. It was found that fault prevention is mainly focused on availability tactics rather than fault identification and mitigation.
- Keon Chul Park et al. (2014) derived the most appropriate and ideal method of authentication for smartphone banking service using ANP symmetrical technique [16]. The results of the analysis show that biometric authentication is most appropriate in the aspect of security, OTP is most appropriate in the aspect of convenience, and a public key certificate is most ideal in the aspect of cost. In the context of the overall performance in security, convenience and cost, OTP has been found to be the most ideal and appropriate authentication method.
- Bijoyeta Roy, Santanu Kr. Misra (2018) did a study of fuzzy ANP and TOPSIS symmetrical techniques for best software selection [17]. Fuzzy-ANP is applied to determine the attribute weights and also measure their degree of interdependence on each other. Lastly, the criteria weights are given as input to the TOPSIS model to evaluate the final ranking of alternatives.
- Wei Bai et al. (2017) examined the usable-security evaluation results in encrypted messages [18]. 52 participants for this evaluation were taken by the authors. The less-convenient key exchange model has been recognized by participants as more secure overall, but for most day-to-day activities, the key–directory approach has been considered as sufficient security.
2. Materials and Methods
2.1. Software Security Tactics
2.2. Methodology
3. Data Analysis and Results
3.1. Sensitivity Analysis
3.2. Comparison of the Results
4. Discussion
4.1. Pros
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Elisa, N. Usability, accessibility and web security assessment of e-government websites in Tanzania. Int. J. Comput. Appl. 2017, 164, 42–48. [Google Scholar] [CrossRef]
- McGraw, G. Software Security: Building Security; Addison Wesley Professional: Boston, MA, USA, 2006. [Google Scholar]
- Sasse, M.A.; Flechais, I. Usable Security Why Do We Need It? How Do We Get It? 2005. Available online: https://www.researchgate.net/publication/316236669 (accessed on 15 November 2019).
- Research and Markets. Software Industry. 2016. Available online: https://www.researchandmarkets.com/resear/w2nrwg (accessed on 16 November 2019).
- Cyber Security Facts and Stats—CybintSolutions. Available online: https://www.cybintsolutions.com/cyber-Security-facts-stats (accessed on 18 November 2019).
- IBM. Cost of Data Breach Report. 2019. Available online: https://www.ibm.com/security/data-breach (accessed on 20 November 2019).
- Ryoo, J.; Malone, B.; Laplante, P.A.; Anand, P. The Use of Security Tactics in Open Source Software Projects. IEEE Trans. Reliab. 2015, 65, 1195–1204. [Google Scholar] [CrossRef]
- Pedraza-Garcia, G.; Astudillo, H.; Correal, D. A methodological approach to apply security tactics in software architecture design. In Proceedings of the 2014 IEEE Colombian Conference on Communications and Computing (COLCOM), Bogota, Colombia, 4–6 June 2014; pp. 1–8. [Google Scholar]
- Osses, F.; Márquez, G.; Villegas, M.M.; Orellana, C.; Visconti, M.; Astudillo, H. Security tactics selection poker (TaSPeR) a card game to select security tactics to satisfy security requirements. In Proceedings of the 12th European Conference on Software Architecture: Companion Proceedings, Madrid, Spain, 7 September 2018; pp. 1–7. [Google Scholar]
- Pressman, R.S. Software Engineering: A practitioner’s Approach; Palgrave Macmillan: London, UK, 2005; Available online: http://seu1.org/files/level4/IT-242/Software%20Engineering%20_%207th%20Edition.pdf (accessed on 18 November 2019).
- Ross, T.J. Fuzzy Logic with Engineering Applications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Zhao, J.J.; Zhao, S.Y. Opportunities and threats: A security assessment of state e-government websites. Gov. Inf. Q. 2010, 27, 49–56. [Google Scholar] [CrossRef]
- Ravasan, A.Z.; Zare, M.A. A Framework for Assessing Website Quality: An Application in the Iranian free Economic Zones Websites; IGI Global: Hershey, PA, USA, 2018; Chapter-13; pp. 248–272. [Google Scholar] [CrossRef]
- Jha, S.K.; Mishra, R.K. Predicting and Accessing Security Features into Component-Based Software Development: A Critical Survey. In Advances in Intelligent Systems and Computing, Proceedings of the Software Engineering; Springer: Singapore, 2018; Volume 731, pp. 287–294. [Google Scholar]
- Márquez, G.; Astudillo, H. Identifying availability tactics to support security architectural design of microservice-based systems. In Proceedings of the 13th European Conference on Software Architecture, Paris, France, 9–13 September 2019; Volume 2, pp. 123–129. Available online: https://dl.acm.org/doi/10.1145/3344948.3344996 (accessed on 18 November 2019).
- Park, K.C.; Shin, J.W.; Lee, B.G. Analysis of Authentication Methods for Smartphone Banking Service using ANP. KSII Trans. Internet Inf. Syst. 2014, 8, 2087–2103. [Google Scholar] [CrossRef]
- Roy, B.; Misra, S.K. An Integrated Fuzzy ANP and TOPSIS Methodology for Software Selection under MCDM Perspective. Int. J. Innov. Res. Comput. Commun. Eng. 2018, 6, 492–501. [Google Scholar]
- Bai, W.; Kim, D.; Namara, M.; Qian, Y.; Kelley, P.G.; Mazurek, M.L. Balancing security and usability in encrypted email. IEEE Internet Comput. 2017, 21, 30–38. [Google Scholar] [CrossRef]
- Ryoo, J.; Laplante, P.; Kazman, R. A methodology for mining security tactics from security patterns. In Proceedings of the 2010 43rd Hawaii International Conference on System Sciences, Honolulu, HI, USA, 5–8 January 2010; pp. 1–5. [Google Scholar]
- Rekik, R.; Kallel, I.; Alimi, A.M. Ranking criteria based on fuzzy ANP for assessing E-commerce web sites. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 003469–003474. [Google Scholar]
- Research Methodology. Available online: https://researchmethodology.net/research-methodology/ (accessed on 31 November 2019).
- Solangi, Y.A.; Tan, Q.; Mirjat, N.H.; Valasai, G.D.; Khan, M.W.A.; Ikram, M. An integrated Delphi-AHP and fuzzy TOPSIS approach toward ranking and selection of renewable energy resources in Pakistan. Processes 2019, 7, 118. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. The Analytic Network Process. Iran. J. Oper. Res. 2008, 1, 1–27. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process Mcgraw Hill, New York. Agric. Econ. Rev. 1980, 70. Available online: https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1895817 (accessed on 31 November 2019).
- Yuksel, I.; Dagdeviren, M. Using the analytic network process (ANP) in a SWOT analysis–A case study for a textile firm. Inf. Sci. 2007, 177, 3364–3382. [Google Scholar] [CrossRef]
- Kuo, R.J.; Hsu, C.W.; Chen, Y.L. Integration of fuzzy ANP and fuzzy TOPSIS for evaluating carbon performance of suppliers. Int. J. Environ. Sci. Technol. 2015, 12, 3863–3876. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W.; Kim, S.H. Using analytic network process and goal programming for interdependent information system project selection. Comput. Oper. Res. 2000, 27, 367–382. [Google Scholar] [CrossRef]
- Mohaghar, A.; Fathi, M.R.; Faghih, A.; Turkayesh, M.M. An integrated approach of Fuzzy ANP and Fuzzy TOPSIS for R&D project selection: A case study. Aust. J. Basic Appl. Sci. 2012, 6, 66–75. [Google Scholar]
- Lai, Y.J.; Liu, T.Y.; Hwang, C.L. TOPSIS for MODM. Eur. J. Oper. Res. 1994, 76, 486–500. [Google Scholar] [CrossRef]
- Krohling, R.A.; Pacheco, A.G. A-TOPSIS–an approach based on TOPSIS for ranking evolutionary algorithms. Procedia Comput. Sci. 2015, 55, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Statista. Smartphone Users Worldwide. 2019. Available online: https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ (accessed on 25 November 2019).
- DazeInfo. Worldwide Active Smartphone Users. 2019. Available online: https://dazeinfo.com/2014/12/18/worldwide-Smartphone-users (accessed on 26 November 2019).
- Statista. Worldwide Digital Population. 2019. Available online: https://www.statista.com/statistics/617136/digital-population-worldwide/ (accessed on 26 November 2019).
- Bass, L.; Clements, P.; Kazman, R. Software Architecture in Practice; Addison Wesley Professional: Boston, MA, USA, 2003. [Google Scholar]
- Bankmycell. How Many Phones Are in the World? 2019. Available online: https://www.bankmycell.com/blog/how-many-phones-are-in-the-world (accessed on 28 November 2019).
- Kumar, R.; Zarour, M.; Alenezi, M.; Agrawal, A.; Khan, R.A. Measuring security durability of software through fuzzy-based decision-making process. Int. J. Comput. Intell. Syst. 2019, 12, 627–642. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.A.; Alenezi, M.; Agrawal, A.; Kumar, R.; Khan, R.A. Evaluating Performance of Software Durability through an Integrated Fuzzy-Based Symmetrical Method of ANP and TOPSIS. Symmetry 2020, 12, 493. [Google Scholar] [CrossRef] [Green Version]
- Alenezi, M.; Agrawal, A.; Kumar, R.; Khan, R.A. Evaluating Performance of Web Application Security Through a Fuzzy Based Hybrid Multi-Criteria Decision-Making Approach: Design Tactics Perspective. IEEE Access 2020, 8, 25543–25556. [Google Scholar] [CrossRef]
Numeric Value | Fuzzy Triangle Scale | |
---|---|---|
1 | Equally important | (1, 1, 1) |
3 | Weakly important | (2, 3, 4) |
5 | Fairly important | (4, 5, 6) |
7 | Strongly important | (6, 7, 8) |
9 | Absolutely important | (9, 9, 9) |
2 4 6 8 | Intermittent values between two adjacent scales | (1, 2, 3) (3, 4, 5) (5, 6, 7) (7, 8, 9) |
F1 | F2 | F3 | |
---|---|---|---|
(F1) | 1.00000, 1.00000, 1.00000 | 1.72010, 1.41000, 1.14300 | 2.31100, 1.74500, 1.27500 |
(F2) | 0.88100, 0.70100, 0.60200 | 1.00000, 1.00000, 1.00000 | 1.68000, 1.37100, 1.02140 |
(F3) | 0.80200, 0.60400, 0.40300 | 0.98100, 0.73410, 0.59000 | 1.00000, 1.00000, 1.00000 |
F11 | F12 | F13 | F14 | F15 | |
---|---|---|---|---|---|
F11 | 1.00000, 1.00000, 1.00000 | 1.40000, 1.82000, 2.26000 | 2.46000, 3.09000, 3.76000 | 2.75000, 3.38000, 3.98000 | 2.83000, 3.87000, 4.90000 |
F12 | 0.44000, 0.55000, 0.72000 | 1.00000, 1.00000, 1.00000 | 1.71000, 1.89000, 2.08000 | 2.46000, 3.5000, 4.52000 | 1.87000, 2.31000, 2.81000 |
F13 | 0.27000, 0.32000, 0.41000 | 0.48000, 0.53000, 0.58000 | 1.00000, 1.00000, 1.00000 | 2.81000, 3.27000, 3.78000 | 2.23000, 2.88000, 3.57000 |
F14 | 0.25000, 0.30000, 0.36000 | 0.22000, 0.29000, 0.41000 | 0.26000, 0.31000, 0.36000 | 1.00000, 1.00000, 1.00000 | 0.21000, 0.25000, 0.31000 |
F15 | 0.20000, 0.26000, 0.35000 | 0.36000, 0.43000, 0.54000 | 0.28000, 0.35000, 0.45000 | 3.25000, 4.04000, 4.81000 | 1.00000, 1.00000, 1.00000 |
F21 | F22 | F23 | F24 | F25 | |
---|---|---|---|---|---|
F21 | 1.00000, 1.00000, 1.00000 | 0.52000, 0.65000, 0.85000 | 1.4000, 1.7900, 2.22000 | 1.32000, 1.68000, 2.04000 | 1.19000, 1.45000, 1.78000 |
F22 | 1.1800, 1.5300, 1.9200 | 1.00000, 1.00000, 1.00000 | 1.64000, 1.92000, 2.20000 | 2.42000, 3.06000, 3.70000 | 0.84000, 1.04000, 1.33000 |
F23 | 0.45000, 0.56000, 0.71000 | 0.45000, 0.52000, 0.61000 | 1.00000, 1.00000, 1.00000 | 1.52000, 1.94000, 2.48000 | 1.25000, 1.49000, 1.78000 |
F24 | 0.49000, 0.60000, 0.76000 | 0.27000, 0.33000, 0.41000 | 0.40000, 0.52000, 0.66000 | 1.00000, 1.00000, 1.00000 | 1.71000, 2.07000, 2.51000 |
F25 | 0.56000, 0.69000, 0.84000 | 0.75000, 0.96000, 1.20000 | 0.56000, 0.67000, 0.80000 | 0.59000, 0.48000, 0.59000 | 1.00000, 1.00000, 1.00000 |
F31 | F32 | F33 | F34 | F35 | |
---|---|---|---|---|---|
F31 | 1.00000, 1.00000, 1.00000 | 0.60000, 0.76000, 0.91000 | 0.87000, 1.09000, 1.30000 | 0.69000, 0.95000, 1.32000 | 0.64000, 0.79000, 1.02000 |
F32 | 1.10000, 1.32000, 1.66000 | 1.00000, 1.00000, 1.00000 | 0.72000, 0.87000, 1.07000 | 1.30000, 1.56000, 1.86000 | 0.93000, 1.17000, 1.44000 |
F33 | 0.77000, 0.92000, 1.15000 | 0.93000, 1.14000, 1.39000 | 1.00000, 1.00000, 1.00000 | 1.02000, 1.35000, 1.72000 | 0.71000, 0.91000, 1.13000 |
F34 | 0.76000, 1.05000, 1.46000 | 0.54000, 0.64000, 0.77000 | 0.58000, 0.74000, 0.98000 | 1.00000, 1.00000, 1.00000 | 0.70000, 0.85000, 1.03000 |
F35 | 0.98000, 1.27000, 1.57000 | 0.70000, 0.85000, 1.07000 | 0.88000, 1.10000, 1.40000 | 0.97000, 1.17000, 1.43000 | 1.00000, 1.00000, 1.00000 |
Normalizing Value | Local Weights | |
---|---|---|
(F1) | 0.30000, 0.44000, 0.63000 | 0.43560 |
(F2) | 0.22500, 0.32000, 0.43500 | 0.31850 |
(F3) | 0.17500, 0.23640, 0.33680 | 0.23590 |
Normalizing Value | Local Weights | |
---|---|---|
F11 | 0.12000, 0.19000, 0.31000 | 0.19600 |
F12 | 0.10000, 0.16000, 0.25000 | 0.16300 |
F13 | 0.08000, 0.13000, 0.21000 | 0.13400 |
F14 | 0.04000, 0.07000, 0.11000 | 0.06600 |
F15 | 0.05000, 0.07000, 0.11000 | 0.07500 |
Normalizing Value | Local Weights | |
---|---|---|
F21 | 0.13000, 0.21000, 0.33000 | 0.22700 |
F22 | 0.04000, 0.07000, 0.11000 | 0.29400 |
F23 | 0.06000, 0.09000, 0.14000 | 0.19100 |
F24 | 0.05000, 0.06000, 0.13000 | 0.15600 |
F25 | 0.15000, 0.18000, 0.23000 | 0.13200 |
Normalizing Value | Local Weights | |
---|---|---|
F21 | 0.23000, 0.23000, 0.33000 | 0.139000 |
F22 | 0.14000, 0.17000, 0.21000 | 0.135000 |
F23 | 0.16000, 0.19000, 0.24000 | 0.103000 |
F24 | 0.15000, 0.16000, 0.23000 | 0.112000 |
F25 | 0.25000, 0.28000, 0.33000 | 0.139000 |
Second Level Attributes | Global Weights | Percentage | Ranks |
---|---|---|---|
F11 | 0.05785 | 5.78 | 11 |
F12 | 0.07178 | 7.17 | 8 |
F13 | 0.06556 | 6.55 | 9 |
F14 | 0.09387 | 9.38 | 2 |
F15 | 0.09489 | 9.48 | 1 |
F21 | 0.03902 | 3.90 | 14 |
F22 | 0.01369 | 1.36 | 15 |
F23 | 0.08779 | 8.77 | 5 |
F24 | 0.04189 | 4.18 | 12 |
F25 | 0.05954 | 5.95 | 10 |
F31 | 0.03954 | 3.95 | 13 |
F32 | 0.08988 | 8.98 | 4 |
F33 | 0.07478 | 7.47 | 7 |
F34 | 0.07899 | 7.89 | 6 |
F35 | 0.09093 | 9.09 | 3 |
US-1 | US-2 | US-3 | US-4 | US-5 | US-6 | US-7 | US-8 | US-9 | US-10 | |
---|---|---|---|---|---|---|---|---|---|---|
F11 | 3.20000, 4.60000, 6.00000 | 3.70000, 5.30000, 6.80000 | 1.80000, 2.80000, 4.30000 | 5.40000, 6.70000, 7.70000 | 2.90000, 4.50000, 6.10000 | 3.60000, 5.40000, 7.10000 | 3.70000, 5.30000, 6.80000 | 1.80000, 2.80000, 4.30000 | 5.40000, 6.70000, 7.70000 | 2.90000, 4.50000, 6.10000 |
F12 | 4.00000, 5.60000, 7.10000 | 2.20000, 3.60000, 5.30000 | 3.20000, 4.80000, 6.30000 | 3.70000, 5.20000, 6.70000 | 4.90000, 6.50000, 7.80000 | 2.60000, 3.90000, 5.40000 | 2.20000, 3.60000, 5.30000 | 3.20000, 4.80000, 6.30000 | 3.70000, 5.20000, 6.70000 | 4.90000, 6.50000, 7.80000 |
F13 | 7.40000, 8.90000, 9.60000 | 4.10000, 5.40000, 6.60000 | 2.50000, 3.90000, 5.50000 | 3.90000, 5.70000, 7.40000 | 5.00000, 6.60000, 7.80000 | 3.50000, 5.00000, 6.60000 | 4.10000, 5.40000, 6.60000 | 2.50000, 3.90000, 5.50000 | 3.90000, 5.70000, 7.40000 | 5.00000, 6.60000, 7.80000 |
F14 | 2.80000, 3.90000, 5.10000 | 4.10000, 5.60000, 7.00000 | 5.20000, 6.70000, 7.90000 | 2.80000, 3.70000, 4.90000 | 4.10000, 5.60000, 7.00000 | 5.10000, 6.10000, 6.90000 | 4.10000, 5.60000, 7.00000 | 5.20000, 6.70000, 7.90000 | 2.80000, 3.70000, 4.90000 | 4.10000, 5.60000, 7.00000 |
F15 | 3.90000, 5.50000, 6.90000 | 2.80000, 4.10000, 5.60000 | 2.90000, 4.40000, 60000 | 1.90000, 2.90000, 4.30000 | 3.50000, 5.10000, 6.60000 | 5.30000, 6.80000, 8.00000 | 2.80000, 4.10000, 5.60000 | 2.90000, 4.40000, 60000 | 1.90000, 2.90000, 4.30000 | 3.50000, 5.10000, 6.60000 |
F21 | 2.90000, 4.40000, 5.90000 | 3.40000, 4.80000, 6.30000 | 4.90000, 6.10000, 7.10000 | 2.50000, 4.00000, 5.70000 | 4.80000, 6.20000, 7.40000 | 2.40000, 4.10000, 5.90000 | 3.40000, 4.80000, 6.30000 | 4.90000, 6.10000, 7.10000 | 2.50000, 4.00000, 5.70000 | 4.80000, 6.20000, 7.40000 |
F22 | 4.20000, 5.70000, 7.20000 | 3.20000, 4.50000, 6.00000 | 3.50000, 4.60000, 5.80000 | 4.30000, 6.10000, 7.70000 | 2.70000, 4.20000, 5.90000 | 3.00000, 4.40000, 6.00000 | 3.20000, 4.50000, 6.00000 | 3.50000, 4.60000, 5.80000 | 4.30000, 6.10000, 7.70000 | 2.70000, 4.20000, 5.90000 |
F23 | 3.20000, 4.60000, 6.00000 | 3.70000, 5.30000, 6.80000 | 1.80000, 2.80000, 4.30000 | 5.40000, 6.70000, 7.70000 | 2.90000, 4.50000, 6.10000 | 3.60000, 5.40000, 7.10000 | 3.70000, 5.30000, 6.80000 | 1.80000, 2.80000, 4.30000 | 5.40000, 6.70000, 7.70000 | 2.90000, 4.50000, 6.10000 |
F24 | 4.00000, 5.60000, 7.10000 | 2.20000, 3.60000, 5.30000 | 3.20000, 4.80000, 6.30000 | 3.70000, 5.20000, 6.70000 | 4.90000, 6.50000, 7.80000 | 2.60000, 3.90000, 5.40000 | 2.20000, 3.60000, 5.30000 | 3.20000, 4.80000, 6.30000 | 3.70000, 5.20000, 6.70000 | 4.90000, 6.50000, 7.80000 |
F25 | 7.40000, 8.90000, 9.60000 | 4.10000, 5.40000, 6.60000 | 2.50000, 3.90000, 5.50000 | 3.90000, 5.70000, 7.40000 | 5.00000, 6.60000, 7.80000 | 3.50000, 5.00000, 6.60000 | 4.10000, 5.40000, 6.60000 | 2.50000, 3.90000, 5.50000 | 3.90000, 5.70000, 7.40000 | 5.00000, 6.60000, 7.80000 |
F31 | 2.80000, 3.90000, 5.10000 | 4.10000, 5.60000, 7.00000 | 5.20000, 6.70000, 7.90000 | 2.80000, 3.70000, 4.90000 | 4.10000, 5.60000, 7.00000 | 5.10000, 6.10000, 6.90000 | 4.10000, 5.60000, 7.00000 | 5.20000, 6.70000, 7.90000 | 2.80000, 3.70000, 4.90000 | 4.10000, 5.60000, 7.00000 |
F32 | 3.90000, 5.50000, 6.90000 | 2.80000, 4.10000, 5.60000 | 2.90000, 4.40000, 60000 | 1.90000, 2.90000, 4.30000 | 3.50000, 5.10000, 6.60000 | 5.30000, 6.80000, 8.00000 | 2.80000, 4.10000, 5.60000 | 2.90000, 4.40000, 60000 | 1.90000, 2.90000, 4.30000 | 3.50000, 5.10000, 6.60000 |
F33 | 2.90000, 4.40000, 5.90000 | 3.40000, 4.80000, 6.30000 | 4.90000, 6.10000, 7.10000 | 2.50000, 4.00000, 5.70000 | 4.80000, 6.20000, 7.40000 | 2.40000, 4.10000, 5.90000 | 3.40000, 4.80000, 6.30000 | 4.90000, 6.10000, 7.10000 | 2.50000, 4.00000, 5.70000 | 4.80000, 6.20000, 7.40000 |
F34 | 4.20000, 5.70000, 7.20000 | 3.20000, 4.50000, 6.00000 | 3.50000, 4.60000, 5.80000 | 4.30000, 6.10000, 7.70000 | 2.70000, 4.20000, 5.90000 | 3.00000, 4.40000, 6.00000 | 3.20000, 4.50000, 6.00000 | 3.50000, 4.60000, 5.80000 | 4.30000, 6.10000, 7.70000 | 2.70000, 4.20000, 5.90000 |
F35 | 2.80000, 3.90000, 5.10000 | 4.10000, 5.60000, 7.00000 | 5.20000, 6.70000, 7.90000 | 2.80000, 3.70000, 4.90000 | 4.10000, 5.60000, 7.00000 | 5.10000, 6.10000, 6.90000 | 4.10000, 5.60000, 7.00000 | 5.20000, 6.70000, 7.90000 | 2.80000, 3.70000, 4.90000 | 4.10000, 5.60000, 7.00000 |
US-1 | US-2 | US-3 | US-4 | US-5 | US-6 | US-7 | US-8 | US-9 | US-10 | |
---|---|---|---|---|---|---|---|---|---|---|
F11 | 0.0250000, 0.0360000, 0.0460000 | 0.0330000, 0.0470000, 0.060000 | 0.0120000, 0.0180000, 0.0280000 | 0.0180000, 0.0220000, 0.0250000 | 0.0110000, 0.0160000, 0.0220000 | 0.0350000, 0.0530000, 0.070000 | 0.0040000, 0.0060000, 0.010000 | 0.0120000, 0.0180000, 0.0280000 | 0.0180000, 0.0220000, 0.0250000 | 0.0110000, 0.0160000, 0.0220000 |
F12 | 0.0310000, 0.0430000, 0.0550000 | 0.0190000, 0.0320000, 0.0470000 | 0.0210000, 0.0310000, 0.0410000 | 0.0120000, 0.0170000, 0.0220000 | 0.0180000, 0.0240000, 0.0280000 | 0.0260000, 0.0380000, 0.0530000 | 0.0120000, 0.0170000, 0.0220000 | 0.0210000, 0.0310000, 0.0410000 | 0.0120000, 0.0170000, 0.0220000 | 0.0180000, 0.0240000, 0.0280000 |
F13 | 0.0570000, 0.0690000, 0.0740000 | 0.0360000, 0.0480000, 0.0580000 | 0.0160000, 0.0250000, 0.0350000 | 0.0130000, 0.0190000, 0.0240000 | 0.0180000, 0.0240000, 0.0280000 | 0.0340000, 0.0490000, 0.0650000 | 0.0170000, 0.0220000, 0.0250000 | 0.0160000, 0.0250000, 0.0350000 | 0.0130000, 0.0190000, 0.0240000 | 0.0180000, 0.0240000, 0.0280000 |
F14 | 0.0220000, 0.030000, 0.0390000 | 0.0360000, 0.0490000, 0.0620000 | 0.0330000, 0.0430000, 0.0510000 | 0.0090000, 0.0120000, 0.0160000 | 0.0150000, 0.020000, 0.0250000 | 0.050000, 0.060000, 0.0680000 | 0.0090000, 0.0130000, 0.0180000 | 0.0330000, 0.0430000, 0.0510000 | 0.0090000, 0.0120000, 0.0160000 | 0.0150000, 0.020000, 0.0250000 |
F15 | 0.030000, 0.0430000, 0.0530000 | 0.0250000, 0.0360000, 0.0490000 | 0.0190000, 0.0280000, 0.0390000 | 0.0060000, 0.0090000, 0.0140000 | 0.0130000, 0.0190000, 0.0240000 | 0.0520000, 0.0670000, 0.0790000 | 0.0130000, 0.0170000, 0.0210000 | 0.0190000, 0.0280000, 0.0390000 | 0.0060000, 0.0090000, 0.0140000 | 0.0130000, 0.0190000, 0.0240000 |
F21 | 0.0220000, 0.0340000, 0.0460000 | 0.030000, 0.0420000, 0.0560000 | 0.0320000, 0.0390000, 0.0460000 | 0.0080000, 0.0130000, 0.0190000 | 0.0170000, 0.0230000, 0.0270000 | 0.0240000, 0.040000, 0.0580000 | 0.0070000, 0.0110000, 0.0160000 | 0.0320000, 0.0390000, 0.0460000 | 0.0080000, 0.0130000, 0.0190000 | 0.0170000, 0.0230000, 0.0270000 |
F22 | 0.0320000, 0.0440000, 0.0560000 | 0.0280000, 0.040000, 0.0530000 | 0.0230000, 0.030000, 0.0370000 | 0.0140000, 0.020000, 0.0250000 | 0.010000, 0.0150000, 0.0210000 | 0.030000, 0.0430000, 0.0590000 | 0.0050000, 0.0090000, 0.0140000 | 0.0230000, 0.030000, 0.0370000 | 0.0140000, 0.020000, 0.0250000 | 0.010000, 0.0150000, 0.0210000 |
F23 | 0.0310000, 0.0430000, 0.0550000 | 0.0190000, 0.0320000, 0.0470000 | 0.0210000, 0.0310000, 0.0410000 | 0.0120000, 0.0170000, 0.0220000 | 0.0180000, 0.0240000, 0.0280000 | 0.0260000, 0.0380000, 0.0530000 | 0.0120000, 0.0170000, 0.0220000 | 0.0210000, 0.0310000, 0.0410000 | 0.0120000, 0.0170000, 0.0220000 | 0.0180000, 0.0240000, 0.0280000 |
F24 | 0.0570000, 0.0690000, 0.0740000 | 0.0360000, 0.0480000, 0.0580000 | 0.0160000, 0.0250000, 0.0350000 | 0.0130000, 0.0190000, 0.0240000 | 0.0180000, 0.0240000, 0.0280000 | 0.0340000, 0.0490000, 0.0650000 | 0.0170000, 0.0220000, 0.0250000 | 0.0160000, 0.0250000, 0.0350000 | 0.0130000, 0.0190000, 0.0240000 | 0.0180000, 0.0240000, 0.0280000 |
F25 | 0.0220000, 0.030000, 0.0390000 | 0.0360000, 0.0490000, 0.0620000 | 0.0330000, 0.0430000, 0.0510000 | 0.0090000, 0.0120000, 0.0160000 | 0.0150000, 0.020000, 0.0250000 | 0.050000, 0.060000, 0.0680000 | 0.0090000, 0.0130000, 0.0180000 | 0.0330000, 0.0430000, 0.0510000 | 0.0090000, 0.0120000, 0.0160000 | 0.0150000, 0.020000, 0.0250000 |
F31 | 0.030000, 0.0430000, 0.0530000 | 0.0250000, 0.0360000, 0.0490000 | 0.0190000, 0.0280000, 0.0390000 | 0.0060000, 0.0090000, 0.0140000 | 0.0130000, 0.0190000, 0.0240000 | 0.0520000, 0.0670000, 0.0790000 | 0.0130000, 0.0170000, 0.0210000 | 0.0190000, 0.0280000, 0.0390000 | 0.0060000, 0.0090000, 0.0140000 | 0.0130000, 0.0190000, 0.0240000 |
F32 | 0.0220000, 0.0340000, 0.0460000 | 0.030000, 0.0420000, 0.0560000 | 0.0320000, 0.0390000, 0.0460000 | 0.0080000, 0.0130000, 0.0190000 | 0.0170000, 0.0230000, 0.0270000 | 0.0240000, 0.040000, 0.0580000 | 0.0070000, 0.0110000, 0.0160000 | 0.0320000, 0.0390000, 0.0460000 | 0.0080000, 0.0130000, 0.0190000 | 0.0170000, 0.0230000, 0.0270000 |
F33 | 0.0320000, 0.0440000, 0.0560000 | 0.0280000, 0.040000, 0.0530000 | 0.0230000, 0.030000, 0.0370000 | 0.0140000, 0.020000, 0.0250000 | 0.010000, 0.0150000, 0.0210000 | 0.030000, 0.0430000, 0.0590000 | 0.0050000, 0.0090000, 0.0140000 | 0.0230000, 0.030000, 0.0370000 | 0.0140000, 0.020000, 0.0250000 | 0.010000, 0.0150000, 0.0210000 |
F34 | 0.0220000, 0.030000, 0.0390000 | 0.0360000, 0.0490000, 0.0620000 | 0.0330000, 0.0430000, 0.0510000 | 0.0090000, 0.0120000, 0.0160000 | 0.0150000, 0.020000, 0.0250000 | 0.050000, 0.060000, 0.0680000 | 0.0090000, 0.0130000, 0.0180000 | 0.0330000, 0.0430000, 0.0510000 | 0.0090000, 0.0120000, 0.0160000 | 0.0150000, 0.020000, 0.0250000 |
F35 | 0.030000, 0.0430000, 0.0530000 | 0.0250000, 0.0360000, 0.0490000 | 0.0190000, 0.0280000, 0.0390000 | 0.0060000, 0.0090000, 0.0140000 | 0.0130000, 0.0190000, 0.0240000 | 0.0520000, 0.0670000, 0.0790000 | 0.0130000, 0.0170000, 0.0210000 | 0.0190000, 0.0280000, 0.0390000 | 0.0060000, 0.0090000, 0.0140000 | 0.0130000, 0.0190000, 0.0240000 |
Alternatives | D+i | D-i | Performance Score (Pi) | Rank | |
---|---|---|---|---|---|
Alternative 1 | US-1 | 0.24812 | 0.13114 | 0.54213 | 1 |
Alternative 2 | US-2 | 0.23512 | 0.14911 | 0.48617 | 5 |
Alternative 3 | US-3 | 0.22822 | 0.14189 | 0.38212 | 10 |
Alternative 4 | US-4 | 0.21511 | 0.15414 | 0.41717 | 8 |
Alternative 5 | US-5 | 0.20410 | 0.16614 | 0.44818 | 7 |
Alternative 6 | US-6 | 0.16902 | 0.19913 | 0.54158 | 2 |
Alternative 7 | US-7 | 0.17908 | 0.19013 | 0.51643 | 3 |
Alternative 8 | US-8 | 0.21707 | 0.15212 | 0.41217 | 9 |
Alternative 9 | US-9 | 0.18905 | 0.18151 | 0.48877 | 4 |
Alternative 10 | US-10 | 0.17015 | 0.19914 | 0.46913 | 6 |
Experiments | Weights/Alternatives | US-1 | US-2 | US-3 | US-4 | US-5 | US-6 | US-7 | US-8 | US-9 | US-10 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Original Weights | Satisfaction Degree (CC-i) | 0.54213 | 0.48617 | 0.38212 | 0.41717 | 0.44818 | 0.54158 | 0.51643 | 0.41217 | 0.48877 | 0.46913 | |
Exp. 1 | F11 | 0.56323 | 0.50127 | 0.39672 | 0.43297 | 0.45408 | 0.55298 | 0.52263 | 0.42807 | 0.50207 | 0.48002 | |
Exp. 2 | F12 | 0.53533 | 0.49137 | 0.38732 | 0.42177 | 0.44548 | 0.55338 | 0.52183 | 0.42947 | 0.49437 | 0.46393 | |
Exp. 3 | F13 | 0.53893 | 0.48587 | 0.39432 | 0.41577 | 0.44098 | 0.55188 | 0.51883 | 0.42497 | 0.49287 | 0.46093 | |
Exp. 4 | F14 | 0.54793 | 0.30837 | 0.38172 | 0.40587 | 0.45018 | 0.54288 | 0.52213 | 0.43417 | 0.48387 | 0.46423 | |
Exp. 5 | F15 | 0.54093 | 0.49127 | 0.38372 | 0.42147 | 0.44458 | 0.55248 | 0.51763 | 0.41857 | 0.50157 | 0.47503 | |
Exp. 6 | F21 | 0.54453 | 0.48577 | 0.39072 | 0.41547 | 0.44008 | 0.55098 | 0.51463 | 0.41407 | 0.50007 | 0.47203 | |
Exp. 7 | F22 | 0.55353 | 0.30827 | 0.37812 | 0.40557 | 0.44928 | 0.54198 | 0.51793 | 0.42327 | 0.49107 | 0.47533 | |
Exp. 8 | F23 | 0.51473 | 0.45367 | 0.34492 | 0.39027 | 0.40768 | 0.51318 | 0.48293 | 0.38167 | 0.46227 | 0.44033 | |
Exp. 9 | F24 | 0.46743 | 0.40467 | 0.30012 | 0.34697 | 0.36128 | 0.46948 | 0.49563 | 0.33527 | 0.41857 | 0.45303 | |
Exp. 10 | F25 | 0.55923 | 0.49157 | 0.38992 | 0.43987 | 0.44948 | 0.55818 | 0.52563 | 0.42347 | 0.50727 | 0.48303 | |
Exp. 11 | F31 | 0.54383 | 0.50327 | 0.38772 | 0.42547 | 0.45638 | 0.54308 | 0.51963 | 0.43037 | 0.49217 | 0.47703 | |
Exp. 12 | F32 | 0.55523 | 0.32537 | 0.38372 | 0.41387 | 0.45748 | 0.54348 | 0.52113 | 0.44147 | 0.49447 | 0.48323 | |
Exp. 13 | F33 | 0.51643 | 0.47077 | 0.35052 | 0.39857 | 0.41588 | 0.51468 | 0.48613 | 0.39987 | 0.46567 | 0.44823 | |
Exp. 14 | F34 | 0.46913 | 0.42177 | 0.30572 | 0.35527 | 0.36948 | 0.47098 | 0.49883 | 0.35347 | 0.42197 | 0.46093 | |
Exp. 15 | F35 | 0.54553 | 0.52037 | 0.39332 | 0.43377 | 0.46458 | 0.54458 | 0.52283 | 0.44857 | 0.49557 | 0.48493 |
Methods/Alternatives | US-1 | US-2 | US-3 | US-4 | US-5 | US-6 | US-7 | US-8 | US-9 | US-10 |
---|---|---|---|---|---|---|---|---|---|---|
Fuzzy-ANP-TOPSIS | 0.54213 | 0.48617 | 0.38212 | 0.41717 | 0.44818 | 0.54158 | 0.51643 | 0.41217 | 0.48877 | 0.46913 |
Classical-ANP-TOPSIS | 0.53653 | 0.48627 | 0.38572 | 0.41747 | 0.44908 | 0.54248 | 0.52063 | 0.42307 | 0.48157 | 0.45803 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agrawal, A.; Seh, A.H.; Baz, A.; Alhakami, H.; Alhakami, W.; Baz, M.; Kumar, R.; Khan, R.A. Software Security Estimation Using the Hybrid Fuzzy ANP-TOPSIS Approach: Design Tactics Perspective. Symmetry 2020, 12, 598. https://doi.org/10.3390/sym12040598
Agrawal A, Seh AH, Baz A, Alhakami H, Alhakami W, Baz M, Kumar R, Khan RA. Software Security Estimation Using the Hybrid Fuzzy ANP-TOPSIS Approach: Design Tactics Perspective. Symmetry. 2020; 12(4):598. https://doi.org/10.3390/sym12040598
Chicago/Turabian StyleAgrawal, Alka, Adil Hussain Seh, Abdullah Baz, Hosam Alhakami, Wajdi Alhakami, Mohammed Baz, Rajeev Kumar, and Raees Ahmad Khan. 2020. "Software Security Estimation Using the Hybrid Fuzzy ANP-TOPSIS Approach: Design Tactics Perspective" Symmetry 12, no. 4: 598. https://doi.org/10.3390/sym12040598
APA StyleAgrawal, A., Seh, A. H., Baz, A., Alhakami, H., Alhakami, W., Baz, M., Kumar, R., & Khan, R. A. (2020). Software Security Estimation Using the Hybrid Fuzzy ANP-TOPSIS Approach: Design Tactics Perspective. Symmetry, 12(4), 598. https://doi.org/10.3390/sym12040598