Models for Green Supplier Selection with Some 2-Tuple Linguistic Neutrosophic Number Bonferroni Mean Operators
Abstract
:1. Introduction
2. Preliminaries
2.1. 2-Tuple Fuzzy Linguistic Representation Model
2.2. SVNSs
2.3. 2TLNNSs
- (1)
- ,
- (2)
- ,
- (3)
- ,
- (4)
- ,
- (5)
- ,
- (1)
- (2)
- (3)
- (4)
- .
2.4. BM Operators
3. 2TLNNWBM and 2TLNNWGBM Operators
3.1. 2TLNNWBM Operator
- ①
- ②
3.2. 2TLNNWGBM Operator
- ①
- ②
4. G2TLNNWBM and G2TLNNWGBM Operators
4.1. G2TLNNWBM Operator
- ①
- ②
4.2. G2TLNNWGBM Operator
- ①
- ②
5. DG2TLNNWBM and DG2TLNNWGBM Operators
5.1. DG2TLNNWBM Operator
- ①
- ②
5.2. DG2TLNNWGBM Operator
- ①
- ②
6. Numerical Example and Comparative Analysis
6.1. Numerical Example
6.2. Influence of the Parameter on the Final Result
6.3. Comparative Analysis
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K.; Gargov, G. Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349. [Google Scholar] [CrossRef]
- Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic: Analytic Synthesis & Synthetic Analysis; American Research Press: Rehoboth, DE, USA, 1998. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace Multistructure 2010, 4, 410–413. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory and Applications in Computing; Hexis: Phoenix, AZ, USA, 2005. [Google Scholar]
- Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 2459–2466. [Google Scholar]
- Ye, J. Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. Int. J. Gen. Syst. 2013, 42, 386–394. [Google Scholar] [CrossRef]
- Broumi, S.; Smarandache, F. Correlation coefficient of interval neutrosophic set. Appl. Mech. Mater. 2013, 436, 511–517. [Google Scholar] [CrossRef]
- Biswas, P.; Pramanik, S.; Giri, B.C. TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Comput. Appl. 2016, 27, 727–737. [Google Scholar] [CrossRef]
- Liu, P.D.; Chu, Y.C.; Li, Y.W.; Chen, Y.B. Some generalized neutrosophic number Hamacher aggregation operators and their application to Group Decision Making. Int. J. Fuzzy Syst. 2014, 16, 242–255. [Google Scholar]
- Şahin, R.; Liu, P.D. Maximizing deviation method for neutrosophic multiple attribute decision making with incomplete weight information. Neural Comput. Appl. 2016, 27, 2017–2029. [Google Scholar] [CrossRef]
- Ye, J. Similarity measures between interval neutrosophic sets and their applications in multicriteria decision-making. J. Intell. Fuzzy Syst. 2014, 26, 165–172. [Google Scholar]
- Zhang, H.Y.; Wang, J.Q.; Chen, X.H. Interval neutrosophic sets and their application in multicriteria decision making problems. Sci. Word J. 2014, 2014, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.J.; Wang, J.Q.; Zhang, H.Y.; Chen, X.H. An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets. Appl. Soft Comput. 2014, 25, 336–346. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.Q.; Chen, X.H. An outranking approach for multi-criteria decision-making problems with interval-valued neutrosophic sets. Neural Comput. Appl. 2016, 27, 615–627. [Google Scholar] [CrossRef]
- Liu, P.D.; Xi, L. The neutrosophic number generalized weighted power averaging operator and its application in multiple attribute group decision making. Int. J. Mach. Learn. Cybernet. 2016. [Google Scholar] [CrossRef]
- Peng, J.J.; Wang, J.Q.; Wu, X.H.; Wang, J.; Chen, X.H. Multi-valued neutrosophic sets and power aggregation operators with their applications in multi-criteria group decision-making problems. Int. J. Comput. Intell. Syst. 2015, 8, 345–363. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Ji, P.; Wang, J.Q.; Chen, X.H. An improved weighted correlation coefficient based on integrated weight for interval neutrosophic sets and its application in multi-criteria decision-making problems. Int. J. Comput. Intell. Syst. 2015, 8, 1027–1043. [Google Scholar] [CrossRef]
- Chen, J.Q.; Ye, J. Some Single-Valued Neutrosophic Dombi Weighted Aggregation Operators for Multiple Attribute Decision-Making. Symmetry 2017, 9, 82. [Google Scholar] [CrossRef]
- Liu, P.D.; Wang, Y.M. Multiple attribute decision making method based on single-valued neutrosophic normalized weighted Bonferroni mean. Neural Comput. Appl. 2014, 25, 2001–2010. [Google Scholar] [CrossRef]
- Wu, X.H.; Wang, J.Q.; Peng, J.J.; Chen, X.H. Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems. J. Intell. Fuzzy Syst. 2016, 18, 1104–1116. [Google Scholar] [CrossRef]
- Li, Y.; Liu, P.; Chen, Y. Some Single Valued Neutrosophic Number Heronian Mean Operators and Their Application in Multiple Attribute Group Decision Making. Informatica 2016, 27, 85–110. [Google Scholar] [CrossRef]
- Wang, J.; Tang, X.; Wei, G. Models for Multiple Attribute Decision-Making with Dual Generalized Single-Valued Neutrosophic Bonferroni Mean Operators. Algorithms 2018, 11, 2. [Google Scholar] [CrossRef]
- Wei, G.W.; Zhang, Z.P. Some Single-Valued Neutrosophic Bonferroni Power Aggregation Operators in Multiple Attribute Decision Making. J. Ambient Intell. Humaniz. Comput. 2018. [Google Scholar] [CrossRef]
- Peng, X.D.; Dai, J.G. Approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function. Neural Comput. Appl. 2018, 29, 939–954. [Google Scholar] [CrossRef]
- Herrera, F.; Martinez, L. A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 2000, 8, 746–752. [Google Scholar]
- Herrera, F.; Martinez, L. An approach for combining linguistic and numerical information based on the 2-tuple fuzzy linguistic representation model in decision-making. Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 2000, 8, 539–562. [Google Scholar] [CrossRef]
- Merigó, J.M.; Casanovas, M.; Martínez, L. Linguistic aggregation operators for linguistic decision making based on the Dempster-Shafer theory of Evidence. Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 2010, 18, 287–304. [Google Scholar] [CrossRef]
- Wei, G.W. A method for multiple attribute group decision making based on the ET-WG and ET-OWG operators with 2-tuple linguistic information. Expert Syst. Appl. 2010, 37, 7895–7900. [Google Scholar] [CrossRef]
- Wei, G.W. Extension of TOPSIS method for 2-tuple linguistic multiple attribute group decision making with incomplete weight information. Knowl. Inf. Syst. 2010, 25, 623–634. [Google Scholar] [CrossRef]
- Merigo, J.M.; Casanovas, M. Decision Making with Distance Measures and Linguistic Aggregation Operators. Int. J. Fuzzy Syst. 2010, 12, 190–198. [Google Scholar]
- Merigo, J.M.; Gil-Lafuente, A.M.; Zhou, L.G.; Chen, H.Y. Generalization of the linguistic aggregation operator and its application in decision making. J. Syst. Eng. Electron. 2011, 22, 593–603. [Google Scholar] [CrossRef]
- Wei, G.W. Grey relational analysis method for 2-tuple linguistic multiple attribute group decision making with incomplete weight information. Expert Syst. Appl. 2011, 38, 4824–4828. [Google Scholar] [CrossRef]
- Wei, G.W. Some harmonic averaging operators with 2-tuple linguistic assessment information and their application to multiple attribute group decision making. Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 2011, 19, 977–998. [Google Scholar] [CrossRef]
- Wei, G.W.; Zhao, X.F. Some dependent aggregation operators with 2-tuple linguistic information and their application to multiple attribute group decision making. Expert Syst. Appl. 2012, 39, 5881–5886. [Google Scholar] [CrossRef]
- Xu, Y.J.; Wang, H.M. Approaches based on 2-tuple linguistic power aggregation operators for multiple attribute group decision making under linguistic environment. Appl. Soft Comput. 2011, 11, 3988–3997. [Google Scholar] [CrossRef]
- Liao, X.W.; Li, Y.; Lu, B. A model for selecting an ERP system based on linguistic information processing. Inf. Syst. 2007, 32, 1005–1017. [Google Scholar] [CrossRef]
- Wang, W.P. Evaluating new product development performance by fuzzy linguistic computing. Expert Syst. Appl. 2009, 36, 9759–9766. [Google Scholar] [CrossRef]
- Tai, W.S.; Chen, C.T. A new evaluation model for intellectual capital based on computing with linguistic variable. Expert Syst. Appl. 2009, 36, 3483–3488. [Google Scholar] [CrossRef]
- Zhao, X.F.; Li, Q.; Wei, G.W. Some prioritized aggregating operators with linguistic information and their application to multiple attribute group decision making. J. Intell. Fuzzy Syst. 2014, 26, 1619–1630. [Google Scholar]
- Jiang, X.P.; Wei, G.W. Some Bonferroni mean operators with 2-tuple linguistic information and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2014, 27, 2153–2162. [Google Scholar]
- Beliakov, G.; James, S.; Mordelová, J.; Rückschlossová, T.; Yager, R.R. Generalized Bonferroni mean operators in multicriteria aggregation. Fuzzy Sets Syst. 2010, 161, 2227–2242. [Google Scholar] [CrossRef]
- Bonferroni, C. Sulle medie multiple di potenze. Boll. Unione Mat. Ital. 1950, 5, 267–270. [Google Scholar]
- Xia, M.M.; Xu, Z.; Zhu, B. Generalized intuitionistic fuzzy Bonferroni means. Int. J. Intell. Syst. 2012, 27, 23–47. [Google Scholar] [CrossRef]
- Xu, Z.S.; Yager, R.R. Intuitionistic fuzzy Bonferroni means. IEEE Trans. Syst. Man Cybern. 2011, 41, 568–578. [Google Scholar]
- Yager, R.R. On generalized Bonferroni mean operators for multi-criteria aggregation. Int. J. Approx. Reason. 2009, 50, 1279–1286. [Google Scholar] [CrossRef]
- Wei, G.W. Picture 2-tuple linguistic Bonferroni mean operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 19, 997–1010. [Google Scholar] [CrossRef]
- Tang, X.Y.; Wei, G.W. Models for green supplier selection in green supply chain management with Pythagorean 2-tuple linguistic information. IEEE Access 2018, 6, 18042–18060. [Google Scholar] [CrossRef]
- Wei, G.W.; Zhao, X.F.; Lin, R.; Wang, H.J. Uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making. Appl. Math. Model. 2013, 37, 5277–5285. [Google Scholar] [CrossRef]
- Zhu, B.; Xu, Z.S.; Xia, M.M. Hesitant fuzzy geometric Bonferroni means. Inform. Sci. 2012, 205, 72–85. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, J.; Zhu, X.; Xia, M.; Yu, M. Some Generalized Pythagorean Fuzzy Bonferroni Mean Aggregation Operators with Their Application to Multiattribute Group Decision-Making. Complexity 2017, 2017, 5937376. [Google Scholar] [CrossRef]
- Fang, Z.; Ye, J. Multiple Attribute Group Decision-Making Method Based on Linguistic Neutrosophic Numbers. Symmetry 2017, 9, 111. [Google Scholar] [CrossRef]
- Shi, L.; Ye, J. Cosine Measures of Linguistic Neutrosophic Numbers and Their Application in Multiple Attribute Group Decision-Making. Information 2017, 8, 117. [Google Scholar]
- Chen, T. The inclusion-based TOPSIS method with interval-valued intuitionistic fuzzy sets for multiple criteria group decision making. Appl. Soft Comput. 2015, 26, 57–73. [Google Scholar] [CrossRef]
- Wei, G.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Projection models for multiple attribute decision making with picture fuzzy information. Int. J. Mach. Learn. Cybern. 2018, 9, 713–719. [Google Scholar] [CrossRef]
- Merigo, J.M.; Gil-Lafuente, A.M. Fuzzy induced generalized aggregation operators and its application in multi-person decision making. Expert Syst. Appl. 2011, 38, 9761–9772. [Google Scholar] [CrossRef]
- Wei, G.W.; Gao, H. The generalized Dice similarity measures for picture fuzzy sets and their applications. Informatica 2018, 29, 1–18. [Google Scholar] [CrossRef]
- Gao, H.; Wei, G.W.; Huang, Y.H. Dual hesitant bipolar fuzzy Hamacher prioritized aggregation operators in multiple attribute decision making. IEEE Access 2018, 6, 11508–11522. [Google Scholar] [CrossRef]
- Merigó, J.M.; Gil-Lafuente, A.M. Induced 2-tuple linguistic generalized aggregation operators and their application in decision-making. Inform. Sci. 2013, 236, 1–16. [Google Scholar] [CrossRef]
- Yu, D.J.; Wu, Y.Y.; Lu, T. Interval-valued intuitionistic fuzzy prioritized operators and their application in group decision making. Knowl.-Based Syst. 2012, 30, 57–66. [Google Scholar] [CrossRef]
- Gao, H.; Lu, M.; Wei, G.W.; Wei, Y. Some novel Pythagorean fuzzy interaction aggregation operators in multiple attribute decision making. Fundam. Inform. 2018, 159, 385–428. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Bipolar fuzzy Hamacher aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2018, 20, 1–12. [Google Scholar] [CrossRef]
- Wei, G.W. Some similarity measures for picture fuzzy sets and their applications. Iran. J. Fuzzy Syst. 2018, 15, 77–89. [Google Scholar]
- Wei, G.W.; Wei, Y. Similarity measures of Pythagorean fuzzy sets based on cosine function and their applications. Int. J. Intell. Syst. 2018, 33, 634–652. [Google Scholar] [CrossRef]
- Wei, G.W.; Lu, M. Pythagorean fuzzy power aggregation operators in multiple attribute decision making. Int. J. Intell. Syst. 2018, 33, 169–186. [Google Scholar] [CrossRef]
- Ma, Z.M.; Xu, Z.S. Symmetric Pythagorean Fuzzy Weighted Geometric_Averaging Operators and Their Application in Multicriteria Decision-Making Problems. Int. J. Intell. Syst. 2016, 31, 1198–1219. [Google Scholar] [CrossRef]
- Wei, G.W.; Lu, M. Pythagorean Fuzzy Maclaurin Symmetric Mean Operators in multiple attribute decision making. Int. J. Intell. Syst. 2018, 33, 1043–1070. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Picture 2-tuple linguistic aggregation operators in multiple attribute decision making. Soft Comput. 2018, 22, 989–1002. [Google Scholar] [CrossRef]
- Wei, G.W. Picture fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. Fundam. Inform. 2018, 157, 271–320. [Google Scholar] [CrossRef]
- Merigo, J.M.; Casanovas, M. Induced aggregation operators in decision making with the Dempster-Shafer belief structure. Int. J. Intell. Syst. 2009, 24, 934–954. [Google Scholar] [CrossRef]
- Wei, G.W.; Lu, M.; Tang, X.Y.; Wei, Y. Pythagorean Hesitant Fuzzy Hamacher Aggregation Operators and Their Application to Multiple Attribute Decision Making. Int. J. Intell. Syst. 2018, 1–37. [Google Scholar] [CrossRef]
- Wei, G.W.; Gao, H.; Wei, Y. Some q-Rung Orthopair Fuzzy Heronian Mean Operators in Multiple Attribute Decision Making. Int. J. Intell. Syst. 2018. [Google Scholar] [CrossRef]
- Xu, Z.; Gou, X. An overview of interval-valued intuitionistic fuzzy information aggregations and applications. Granul. Comput. 2017, 2, 13–39. [Google Scholar] [CrossRef]
- Meng, S.; Liu, N.; He, Y. GIFIHIA operator and its application to the selection of cold chain logistics enterprises. Granul. Comput. 2017, 2, 187–197. [Google Scholar] [CrossRef]
- Wang, C.; Fu, X.; Meng, S.; He, Y. Multi-attribute decision making based on the SPIFGIA operators. Granul. Comput. 2017, 2, 321–331. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, H. Managing multi-granularity linguistic information in qualitative group decision making: An overview. Granul. Comput. 2016, 1, 21–35. [Google Scholar] [CrossRef]
G1 | G2 | G3 | G4 | |
---|---|---|---|---|
A1 | <(s3, 0), (s2, 0) (s1, 0)> | <(s3, 0), (s4, 0) (s2, 0)> | <(s4, 0), (s4, 0) (s2, 0)> | <(s4, 0), (s4, 0) (s2, 0)> |
A2 | <(s4, 0), (s3, 0) (s2, 0)> | <(s5, 0), (s4, 0) (s4, 0)> | <(s4, 0), (s4, 0) (s2, 0)> | <(s4, 0), (s3, 0) (s3, 0)> |
A3 | <(s4, 0), (s3, 0) (s4, 0)> | <(s3, 0), (s3, 0) (s2, 0)> | <(s5, 0), (s3, 0) (s2, 0)> | <(s4, 0), (s3, 0) (s4, 0)> |
A4 | <(s5, 0), (s5, 0) (s4, 0)> | <(s4, 0), (s3, 0) (s3, 0)> | <(s5, 0), (s4, 0) (s5, 0)> | <(s3, 0), (s4, 0) (s1, 0)> |
A5 | <(s3, 0), (s4, 0) (s2, 0)> | <(s4, 0), (s5, 0) (s2, 0)> | <(s3, 0), (s4, 0) (s1, 0)> | <(s4, 0), (s3, 0) (s2, 0)> |
G1 | G2 | G3 | G4 | |
---|---|---|---|---|
A1 | <(s5, 0), (s4, 0) (s3, 0)> | <(s3, 0), (s5, 0) (s2, 0)> | <(s3, 0), (s1, 0) (s2, 0)> | <(s4, 0), (s1, 0) (s3, 0)> |
A2 | <(s2, 0), (s3, 0) (s3, 0)> | <(s3, 0), (s3, 0) (s3, 0)> | <(s3, 0), (s4, 0) (s2, 0)> | <(s5, 0), (s4, 0) (s3, 0)> |
A3 | <(s5, 0), (s3, 0) (s3, 0)> | <(s3, 0), (s2, 0) (s2, 0)> | <(s2, 0), (s3, 0) (s4, 0)> | <(s3, 0), (s2, 0) (s4, 0)> |
A4 | <(s3, 0), (s5, 0) (s2, 0)> | <(s4, 0), (s2, 0) (s3, 0)> | <(s3, 0), (s4, 0) (s5, 0)> | <(s5, 0), (s1, 0) (s4, 0)> |
A5 | <(s3, 0), (s3, 0) (s1, 0)> | <(s3, 0), (s4, 0) (s5, 0)> | <(s4, 0), (s5, 0) (s1, 0)> | <(s5, 0), (s3, 0) (s2, 0)> |
G1 | G2 | G3 | G4 | |
---|---|---|---|---|
A1 | <(s5, 0), (s3, 0) (s1, 0)> | <(s4, 0), (s2, 0) (s1, 0)> | <(s4, 0), (s4, 0) (s3, 0)> | <(s4, 0), (s1, 0) (s3, 0)> |
A2 | <(s4, 0), (s2, 0) (s2, 0)> | <(s4, 0), (s5, 0) (s4, 0)> | <(s3, 0), (s2, 0) (s3, 0)> | <(s2, 0), (s1, 0) (s3, 0)> |
A3 | <(s2, 0), (s1, 0) (s4, 0)> | <(s3, 0), (s2, 0) (s2, 0)> | <(s4, 0), (s5, 0) (s2, 0)> | <(s2, 0), (s4, 0) (s4, 0)> |
A4 | <(s5, 0), (s4, 0) (s4, 0)> | <(s5, 0), (s4, 0) (s2, 0)> | <(s3, 0), (s4, 0) (s5, 0)> | <(s5, 0), (s3, 0) (s1, 0)> |
A5 | <(s3, 0), (s3, 0) (s2, 0)> | <(s4, 0), (s2, 0) (s2, 0)> | <(s4, 0), (s2, 0) (s3, 0)> | <(s5, 0), (s3, 0) (s4, 0)> |
A1 | <(s5, 0.000), (s3, 0.464), (s2, −0.268)> | <(s4, −0.449), (s3, 0.162), (s1, 0.414)> |
A2 | <(s3, 0.172), (s2, 0.449), (s2, 0.449)> | <(s4, −0.449), (s4, −0.127), (s3, 0.464)> |
A3 | <(s4, 0.000), (s2, −0.268), (s3, 0.464)> | < (s3, 0.000), (s2, 0.000), (s2, 0.000)> |
A4 | <(s4, 0.268), (s4, 0.472), (s3, −0.172)> | <(s5, −0.414), (s3, −0.172), (s2, 0.449)> |
A5 | <(s3, 0.000), (s3, 0.000), (s1, 0.414)> | <(s4, −0.449), (s3, −0.172), (s3, 0.162)> |
A1 | <(s4, −0.449), (s2, 0.000), (s2, 0.449)> | <(s4, 0.000), (s1, 0.000), (s3, 0.000)> |
A2 | <(s3, 0.000), (s3, −0.172), (s2, 0.449)> | <(s4, 0.000), (s2, 0.000), (s3, 0.000)> |
A3 | <(s3, 0.172), (s4, −0.127), (s3, 0.172)> | <(s3, −0.464), (s3, −0.172), (s4, 0.000)> |
A4 | <(s3, 0.000), (s4, 0.000), (s5, 0.000)> | <(s5, 0.000), (s2, −0.268), (s2, 0.000)> |
A5 | <(s4, 0.000), (s3, 0.162), (s2, −0.268)> | <(s5, 0.000), (s3, 0.000), (s3, −0.172)> |
DG2TLNNWBM | DG2TLNNWGBM | |
---|---|---|
A1 | <(s4, 0.209), (s2, 0.299), (s2, 0.251)> | <(s4, 0.192), (s2, 0.336), (s2, 0.262)> |
A2 | <(s3, 0.418), (s3, −0.454), (s3, −0.286)> | <(s3, 0.414), (s3, −0.446), (s3, −0.283)> |
A3 | <(s3, 0.259), (s3, −0.390), (s3, 0.316)> | <(s3, 0.250), (s3, −0.371), (s3, 0.326)> |
A4 | <(s4, 0.226), (s3, 0.354), (s3, 0.067)> | <(s4, 0.201), (s3, 0.396), (s3, 0.108)> |
A5 | <(s4, −0.073), (s3, 0.023), (s2, 0.079)> | <(s4, −0.098), (s3, 0.023), (s2, 0.095)> |
DG2TLNNWBM | DG2TLNNWGBM | |
---|---|---|
A1 | (s4, −0.114) | (s4, −0.135) |
A2 | (s3, 0.386) | (s3, 0.381) |
A3 | (s3, 0.111) | (s3, 0.098) |
A4 | (s3, 0.268) | (s3, 0.232) |
A5 | (s4, −0.392) | (s4, −0.405) |
Ordering | |
---|---|
DG2TLNNWBM | A1 > A5 > A2 > A4 > A3 |
DG2TLNNWGBM | A1 > A5 > A2 > A4 > A3 |
P | s(A1) | s(A2) | s(A3) | s(A4) | s(A5) | Ordering |
---|---|---|---|---|---|---|
(1, 1, 1, 1) | (s4, −0.114) | (s3, 0.386) | (s3, 0.111) | (s3, 0.268) | (s4, −0.392) | A1 > A5 > A2 > A4 > A3 |
(2, 2, 2, 2) | (s5, 0.085) | (s5, −0.267) | (s5, −0.455) | (s5, −0.263) | (s5, −0.073) | A1 > A5 > A4 > A2 > A3 |
(3, 3, 3, 3) | (s5, 0.333) | (s5, 0.032) | (s5, −0.078) | (s5, 0.163) | (s5, 0.234) | A1 > A5 > A4 > A2 > A3 |
(4, 4, 4, 4) | (s5, 0.410) | (s5, 0.121) | (s5, 0.055) | (s5, −0.326) | (s5, 0.339) | A1 > A5 > A4 > A2 > A3 |
(5, 5, 5, 5) | (s5, 0.445) | (s5, 0.156) | (s5, 0.115) | (s5, 0.404) | (s5, 0.389) | A1 > A4 > A5 > A2 > A3 |
(6, 6, 6, 6) | (s5, 0.466) | (s5, 0.174) | (s5, 0.149) | (s5, 0.448) | (s5, 0.421) | A1 > A4 > A5 > A2 > A3 |
(7, 7, 7, 7) | (s5, 0.482) | (s5, 0.185) | (s5, 0.171) | (s5, 0.476) | (s5, 0.444) | A1 > A4 > A5 > A2 > A3 |
(8, 8, 8, 8) | (s5, 0.496) | (s5, 0.195) | (s5, 0.187) | (s5, 0.495) | (s5, 0.463) | A1 > A4 > A5 > A2 > A3 |
(9, 9, 9, 9) | (s6, −0.492) | (s5, 0.203) | (s5, 0.200) | (s6, −0.490) | (s5, 0.479) | A4 > A1 > A5 > A2 > A3 |
(10, 10, 10, 10) | (s5, −0.482) | (s5, 0.210) | (s5, 0.210) | (s6, −0.479) | (s5, 0.493) | A4 > A1 > A5 > A2 > A3 |
P | s(A1) | s(A2) | s(A3) | s(A4) | s(A5) | Ordering |
---|---|---|---|---|---|---|
(1, 1, 1, 1) | (s4, −0.135) | (s3, 0.381) | (s3, 0.098) | (s3, 0.232) | (s4, −0.405) | A1 > A5 > A2 > A4 > A3 |
(2, 2, 2, 2) | (s3, −0.046) | (s3, −0.422) | (s2, 0.283) | (s2, 0.300) | (s3, −0.242) | A1 > A5 > A2 > A4 > A3 |
(3, 3, 3, 3) | (s3, −0.430) | (s2, 0.326) | (s2, 0.018) | (s2, −0.122) | (s2, 0.450) | A1 > A5 > A2 > A3 > A4 |
(4, 4, 4, 4) | (s2, 0.380) | (s2, 0.218) | (s2, −0.102) | (s2, −0.352) | (s2, 0.310) | A1 > A5 > A2 > A3 > A4 |
(5, 5, 5, 5) | (s2, 0.271) | (s2, 0.156) | (s2, −0.174) | (s2, −0.498) | (s2, 0.233) | A1 > A5 > A2 > A3 > A4 |
(6, 6, 6, 6) | (s2, 0.200) | (s2, 0.111) | (s2, −0.225) | (s1, 0.400) | (s2, 0.186) | A1 > A5 > A2 > A3 > A4 |
(7, 7, 7, 7) | (s2, 0.150) | (s2, 0.073) | (s2, −0.263) | (s1, 0.326) | (s2, 0.153) | A5 > A1 > A2 > A3 > A4 |
(8, 8, 8, 8) | (s2, 0.113) | (s2, 0.040) | (s2, −0.294) | (s1, 0.269) | (s2, 0.130) | A5 > A1 > A2 > A3 > A4 |
(9, 9, 9, 9) | (s2, 0.085) | (s2, 0.011) | (s2, −0.320) | (s1, 0.225) | (s2, 0.113) | A5 > A1 > A2 > A3 > A4 |
(10, 10, 10, 10) | (s2, 0.063) | (s2, −0.016) | (s2, −0.343) | (s1, 0.189) | (s2, 0.099) | A5 > A1 > A2 > A3 > A4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wei, G.; Wei, Y. Models for Green Supplier Selection with Some 2-Tuple Linguistic Neutrosophic Number Bonferroni Mean Operators. Symmetry 2018, 10, 131. https://doi.org/10.3390/sym10050131
Wang J, Wei G, Wei Y. Models for Green Supplier Selection with Some 2-Tuple Linguistic Neutrosophic Number Bonferroni Mean Operators. Symmetry. 2018; 10(5):131. https://doi.org/10.3390/sym10050131
Chicago/Turabian StyleWang, Jie, Guiwu Wei, and Yu Wei. 2018. "Models for Green Supplier Selection with Some 2-Tuple Linguistic Neutrosophic Number Bonferroni Mean Operators" Symmetry 10, no. 5: 131. https://doi.org/10.3390/sym10050131
APA StyleWang, J., Wei, G., & Wei, Y. (2018). Models for Green Supplier Selection with Some 2-Tuple Linguistic Neutrosophic Number Bonferroni Mean Operators. Symmetry, 10(5), 131. https://doi.org/10.3390/sym10050131