Hybrid Weighted Arithmetic and Geometric Aggregation Operator of Neutrosophic Cubic Sets for MADM
Abstract
:1. Introduction
2. Preliminaries
- (1)
- (complement of g1);
- (2)
- (3)
- (4)
- (5)
- (i)
- If Ψ(g1) > Ψ(g2), then g1 ≻ g2;
- (ii)
- If Ψ(g1) = Ψ(g2) and Γ(g1) > Γ(g2), then g1 ≻ g2;
- (iii)
- If Ψ(g1) = Ψ(g2) and Γ(g1) = Γ(g2), then g1 ~ g2.
3. Hybrid Arithmetic and Geometric Aggregation Operators of NCNs
3.1. NCHWAGA Operator
- (i)
- Idempotency: If gi= g for i = 1, 2, …, n, then NCHWAGA (g1, g2, …, gn) = g.
- (ii)
- Boundedness: If gmin= min (g1, g2, …, gn) and gmax= max (g1, g2, …, gn) for i = 1, 2, …, n, then gmin ≤ NCHWAGA (g1, g2, …, gn) ≤ gmax.
- (iii)
- Monotonicity: If gi ≤ gi* for i = 1, 2, …, n, then NCHWAGA (g1, g2, …, gn) ≤ NCHWAGA (g1*, g2*, …, gn*).
3.2. Numerical Example
4. MADM Method Using the NCHWAGA Operator
- Step 1. Calculate the aggregated value of gi for each alternative Gi (i = 1, 2, …, k) using the NCHWAGA operator:
- Step 2. Obtain the score values of Ψ(x) (the accuracy degrees of Γ(x) if necessary) of the collective NCN gi (i = 1, 2, …, k) by Equations (1) and (2).
- Step 3. Rank all the alternatives corresponding to the values of Ψ(x) and Γ(x), and select the best one(s) based on the largest value.
- Step 4. End.
5. Illustrative Example and Comparison Analysis
- Step 1. By Equation (7) for ρ = 0.5, we calculate the aggregated value of the collective NCN gi for the each alternative Gi (i = 1, 2, 3, 4) as follows:
g1 = (< [0.5302, 0.6645], [0.1272, 0.3000], [0.1669, 0.3355] >, <0.3430, 0.4709, 0.2306>) g2 = (< [0.6000, 0.7335], [0.1523, 0.2563], [0.1669, 0.2685] >, <0.6628, 0.2525, 0.2346>) g3 = (< [0.4677, 0.6307], [0.2000, 0.3000], [0.2264, 0.3672] >, <0.6000, 0.2365, 0.3025>) g4 = (< [0.6328, 0.7335], [0.1523, 0.2563], [0.1272, 0.2665] >, <0.7335, 0.1523, 0.2000>) - Step 2. By Equation (1), we calculate the score values of Ψ(gi) for the alternatives Gi (i = 1, 2, 3, 4) as the follows:Ψ(g1) = 0.6563, Ψ(g2) = 0.7405, Ψ(g3) = 0.6740, Ψ(g4) = 0.7717.
- Step 3. According to Ψ(g4) > Ψ(g2) > Ψ(g3) > Ψ(g1), the ranking of the alternatives is G4 ≻ G2 ≻ G3 ≻ G1. So, the alternative G4 is the best one.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GRA | Grey relational analysis |
INSs | Interval neutrosophic sets |
MADM | Multi-attribute decision-making |
MCGDM | Multi-criteria group decision making |
MVNSs | Multi-valued neutrosophic sets |
NCHWAGA | Neutrosophic cubic hybrid weighted arithmetic and geometric aggregation |
NCSs | Neutrosophic cubic sets |
NCWAA | Neutrosophic cubic weighted arithmetic average |
NCWGA | Neutrosophic cubic geometric weighted average |
SNSs | Simplified neutrosophic sets |
SVNSs | Single-valued neutrosophic sets |
WAA | Weighted arithmetic average |
WGA | Geometric average |
References
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning Part I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionstic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic; American Research Press: Rehoboth, DE, USA, 1998. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory and Applications in Computing; Hexis: Phoenix, AZ, USA, 2005. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multisp. Multistruct. 2010, 4, 410–413. [Google Scholar]
- Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 2459–2466. [Google Scholar] [CrossRef]
- Wang, J.Q.; Li, X.E. An application of the TODIM method with multi-valued neutrosophic set. Control Decis. 2015, 30, 1139–1142. [Google Scholar]
- Peng, J.J.; Wang, J.Q. Multi-valued neutrosophic sets and its application in multi-criteria decision-making problems. Neutrosophic Sets Syst. 2015, 10, 3–17. [Google Scholar] [CrossRef]
- Liu, P.D.; Tang, G.L. Some power generalized aggregation operators based on the interval neutrosophic numbers and their application to decision making. J. Intell. Fuzzy Syst. 2016, 30, 2517–2528. [Google Scholar] [CrossRef]
- Ye, J. Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses. Artif. Intell. Med. 2015, 63, 171–179. [Google Scholar] [CrossRef]
- Ye, J.; Fu, J. Multi-period medical diagnosis method using a single valued neutrosophic similarity measure based on tangent function. Comput. Methods Programs Biomed. 2016, 123, 142–149. [Google Scholar] [CrossRef]
- Shi, L. Correlation Coefficient of simplified neutrosophic sets for bearing fault diagnosis. Shock Vib. 2016. [Google Scholar] [CrossRef]
- Ye, J. Single valued neutrosophic similarity measures based on cotangent function and their application in the fault diagnosis of steam turbine. Soft Comput. 2017, 21, 817–825. [Google Scholar] [CrossRef]
- Smarandache, F. n-Valued refined neutrosophic logic and its applications in physics. Prog. Phys. 2013, 4, 143–146. [Google Scholar]
- Broumi, S.; Smarandache, F. Intuitionistic neutrosophic soft set. J. Inf. Comput. Sci. 2013, 8, 130–140. [Google Scholar]
- Ye, J. Multiple-attribute decision-making method under a single-valued neutrosophic hesitant fuzzy environment. J. Intell. Fuzzy Syst. 2015, 24, 23–36. [Google Scholar] [CrossRef]
- Broum, S.; Smarandache, F.; Dhar, M. Rough neutrosophic sets. Neutrosophic Sets Syst. 2014, 3, 62–67. [Google Scholar]
- Ali, M.; Deli, I.; Smarandache, F. The theory of neutrosophic cubic sets and their applications in pattern recognition. J. Intell. Fuzzy Syst. 2016, 30, 1957–1963. [Google Scholar] [CrossRef]
- Jun, Y.B.; Smarandache, F.; Kim, C.S. Neutrosophic cubic sets. New Math. Nat. Comput. 2017, 13, 41–45. [Google Scholar] [CrossRef]
- Lu, Z.; Ye, J. Cosine measures of neutrosophic cubic sets for multiple attribute decision-making. Symmetry 2017, 9, 121. [Google Scholar] [CrossRef]
- Banerjee, D.; Giri, B.C.; Pramanik, S.; Smarandache, F. GRA for multi attribute decision making in neutrosophic cubic set environment. Neutrosophic Sets Syst. 2017, 15, 64–73. [Google Scholar]
- Pramanik, S.; Dalapati, S.; Alam, S.; Roy, T.K.; Smarandache, F. Neutrosophic cubic MCGDM method based on similarity measure. Neutrosophic Sets Syst. 2017, 16, 44–56. [Google Scholar]
- Xu, Z.S. A note on linguistic hybrid arithmetic averaging operator in multiple attribute group decision making with linguistic information. Group Decis. Negot. 2006, 15, 593–604. [Google Scholar] [CrossRef]
- Liu, P. Multiple attribute decision-making methods based on normal intuitionistic fuzzy interaction aggregation operators. Symmetry 2017, 9, 261. [Google Scholar] [CrossRef]
- Liu, P.; Wang, P. Some improved linguistic intuitionistic fuzzy aggregation operators and their applications to multiple-attribute decision making. Int. J. Inf. Technol. Decis. Mak. 2017, 16, 817–850. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Picture 2-tuple linguistic aggregation operators in multiple attribute decision making. Soft Comput. 2018, 22, 989–1002. [Google Scholar] [CrossRef]
- Wei, G.W. Pythagorean fuzzy interaction aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 2119–2132. [Google Scholar] [CrossRef]
- Luo, X.; Xu, Z.; Gou, X. Exponential operational laws and new aggregation operators of intuitionistic Fuzzy information based on Archimedean T-conorm and T-norm. Int. J. Mach. Learn. Cybern. 2018, 9, 1261–1269. [Google Scholar] [CrossRef]
- Wang, J.; Tian, C.; Zhang, X.; Zhang, H.; Wang, T. Multi-criteria decision-making method based on simplified neutrosophic linguistic information with cloud model. Symmetry 2018, 10, 197. [Google Scholar] [CrossRef]
- Shi, L.; Ye, J. Dombi aggregation operators of neutrosophic cubic sets for multiple attribute decision-making. Algorithms 2018, 11, 29. [Google Scholar] [CrossRef]
- Zhan, J.; Khan, M.; Gulistan, M.; Ali, A. Applications of neutrosophic cubic sets in multi-criteria decision making. Int. J. Uncertain. Quantif. 2017, 7, 377–394. [Google Scholar] [CrossRef]
- Jun, Y.B.; Smarandache, F.; Kim, C.S. P-union and P-intersection of neutrosophic cubic sets. St. Univ. Ovidius Constanta 2017, 25, 99–115. [Google Scholar] [CrossRef]
- Ye, J. Linguistic neutrosophic cubic numbers and their multiple attribute decision-making method. Information 2017, 8, 110. [Google Scholar] [CrossRef]
- Ye, J. Intuitionistic fuzzy hybrid arithmetic and geometric aggregation operators for the decision-making of mechanical design schemes. Appl. Intell. 2017, 47, 743–751. [Google Scholar] [CrossRef]
- Lu, Z.; Ye, J. Single-valued neutrosophic hybrid arithmetic and geometric aggregation pperators and their decision-making method. Information 2017, 8, 84. [Google Scholar] [CrossRef]
- Smarandache, F. Neutrosophic Overset, Neutrosophic Underset, and Neutrosophic Offset. Similarly for Neutrosophic Over-/Under-/Off-Logic, Probability, and Statistics. Pons Editions: Bruxelles, Belgique, 2016. Available online: https://arxiv.org/ftp/arxiv/papers/1607/1607.00234.pdf (accessed on 4 January 2019).
Alternative | Attribute (P1) | Attribute (P2) | Attribute (P3) |
---|---|---|---|
G1 | (< [0.5, 0.6], [0.1, 0.3], [0.2, 0.4]>, <0.2, 0.6, 0.3>) | (< [0.5, 0.6], [0.1, 0.3], [0.2, 0.4]>, <0.2, 0.6, 0.3>) | (< [0.6, 0.8], [0.2, 0.3], [0.1, 0.2]>, <0.7, 0.2, 0.1>) |
G2 | (< [0.6, 0.8], [0.1, 0.2], [0.2, 0.3]>, <0.7, 0.1, 0.2>) | (< [0.6, 0.7], [0.1, 0.2], [0.2, 0.3]>, <0.6, 0.3, 0.4>) | (< [0.6, 0.7], [0.3, 0.4], [0.1, 0.2]>, <0.7, 0.4, 0.2>) |
G3 | (< [0.4, 0.6], [0.2, 0.3], [0.1, 0.3]>, <0.6, 0.2, 0.2>) | (< [0.5, 0.6], [0.2, 0.3], [0.3, 0.4]>, <0.6, 0.3, 0.4>) | (< [0.5, 0.7], [0.2, 0.3], [0.3, 0.4]>, <0.6, 0.2, 0.3>) |
G4 | (< [0.7, 0.8], [0.1, 0.2], [0.1, 0.2]>, <0.8, 0.1, 0.2>) | (< [0.6, 0.7], [0.1, 0.2], [0.1, 0.3]>, <0.7, 0.1, 0.2>) | (< [0.6, 0.7], [0.3, 0.4], [0.2, 0.3]>, <0.7, 0.3, 0.2>) |
MADM Method | Score Values (Cosine Measures Value) | Ranking Order | The Best Alternative |
---|---|---|---|
NCHWAGA (ρ = 0.5) | 0.6563, 0.7405, 0.6740, 0.7717 | G4 ≻ G2 ≻ G1 ≻ G3 | G4 |
Cosine Measure Sw1 [20] | 0.9564, 0.9855, 0.9596, 0.9945 | G4 ≻ G2 ≻ G1 ≻ G3 | G4 |
Cosine Measure Sw2 [20] | 0.9769, 0.9944, 0.9795, 0.9972 | G4 ≻ G2 ≻ G1 ≻ G3 | G4 |
Cosine Measure Sw3 [20] | 0.9892, 0.9959, 0.9897, 0.9989 | G4 ≻ G2 ≻ G1 ≻ G3 | G4 |
Aggregation Operator | Aggregated Result | Score Value | Ranking Order | The Best Alternative |
---|---|---|---|---|
NCHWAGA (ρ = 0.5) | g1 = (< [0.5302, 0.6645], [0.1272, 0.3000], [0.1669, 0.3355] >, < 0.3430, 0.4709, 0.2306 >) | Ψ(g1) = 0.6563 | G4 ≻ G2 ≻ G1 ≻ G3 | G4 |
g2 = (< [0.6000, 0.7335], [0.1523, 0.2563], [0.1669, 0.2685] >, <0.6628, 0.2525, 0.2346>) | Ψ(g2) = 0.7405 | |||
g3 = (< [0.4677, 0.6307], [0.2000, 0.3000], [0.2264, 0.3672] >, <0.6000, 0.2365, 0.3025>) | Ψ(g3) = 0.6740 | |||
g4 = (< [0.6328, 0.7335], [0.1523, 0.2563], [0.1272, 0.2665] >, <0.7335, 0.1523, 0.2000>) | Ψ(g4) = 0.7717 | |||
NCWAA [31] | g1 = (< [0.5324, 0.6751], [ 0.1231, 0.3000], [0.1625, 0.3249] >, < 0.4039, 0.4315, 0.2158 >), | Ψ(g1) = 0.6726 | G4 ≻ G2 ≻ G3 ≻ G1 | G4 |
g2 = (< [0.6000, 0.7365], [0.1390, 0.2462], [0.1625, 0.2656] >, <0.6653, 0.2301, 0.2114>) | Ψ(g2) = 0.7497 | |||
g3 = (< [0.4700, 0.6331], [0.2000, 0.3000], [0.2111, 0.3648] >, <0.6000, 0.2333, 0.2939>) | Ψ(g3) = 0.6778 | |||
g4 = (< [0.6352, 0.7365], [0.1390, 0.2462], [0.1231, 0.2635] >, <0.7365, 0.1390, 0.2000>) | Ψ(g4) = 0.7775 | |||
NCWGA [31] | g1 = (< [0.5281, 0.6541], [ 0.1312, 0.3000], [0.1712, 0.3459] >, < 0.2912, 0.5075, 0.2452 >) | Ψ(g1) = 0.6414 | G4 ≻ G2 ≻ G3 ≻ G1 | G4 |
g2 = (< [0.6000, 0.7306], [0.1654, 0.2661], [0.1712, 0.2714] >, <0.6602, 0.2757, 0.2571>) | Ψ(g2) = 0.7315 | |||
g3 = (< [0.4655, 0.6284], [0.2000, 0.3000], [0.2414, 0.3697] >, <0.6000, 0.2396, 0.3110>) | Ψ(g3) = 0.6703 | |||
g4 = (< [0.6303, 0.7306], [0.1654, 0.2661], [0.1312, 0.2694] >, <0.7306, 0.1654, 0.2000>) | Ψ(g4) = 0.7660 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Yuan, Y. Hybrid Weighted Arithmetic and Geometric Aggregation Operator of Neutrosophic Cubic Sets for MADM. Symmetry 2019, 11, 278. https://doi.org/10.3390/sym11020278
Shi L, Yuan Y. Hybrid Weighted Arithmetic and Geometric Aggregation Operator of Neutrosophic Cubic Sets for MADM. Symmetry. 2019; 11(2):278. https://doi.org/10.3390/sym11020278
Chicago/Turabian StyleShi, Lilian, and Yue Yuan. 2019. "Hybrid Weighted Arithmetic and Geometric Aggregation Operator of Neutrosophic Cubic Sets for MADM" Symmetry 11, no. 2: 278. https://doi.org/10.3390/sym11020278