The Impact of Industrial and Commercial Capital Influx on Sustainable Agricultural Development: Evidence from 30 Provinces in China from 2013 to 2022
Abstract
:1. Introduction
2. Literature Review
3. Transmission Mechanism Analysis and Research Hypothesis
3.1. Analysis of the Direct Impact of Industrial Capital and Commercial Capital on the Sustainable Development of Agriculture
3.2. Analysis of the Transmission Mechanism of Industrial Capital and Commercial Capital Affecting Sustainable Development of Agriculture
3.3. Analysis of the Spatial Spillover Effect of Industrial Capital and Commercial Capital on Sustainable Agricultural Development
4. Research Design
4.1. Model Selection
4.1.1. Benchmark Regression Model
4.1.2. Mediating Effects Model
4.1.3. Spatial Metrology Model
4.2. Variable Description
4.2.1. Explained Variables
4.2.2. Core Explanatory Variables
4.2.3. Mediating Variables
4.2.4. Control Variables
4.3. Data Sources
5. Results
5.1. Benchmark Regression Analysis
5.2. Endogenous Test
5.3. Robustness Test
5.4. Heterogeneity Analysis
5.4.1. Heterogeneity Analysis Based on Agricultural Resource Endowment
5.4.2. Heterogeneity Analysis Based on Marketization Level
5.4.3. Heterogeneity Analysis Based on Economic Development Level
5.5. Mediation Effect Analysis
5.5.1. Test of Transmission Mechanism Based on Optimization of Agricultural Production Conditions
5.5.2. Test of the Transmission Mechanism Based on the Effect of Rural Environment Optimization
5.5.3. Test of Transmission Mechanism Based on the Effect of Farmers’ Poverty Reduction and Common Prosperity
5.6. Further Analysis
6. Conclusions and Policy Recommendations
6.1. Conclusions
6.2. Policy Recommendations
6.3. Discussion
6.4. Research Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, S.J.; Zhong, X.P. The Logic and Path of Urban-Rural Coordinated Development from the Perspective of Chinese Modernization. Gansu Soc. Sci. 2024, 3, 191–205. [Google Scholar]
- Zhou, X.; Li, X.; Gu, X. How Does Urban-Rural Capital Flow Affect Rural Reconstruction near Metropolitan Areas? Evidence from Shanghai, China. Land 2023, 12, 620. [Google Scholar] [CrossRef]
- Shi, W.M.; Tong, T. The Main Risks and Precautions of Industrial and Commercial Capital Going to the Countryside under Rural Revitalization. J. Northwest Minzu Univ. (Philos. Soc. Sci.) 2023, 2, 97–110. [Google Scholar]
- Cao, Z.P.; Huang, H.Y. The Motivation, Advantages and Disadvantages, and Governance Strategies of Industrial and Commercial Capital Participation in Rural Revitalization. Acad. Forum 2022, 45, 124–132. [Google Scholar]
- Gao, X.Y.; Ren, K. The Impact of Industrial and Commercial Capital Going to the Countryside on Farmers’ Income. Jianghan Forum 2020, 7, 31–38. [Google Scholar]
- Shao, J.J.; Zhou, L.; Hu, L.X. Does Industrial and Commercial Capital Going to the Countryside Promote Farmers’ Income Increase? Zhongnan Univ. Econ. Law J. 2024, 2, 123–134. [Google Scholar]
- Yuan, J.L.; Zhang, Y.J.; Huang, H.C. The Impact of Industrial and Commercial Capital Going to the Countryside on Local Agricultural Industry Development—From the Perspective of Government-Enterprise Relations. China Agric. Resour. Reg. Plan. 2023, 44, 171–180. [Google Scholar]
- Jia, H.K.; Chao, Y.D.; Zhao, X.Y.; Zhang, F.; Wang, Z.W. The Number of China’s Agricultural Product Geographical Indications and Its Driving Factors from the Perspective of Industrial and Commercial Capital Going to the Countryside. Econ. Geogr. 2024, 44, 187–197. [Google Scholar]
- Huang, J.W.; Chen, D.Q. The Impact of Industrial and Commercial Capital Going to the Countryside on Farmers’ Land Transfer Behavior. Resour. Sci. 2022, 44, 913–926. [Google Scholar]
- Jiang, G.H.; Hu, H. Does Industrial and Commercial Capital Going to the Countryside Lead to “Non-Grainization” of Farmers’ Land Use? Evidence from CLDS. Financ. Trade Res. 2021, 32, 41–51. [Google Scholar]
- Ying, L.I.; Guan, Z.H. The Ways of Realizing Industrial and Commercial Capital to Promote Doubling Income of the Farmer. DEStech Trans. Environ. Energy Earth Sci. 2019, 4, 27477. [Google Scholar]
- Ramakumar, R. Large-scale Investments in Agriculture in India. Ids Bull. 2012, 43, 92–103. [Google Scholar] [CrossRef]
- Prayitno, G.; Hayat, A.; Efendi, A.; Tarno, H.; Fikriyah; Fauziah, S.H. Structural Model of Social Capital and Quality of Life of Farmers in Supporting Sustainable Agriculture. Sustainability 2022, 14, 12487. [Google Scholar] [CrossRef]
- Zheng, Y.H.; Yu, S.T. Rural Environmental Cooperation Governance under the Background of Industrial and Commercial Capital Going to the Countryside—A Case Study of Village D. Environ. Prot. Sci. 2022, 48, 8–11+23. [Google Scholar]
- Shao, J.J.; Zhang, F.; Hu, L.X.; Zhao, H. The Theoretical Logic and Empirical Analysis of Industrial and Commercial Capital Participation in Rural Human Settlement Environment Rectification. Resour. Sci. 2024, 46, 205–217. [Google Scholar]
- Tang, J.F.; Liu, J.L. Evaluation of Provincial Agricultural Sustainable Development Level and Its Coupling and Coordination Analysis—Taking 11 Provinces and Cities of the Yangtze River Economic Belt as an Example. Econ. Geogr. 2022, 42, 179–185. [Google Scholar]
- Miao, J.Q.; Zhao, M.; Huang, G.Q. Comprehensive Evaluation and Empirical Analysis of Agricultural Sustainable Development in Southern Hilly and Mountainous Areas. China Agric. Resour. Reg. Plan. 2021, 42, 163–172. [Google Scholar]
- Wang, Y.; Yu, Y.H. Multi-Scale Spatiotemporal Evolution Characteristics of China’s Agricultural Sustainable Development Level. China Agric. Sci. Technol. Guide 2021, 23, 8–17. [Google Scholar]
- Cao, Y.P. Evaluation of Guangxi Agricultural Sustainable Development Based on the Ecological Footprint Model. China Agric. Resour. Reg. Plan. 2020, 41, 35–42. [Google Scholar]
- Zhang, L.G.; Bao, B.F.; Yang, S.S. Exploratory Analysis of Spatial Characteristics of Agricultural Sustainable Development in China. Econ. Geogr. 2019, 39, 159–164. [Google Scholar]
- Luo, J.W.; Wu, X.J. The Mechanism and Path of Capital Going to the Countryside to Empower High-Quality Development of China’s Agricultural Economy. J. Shenzhen Univ. (Humanit. Soc. Sci.) 2024, 41, 106–115. [Google Scholar]
- Wang, C.F. The Study on the Stability of Small Farmers’ Agricultural Income under the Background of Capital Going to the Countryside—Also on the Path Selection of Rural Industrial Revitalization. J. Nanjing Agric. Univ. (Soc. Sci. Ed.) 2021, 21, 11–21. [Google Scholar]
- Zhao, X.F.; Bao, Z.J.; Zhao, X.Y. The Business Strategy of Capital Going to the Countryside and the Construction of Agricultural Power. J. Northwest AF Univ. (Soc. Sci. Ed.) 2024, 24, 45–53. [Google Scholar]
- Yan, Y.H.; Zheng, X.M. The Impact Mechanism and Policy Path of Capital Going to the Countryside to Promote Farmers’ Income Increase. Anhui Rural Revital. Res. 2022, 4, 48–57. [Google Scholar]
- Hu, X.Y.; Chen, W.H.; Luo, B.L. How Can Capital Going to the Countryside Drive Farmers’ Management—Based on the Analysis of Green Energy Model in Jiangxi Province. Agric. Econ. Probl. 2021, 1, 69–81. [Google Scholar]
- Feng, X.Y.; Bao, S.G.; Sun, T.Q. Social Capital Participation in Rural Revitalization and Modernization of Agriculture and Rural Areas—Based on the Extended Williamson Economic Governance Analysis Framework. Financ. Econ. Issues Res. 2022, 1, 3–13. [Google Scholar]
- Zhang, L. The Construction of Rural Governance Publicity under the Background of “Capital Going to the Countryside”. China Rural Obs. 2016, 3, 16–26+94. [Google Scholar]
- Li, G.Z.; Zhang, Y.L.; Yi, Y.Y. The Impact of Welfare Compensation of Industrial and Commercial Capital Going to the Countryside on Farmers’ Land Transfer Willingness. J. Southwest Univ. (Soc. Sci. Ed.) 2022, 48, 88–99. [Google Scholar]
- Cui, B.Y.; Zhang, Z.G.; Li, X.M. Equilibrium in the Evolution of Capital-Controlled Cooperatives—From the Perspective of Farmers’ Cooperation Degree and Withdrawal. China Rural Econ. 2008, 9, 63–71. [Google Scholar]
- Feng, J. The Connotation and Path of Industrial and Commercial Capital Participation in Rural Revitalization. J. Northwest AF Univ. (Soc. Sci. Ed.) 2021, 21, 1–9. [Google Scholar]
- Tian, P. From Farming to Farm Management: A Study on the Evolution of Farmland Management Models in the Process of New Urbanization—A Case Study of Pingchang New City in Zhenjiang City, Jiangsu Province. J. Huazhong Agric. Univ. (Soc. Sci. Ed.) 2017, 2, 103–108, 134–135. [Google Scholar]
- Zhang, Y.Q.; Cai, Z.; Zhang, L. A Study on the Knowledge Spillover Effect of Agricultural Leading Enterprises on Family Farms—Taking Heilongjiang Province as an Example. Agric. Econ. Probl. 2014, 35, 10–16+110. [Google Scholar]
- Wang, L.L.; Xu, Y.X.; Chai, Z.Z.; Xu, X.; Lv, J. The Impact of Agricultural Mechanization Level on Agricultural Carbon Emission Intensity—Based on the Panel Data Test of 30 Provinces from 2004 to 2021. China Agric. Resour. Reg. Plan. 2025, 12, 1–14. [Google Scholar]
- Wen, Z.L.; Ye, B.J. Mediation Effect Analysis: Methods and Model Development. Psychol. Sci. Prog. 2014, 22, 731–745. [Google Scholar]
- He, Y.; Yu, W.L.; Yang, M.Z. CEO Compound Professional Experience, Enterprise Risk-Taking, and Enterprise Value. China Ind. Econ. 2019, 9, 155–173. [Google Scholar]
- Su, Q.; Xing, H.Z. The Impact of Digital Technology in Rural Areas on Farmers’ Income Increase. Res. Manag. 2024, 12, 1–16. [Google Scholar]
- Huang, Z.H.; Song, W.H.; Ye, C.H. The Impact and Mechanism of Digital Inclusive Finance on the Establishment of New Agricultural Operators—Evidence from 1845 Counties in China. Financ. Res. 2023, 4, 92–110. [Google Scholar]
- Guo, N.; Lv, T.X.; Zong, H.L. The Impact of Agricultural Digitalization on Agricultural Economic Resilience. Acta Ecol. Sin. (Chin. Engl.) 2024, 12, 1–12. [Google Scholar]
- Li, L.; Liu, X.Q. Digital Economy Empowerment of High-Quality Development of Agriculture: Mechanism and Empirical Study. China Agric. Resour. Reg. Plan. 2024, 12, 1–14. [Google Scholar]
- Xiong, K.X.; Ouyang, L.H.; Cai, G.Y.; Ji, Y. The Path to Improving the Total Factor Productivity of Agriculture in Jiangxi Province—Analysis Based on fsQCA Method. J. Agric. Rural Econ. Manag. 2023, 22, 497–506. [Google Scholar]
- Feng, L.T.; Zou, W.J. Output Gap or Scale Effect: The Impact of Digital Economy on Food Security and Its Mechanism Analysis. Econ. Rev. 2024, 6, 134–150. [Google Scholar]
- Lesage, J.P.; Pace, R.K. Introduction to Spatial Econometrics; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
Primary Index | Weight | Secondary Index | Weight | Unit | Attributes of Indicators |
---|---|---|---|---|---|
Population system | 0.0509 | Average education level of villagers | 0.0168 | Year | P |
Natural population growth rate | 0.0254 | % | N | ||
Regional population density | 0.0087 | People/square kilometer | N | ||
Social system | 0.2533 | Rural electricity consumption | 0.1601 | 100 million kWh | P |
Rural housing area | 0.0468 | square meter | P | ||
Rural poverty rate | 0.0464 | % | N | ||
Economic system | 0.2463 | Gross agricultural output value | 0.0682 | 100 million yuan | P |
Farmers’ income level | 0.0458 | Yuan | P | ||
Agricultural fixed asset investment | 0.0658 | 100 million yuan | P | ||
Agricultural output value per unit of sown area | 0.0665 | 100 million yuan/1000 hectares | P | ||
Resource system | 0.2791 | Per capita cultivated land area | 0.0480 | Hectares/10,000 people | P |
Agricultural land productivity | 0.0440 | 10,000 tons/1000 hectares | P | ||
Total mechanical power per unit cultivated land area | 0.0590 | 10,000 kilowatts/1000 hectares | P | ||
Agricultural water consumption | 0.0791 | 100 million cubic meters | P | ||
Effective irrigation rate | 0.0490 | % | P | ||
Environmental system | 0.1704 | Fertilizer use intensity | 0.0113 | 10,000 tons | N |
Pesticide use intensity | 0.0183 | 10,000 tons | N | ||
Plastic film use intensity | 0.0123 | 1000 hectares | N | ||
Soil and water loss control area | 0.0742 | 10,000 tons | P | ||
Forest coverage rate | 0.0490 | % | P | ||
Agricultural disaster rate | 0.0053 | % | N |
Variable Name | Symbol | Sample Size | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|---|
Agricultural sustainable development | Asus | 300 | 0.305 | 0.075 | 0.120 | 0.514 |
Industrial capital and commercial capital | Bcap | 300 | 0.171 | 0.147 | 0.008 | 0.919 |
Government intervention | Ginter | 300 | 0.260 | 0.110 | 0.105 | 0.753 |
Technical progress | Tadv | 300 | 3.456 | 6.817 | 0.012 | 55.398 |
Infrastructure level | Infra | 300 | 11.726 | 0.852 | 9.444 | 12.913 |
Informatization level | Infor | 300 | 0.075 | 0.152 | 0.015 | 2.520 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Variable | Asus | Asus | Asus | 25% | 50% | 75% |
Bcap | 0.163 *** | 0.106 *** | 0.0726 *** | 0.0533 *** | 0.0733 *** | 0.0677 *** |
(0.0172) | (0.0163) | (0.0147) | (0.0187) | (0.0194) | (0.0237) | |
Ginter | −0.324 *** | −0.193 *** | −0.167 *** | −0.197 *** | −0.291 *** | |
(0.0447) | (0.0469) | (0.0596) | (0.0616) | (0.0754) | ||
Tadv | 0.000481 * | 0.000197 | −8.58 × 10−5 | −0.000113 | 0.000437 | |
(0.000263) | (0.000231) | (0.000293) | (0.000303) | (0.000371) | ||
Infra | 0.0523 *** | 0.187 *** | 0.206 *** | 0.177 *** | 0.170 *** | |
(0.00914) | (0.0160) | (0.0203) | (0.0210) | (0.0257) | ||
Infor | 0.00842 | 0.00711 | 0.00199 | 0.0119 | 0.0133 | |
(0.00902) | (0.00782) | (0.00992) | (0.0103) | (0.0126) | ||
Individual fixed effects | No | No | Yes | Yes | Yes | Yes |
Constant term | 0.278 *** | −0.244 ** | −1.857 *** | −1.746 *** | −1.433 *** | −1.308 *** |
(0.0116) | (0.109) | (0.190) | (0.206) | (0.213) | (0.261) | |
Observations | 300 | 300 | 300 | 300 | 300 | 300 |
R2 | 0.243 | 0.452 | 0.564 | 0.774 | 0.763 | 0.776 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variable | Population System | Social System | Economic System | Resource System | Environmental System |
Bcap | 0.0124 *** | −0.00393 | 0.0307 *** | 0.0161 *** | 0.0175 *** |
(0.00235) | (0.0106) | (0.00536) | (0.00476) | (0.00238) | |
Ginter | −0.0305 *** | −0.0387 | −0.0770 *** | −0.0385 ** | −0.00813 |
(0.00748) | (0.0339) | (0.0171) | (0.0152) | (0.00759) | |
Tadv | 0.000168 *** | −0.000308 * | 5.26 × 10−5 | 0.000212 *** | 7.53 × 10−5 ** |
(3.68 × 10−5) | (0.000167) | (8.40 × 10−5) | (7.46 × 10−5) | (3.73 × 10−5) | |
Infra | 0.0230 *** | 0.0217 * | 0.0720 *** | 0.0396 *** | 0.0311 *** |
(0.00255) | (0.0115) | (0.00581) | (0.00516) | (0.00258) | |
Infor | 0.000581 | 0.000412 | 0.00461 | −0.000369 | 0.00179 |
(0.00124) | (0.00565) | (0.00284) | (0.00253) | (0.00126) | |
Individual fixed effects | Yes | Yes | Yes | Yes | Yes |
Constant term | −0.237 *** | −0.187 | −0.762 *** | −0.380 *** | −0.288 *** |
(0.0303) | (0.137) | (0.0691) | (0.0615) | (0.0307) | |
Observations | 300 | 300 | 300 | 300 | 300 |
R2 | 0.529 | 0.034 | 0.601 | 0.385 | 0.593 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variable | First Stage | Second Stage | Shrinkage | Lag Four Periods | Add Control Variables |
Bcap | 0.332 *** | 0.0897 *** | 0.0707 *** | ||
(0.0810) | (0.0152) | (0.0147) | |||
IV | 0.000611 *** | ||||
(8.92 × 10−5) | |||||
L4.Bcap | 0.0847 *** | ||||
(0.0284) | |||||
Kleibergen-Paaprk LM | 10.390 *** | ||||
Cragg–Donald Wald F | 46.972 (16.380) | ||||
Control variables | Yes | Yes | Yes | Yes | Yes |
Individual fixed effects | Yes | Yes | Yes | Yes | Yes |
Constant term | −1.591 *** | −1.538 *** | −1.8096 *** | ||
(0.198) | (0.351) | (0.1901) | |||
Observations | 300 | 300 | 300 | 180 | 300 |
R2 | 0.054 | 0.584 | 0.529 | 0.571 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Variable | Major Grain-Producing Areas | Non-Grain-Producing Areas | Low Level of Marketization | High Level of Marketization | Eastern Region | Central and Western Regions |
Bcap | 0.0636 *** | 0.0954 *** | 0.0638 ** | 0.0741 *** | 0.0590 ** | 0.0847 *** |
(0.0195) | (0.0244) | (0.0262) | (0.0194) | (0.0285) | (0.0151) | |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes |
Individual fixed effects | Yes | Yes | Yes | Yes | Yes | Yes |
Constant term | −2.065 *** | −1.498 *** | −2.066 *** | −1.192 *** | −1.300 *** | −2.034 *** |
(0.353) | (0.228) | (0.227) | (0.355) | (0.387) | (0.206) | |
Observations | 130 | 170 | 145 | 155 | 130 | 170 |
R2 | 0.527 | 0.619 | 0.661 | 0.485 | 0.362 | 0.737 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variable | Atec | y | Amec | y |
Bcap | 5.827 *** | 0.0586 *** | 0.159 *** | 0.00490 *** |
(1.128) | (0.0152) | (0.0309) | (0.00147) | |
Atec | 0.00240 *** | |||
(0.000790) | ||||
Amec | 0.0148 *** | |||
(0.00279) | ||||
Sobel test (p-value) | 0.0088923 | 0.000217 | ||
Ind_eff test (p-value) | 0.036 | 0.008 | ||
Ind_eff test confidence interval | [0.0008794, 0.0270645] | [0.0060638, 0.0411095] | ||
Control variables | Yes | Yes | ||
Individual fixed effects | Yes | Yes | Yes | Yes |
Constant term | −52.61 *** | −1.730 *** | −31.15 *** | −1.394 *** |
(14.56) | (0.192) | (3.983) | (0.201) | |
Observations | 300 | 300 | 300 | 300 |
R2 | 0.261 | 0.578 | 0.393 | 0.606 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variable | Awat | y | Agree | y |
Bcap | 4.468 *** | 0.0452 *** | 2.353 *** | 0.0535 *** |
(0.793) | (0.0147) | (0.498) | (0.0148) | |
Awat | 0.00613 *** | |||
(0.00108) | ||||
Agree | 0.00811 *** | |||
(0.00175) | ||||
Sobel test (p-value) | 0.0000634 | 0.00094351 | ||
Ind_eff test (p-value) | 0.005 | 0.024 | ||
Ind_eff test confidence interval | [0.0082768, 0.0465157] | [0.0024695, 0.356953] | ||
Control variables | Yes | Yes | Yes | Yes |
Individual fixed effects | Yes | Yes | Yes | Yes |
Constant term | −69.71 *** | −1.429 *** | −38.03 *** | −1.548 *** |
(10.24) | (0.195) | (6.424) | (0.195) | |
Observations | 300 | 300 | 300 | 300 |
R2 | 0.457 | 0.611 | 0.394 | 0.596 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variable | Aeng | y | Fpio | y |
Bcap | −1.167 *** | 0.0427 *** | −0.632 *** | 0.0498 *** |
(0.200) | (0.0147) | (0.0872) | (0.0158) | |
Aeng | −0.0256 *** | |||
(0.00425) | ||||
Fpio | −0.0360 *** | |||
(0.0102) | ||||
Sobel test (p-value) | 0.00002764 | 0.00146254 | ||
Ind_eff test (p-value) | 0.006 | 0.006 | ||
Ind_eff test confidence interval | [0.0087257, 0.0510885] | [0.0066695, 0.0388606] | ||
Observations | 300 | 300 | 300 | 300 |
Control variables | Yes | Yes | Yes | Yes |
Individual fixed effects | Yes | Yes | Yes | Yes |
Constant term | 28.53 *** | −1.125 *** | 8.285 *** | −1.558 *** |
(2.579) | (0.216) | (1.125) | (0.204) | |
R2 | 0.418 | 0.616 | 0.464 | 0.583 |
Year | Bcap | Asus |
---|---|---|
2013 | 0.1862 * (1.8197) | 0.1493 (1.5041) |
2014 | 0.2442 ** (2.3181) | 0.1892 * (1.8331) |
2015 | 0.2440 *** (2.6430) | 0.1813 * (1.7729) |
2016 | 0.2126 *** (2.7355) | 0.2242 ** (2.1299) |
2017 | 0.2726 *** (2.6818) | 0.1650 (1.6399) |
2018 | 0.2671 *** (2.5878) | 0.2511 ** (2.3508) |
2019 | 0.1969 ** (2.1295) | 0.2058 ** (1.9704) |
2020 | 0.1994 ** (2.1240) | 0.2141 ** (2.0368) |
2021 | 0.2597 *** (2.5790) | 0.0398 (0.6008) |
2022 | 0.2585 ** (2.4038) | 0.0463 (0.6532) |
(1) | (2) | ||
---|---|---|---|
Variable | Coefficient | Variable | Coefficient |
Bcap | 0.0219 * | W × Bcap | 0.0443 * |
(0.0126) | (0.0269) | ||
Ginter | −0.0648 | W × Ginter | −0.224 ** |
(0.0406) | (0.0900) | ||
Tadv | −0.000372 ** | W × Tadv | 0.000338 |
(0.000183) | (0.000352) | ||
Infra | 0.0583 *** | W × Infra | 0.00690 |
(0.0164) | (0.0377) | ||
Infor | −0.00263 | W × Infor | −0.00217 |
(0.00586) | (0.0121) | ||
0.361 *** | |||
(0.0731) | |||
0.000189 *** | |||
(0.0000157) | |||
Individual fixed effects | Yes | Yes | |
Time fixed effects | Yes | Yes | |
Observations | 300 | 300 | |
R2 | 0.290 | 0.290 |
(1) | (2) | (3) | |
---|---|---|---|
Variable | Direct Effect | Indirect Effect | Total Utility |
Bcap | 0.0274 ** | 0.0787 ** | 0.106 ** |
(0.0131) | (0.0395) | (0.0450) | |
Ginter | −0.0939 ** | −0.369 *** | −0.462 *** |
(0.0374) | (0.131) | (0.153) | |
Tadv | −0.000345 * | 0.000205 | −0.000140 |
(0.000198) | (0.000485) | (0.000561) | |
Infra | 0.0621 *** | 0.0386 | 0.101 |
(0.0190) | (0.0590) | (0.0691) | |
Infor | −0.00416 | −0.00601 | −0.0102 |
(0.00738) | (0.0199) | (0.0241) | |
Individual fixed effects | Yes | Yes | Yes |
Time fixed effects | Yes | Yes | Yes |
Observations | 300 | 300 | 300 |
R2 | 0.290 | 0.290 | 0.290 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Wang, F. The Impact of Industrial and Commercial Capital Influx on Sustainable Agricultural Development: Evidence from 30 Provinces in China from 2013 to 2022. Sustainability 2025, 17, 312. https://doi.org/10.3390/su17010312
Yang H, Wang F. The Impact of Industrial and Commercial Capital Influx on Sustainable Agricultural Development: Evidence from 30 Provinces in China from 2013 to 2022. Sustainability. 2025; 17(1):312. https://doi.org/10.3390/su17010312
Chicago/Turabian StyleYang, Hongli, and Fengjuan Wang. 2025. "The Impact of Industrial and Commercial Capital Influx on Sustainable Agricultural Development: Evidence from 30 Provinces in China from 2013 to 2022" Sustainability 17, no. 1: 312. https://doi.org/10.3390/su17010312
APA StyleYang, H., & Wang, F. (2025). The Impact of Industrial and Commercial Capital Influx on Sustainable Agricultural Development: Evidence from 30 Provinces in China from 2013 to 2022. Sustainability, 17(1), 312. https://doi.org/10.3390/su17010312