Numerical Study for Magnetohydrodynamic Flow of Nanofluid Due to a Rotating Disk with Binary Chemical Reaction and Arrhenius Activation Energy
<p>Flow configuration.</p> "> Figure 2
<p>Sketch of <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math>.</p> "> Figure 3
<p>Sketch of <math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p> "> Figure 4
<p>Sketch of <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math>.</p> "> Figure 5
<p>Sketch of <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p> "> Figure 6
<p>Sketch of <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math>.</p> "> Figure 7
<p>Sketch of <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <mi>β</mi> </semantics></math>.</p> "> Figure 8
<p>Sketch of <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <msub> <mi>δ</mi> <mn>1</mn> </msub> </semantics></math>.</p> "> Figure 9
<p>Sketch of <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </semantics></math> for Pr.</p> "> Figure 10
<p>Sketch of <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <msub> <mi>N</mi> <mi>t</mi> </msub> </semantics></math>.</p> "> Figure 11
<p>Sketch of <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <msub> <mi>N</mi> <mi>b</mi> </msub> </semantics></math>.</p> "> Figure 12
<p>Sketch of <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math>.</p> "> Figure 13
<p>Sketch of <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <mi>γ</mi> </semantics></math>.</p> "> Figure 14
<p>Sketch of <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>c</mi> </mrow> </semantics></math>.</p> "> Figure 15
<p>Sketch of <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <msub> <mi>N</mi> <mi>t</mi> </msub> </semantics></math>.</p> "> Figure 16
<p>Sketch of <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <msub> <mi>N</mi> <mi>b</mi> </msub> </semantics></math>.</p> "> Figure 17
<p>Sketch of <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </semantics></math> for <span class="html-italic">E</span>.</p> "> Figure 18
<p>Sketch of <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <mi>σ</mi> </semantics></math>.</p> "> Figure 19
<p>Sketch of <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <mi>δ</mi> </semantics></math>.</p> "> Figure 20
<p>Sketch of <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </semantics></math> for <span class="html-italic">n</span>.</p> "> Figure 21
<p>Sketch of <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>Re</mi> </mrow> <mrow> <mi>r</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> <mi>N</mi> <mi>u</mi> </mrow> </semantics></math> for <math display="inline"><semantics> <msub> <mi>N</mi> <mi>t</mi> </msub> </semantics></math>.</p> "> Figure 22
<p>Sketch of <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>Re</mi> </mrow> <mrow> <mi>r</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> <mi>N</mi> <mi>u</mi> </mrow> </semantics></math> for <math display="inline"><semantics> <msub> <mi>N</mi> <mi>b</mi> </msub> </semantics></math>.</p> "> Figure 23
<p>Sketch of <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>Re</mi> </mrow> <mrow> <mi>r</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> <mi>S</mi> <mi>h</mi> </mrow> </semantics></math> for <math display="inline"><semantics> <msub> <mi>N</mi> <mi>t</mi> </msub> </semantics></math>.</p> "> Figure 24
<p>Sketch of <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>Re</mi> </mrow> <mrow> <mi>r</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> <mi>S</mi> <mi>h</mi> </mrow> </semantics></math> for <math display="inline"><semantics> <msub> <mi>N</mi> <mi>b</mi> </msub> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Statement
3. Solution Methodology
4. Results and Discussion
5. Conclusions
- Larger velocity slip and Hartman number show decreasing trend for both velocities and .
- Both concentration and temperature depict increasing trend for increasing .
- Higher Pr corresponds to weaker temperature while the reverse behavior is seen for .
- Stronger temperature distribution is seen for and .
- Higher exhibits a decreasing trend for the concentration field.
- Higher activation energy E shows stronger concentration .
- Concentration depicts decreasing behavior for larger and .
- Both concentration is a decreasing factor of higher .
- Concentration displays reverse behavior for and .
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hsiao, K.L. Nanofluid flow with multimedia physical features for conjugate mixed convection and radiation. Comput. Fluids 2014, 104, 1–8. [Google Scholar] [CrossRef]
- Wen, B.; Corson, L.T.; Chini, G.P. Structure and stability of steady porous medium convection at large Rayleigh number. J. Fluid Mech. 2015, 772, 197–224. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, K.L. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Appl. Therm. Eng. 2016, 98, 850–861. [Google Scholar] [CrossRef]
- Hsiao, K.L. Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature. Int. J. Heat Mass Transf. 2017, 112, 983–990. [Google Scholar] [CrossRef]
- Wen, B.; Chang, K.W.; Hesse, M.A. Rayleigh-Darcy convection with hydrodynamic dispersion. Phys. Rev. Fluids 2018, 3, 123801. [Google Scholar] [CrossRef]
- Choi, S.U.S. Enhancing thermal conductivity of fluids with nanoparticles. In Proceedings of the ASME International Mechanical Engineering Congress & Exposition, San Francisco, CA, USA, 12–17 November 1995; Volume 66, pp. 99–105. [Google Scholar]
- Eastman, J.A.; Choi, S.U.S.; Li, S.; Yu, W.; Thompson, L.J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 2001, 78, 718–720. [Google Scholar] [CrossRef]
- Buongiorno, J. Convective transport in nanofluids. J. Heat Transf. 2006, 128, 240–250. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Das, M.K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluid. Int. J. Heat Mass Transf. 2007, 50, 2002–2018. [Google Scholar] [CrossRef]
- Abu-Nada, E.; Oztop, H.F. Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid. Int. J. Heat Fluid Flow 2009, 30, 669–678. [Google Scholar] [CrossRef]
- Khan, J.A.; Mustafa, M.; Hayat, T.; Farooq, M.A.; Alsaedi, A.; Liao, S.J. On model for three-dimensional flow of nanofluid: An application to solar energy. J. Mol. Liq. 2014, 194, 41–47. [Google Scholar] [CrossRef]
- Mansur, S.; Ishak, A. Three-dimensional flow and heat transfer of a nanofluid past a permeable stretching sheet with a convective boundary condition. AIP Conf. Proc. 2014, 1614, 906. [Google Scholar]
- Hayat, T.; Muhammad, T.; Alsaedi, A.; Alhuthali, M.S. Magnetohydrodynamic three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation. J. Magn. Magn. Mater. 2015, 385, 222–229. [Google Scholar] [CrossRef]
- Hayat, T.; Aziz, A.; Muhammad, T.; Alsaedi, A. On magnetohydrodynamic three-dimensional flow of nanofluid over a convectively heated nonlinear stretching surface. Int. J. Heat Mass Transf. 2016, 100, 566–572. [Google Scholar] [CrossRef]
- Muhammad, T.; Alsaedi, A.; Hayat, T.; Shehzad, S.A. A revised model for Darcy-Forchheimer three- dimensional flow of nanofluid subject to convective boundary condition. Results Phys. 2017, 7, 2791–2797. [Google Scholar] [CrossRef]
- Hayat, T.; Muhammad, T.; Shehzad, S.A.; Alsaedi, A. An analytical solution for magnetohydrodynamic Oldroyd-B nanofluid flow induced by a stretching sheet with heat generation/absorption. Int. J. Therm. Sci. 2017, 111, 274–288. [Google Scholar] [CrossRef]
- Muhammad, T.; Alsaedi, A.; Shehzad, S.A.; Hayat, T. A revised model for Darcy-Forchheimer flow of Maxwell nanofluid subject to convective boundary condition. Chin. J. Phys. 2017, 55, 963–976. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Oztop, H.F. Mixed convection of nanofluids in a three dimensional cavity with two adiabatic inner rotating cylinders. Int. J. Heat Mass Transf. 2018, 117, 331–343. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Hayat, T.; Muhammad, T.; Alsaedi, A. MHD forced convection flow of nanofluid in a porous cavity with hot elliptic obstacle by means of Lattice Boltzmann method. Int. J. Mech. Sci. 2018, 135, 532–540. [Google Scholar] [CrossRef]
- Mahanthesh, B.; Gireesha, B.J.; Animasaun, I.L.; Shashikumar, T.M.a.S. MHD flow of SWCNT and MWCNT nanoliquids past a rotating stretchable disk with thermal and exponential space dependent heat source. Phys. Scr. 2019, 94, 085214. [Google Scholar] [CrossRef]
- Hu, Z.; Lu, W.; Thouless, M.D. Slip and wear at a corner with Coulomb friction and an interfacial strength. Wear 2015, 338, 242–251. [Google Scholar] [CrossRef]
- Hu, Z.; Lu, W.; Thouless, M.D.; Barber, J.R. Effect of plastic deformation on the evolution of wear and local stress fields in fretting. Int. J. Solids Struct. 2016, 82, 1–8. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Z.; Lu, W.; Thouless, M.D. The effect of coupled wear and creep during grid-to-rod fretting. Nucl. Eng. Des. 2017, 318, 163–173. [Google Scholar] [CrossRef] [Green Version]
- von Karman, T. Uberlaminare und turbulente Reibung. Z. Angew. Math. Mech. ZAMM 1921, 1, 233–252. [Google Scholar] [CrossRef]
- Cochran, W.G. The flow due to a rotating disk. Math. Proc. Camb. Philos. Soc. 1934, 30, 365–375. [Google Scholar] [CrossRef]
- Millsaps, K.; Pohlhausen, K. Heat transfer by laminar flow from a rotating disk. J. Aeronaut. Sci. 1952, 19, 120–126. [Google Scholar] [CrossRef]
- Ackroyd, J.A.D. On the steady flow produced by a rotating disk with either surface suction or injection. J. Eng. Math. 1978, 12, 207–220. [Google Scholar] [CrossRef]
- Miclavcic, M.; Wang, C.Y. The flow due to a rough rotating disk. Z. Angew. Math. Phys. 2004, 54, 1–12. [Google Scholar] [CrossRef]
- Attia, H.A. Steady flow over a rotating disk in porous medium with heat transfer. Nonlinear Anal.-Model. Control 2009, 14, 21–26. [Google Scholar]
- Turkyilmazoglu, M.; Senel, P. Heat and mass transfer of the flow due to a rotating rough and porous disk. Int. J. Therm. Sci. 2013, 63, 146–158. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Kavyani, N.; Abelman, S. Investigation of entropy generation in MHD and slip flow over a rotating porous disk with variable properties. Int. J. Heat Mass Transf. 2014, 70, 892–917. [Google Scholar] [CrossRef]
- Hatami, M.; Sheikholeslami, M.; Ganji, D.D. Laminar flow and heat transfer of nanofluid between contracting and rotating disks by least square method. Powder Technol. 2014, 253, 769–779. [Google Scholar] [CrossRef]
- Mustafa, M.; Khan, J.A.; Hayat, T.; Alsaedi, A. On Bodewadt flow and heat transfer of nanofluids over a stretching stationary disk. J. Mol. Liq. 2015, 211, 119–125. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Hatami, M.; Ganji, D.D. Numerical investigation of nanofluid spraying on an inclined rotating disk for cooling process. J. Mol. Liq. 2015, 211, 577–583. [Google Scholar] [CrossRef]
- Hayat, T.; Muhammad, T.; Shehzad, S.A.; Alsaedi, A. On magnetohydrodynamic flow of nanofluid due to a rotating disk with slip effect: A numerical study. Comput. Methods Appl. Mech. Eng. 2017, 315, 467–477. [Google Scholar] [CrossRef]
- Mustafa, M. MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model. Int. J. Heat Mass Transf. 2017, 108, 1910–1916. [Google Scholar] [CrossRef]
- Hayat, T.; Haider, F.; Muhammad, T.; Alsaedi, A. On Darcy-Forchheimer flow of carbon nanotubes due to a rotating disk. Int. J. Heat Mass Transf. 2017, 112, 248–254. [Google Scholar] [CrossRef]
- Pop, I.; Soundalgekar, V.M. The Hall effect on an unsteady flow due to a rotating infinite disc. Nucl. Eng. Des. 1977, 44, 309–314. [Google Scholar] [CrossRef]
- Bachok, N.; Ishak, A.; Pop, I. Flow and heat transfer over a rotating porous disk in a nanofluid. Phys. B Condens. Matter 2011, 406, 1767–1772. [Google Scholar] [CrossRef]
- Lok, Y.Y.; Merkin, J.H.; Pop, I. Axisymmetric rotational stagnation-point flow impinging on a permeable stretching/shrinking rotating disk. Eur. J. Mech. B/Fluids 2018, 72, 275–292. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asma, M.; Othman, W.A.M.; Muhammad, T.; Mallawi, F.; Wong, B.R. Numerical Study for Magnetohydrodynamic Flow of Nanofluid Due to a Rotating Disk with Binary Chemical Reaction and Arrhenius Activation Energy. Symmetry 2019, 11, 1282. https://doi.org/10.3390/sym11101282
Asma M, Othman WAM, Muhammad T, Mallawi F, Wong BR. Numerical Study for Magnetohydrodynamic Flow of Nanofluid Due to a Rotating Disk with Binary Chemical Reaction and Arrhenius Activation Energy. Symmetry. 2019; 11(10):1282. https://doi.org/10.3390/sym11101282
Chicago/Turabian StyleAsma, Mir, W.A.M. Othman, Taseer Muhammad, Fouad Mallawi, and B.R. Wong. 2019. "Numerical Study for Magnetohydrodynamic Flow of Nanofluid Due to a Rotating Disk with Binary Chemical Reaction and Arrhenius Activation Energy" Symmetry 11, no. 10: 1282. https://doi.org/10.3390/sym11101282