Contributions to Incorporation of Non-Recyclable Plastics in Bituminous Mixtures
<p>Plastic sample.</p> "> Figure 2
<p>Representative constituents: presentation and percentages.</p> "> Figure 3
<p>Grading curve.</p> "> Figure 4
<p>Melting point at 120 °C.</p> "> Figure 5
<p>(<b>a</b>) Porosity; (<b>b</b>) Marshall stability; (<b>c</b>) VMA; (<b>d</b>) deformation.</p> "> Figure 5 Cont.
<p>(<b>a</b>) Porosity; (<b>b</b>) Marshall stability; (<b>c</b>) VMA; (<b>d</b>) deformation.</p> "> Figure 6
<p>Evaluation of water sensitivity: (<b>a</b>) indirect tensile strength in dry and wet conditions; (<b>b</b>) indirect tensile strength ratio.</p> "> Figure 7
<p>Permanent deformation.</p> "> Figure 8
<p>(<b>a</b>) Stiffness modulus; (<b>b</b>) phase angle; (<b>c</b>) storage modulus (E<sub>1</sub>); (<b>d</b>) loss modulus (E<sub>2</sub>).</p> "> Figure 9
<p>Cost analysis of bituminous mixtures components.</p> ">
Abstract
:1. Introduction
2. Background
2.1. Literature Review
- Increase in softening temperature;
- Reduced penetration;
- Increased viscosity;
- Increased ductility;
- Increased resistance to ageing;
- Ensuring stability.
- Increased Marshall stability;
- Decrease in Marshall deformation;
- Increase in the Marshall quotient;
- Increased modulus of deformability;
- Increased resistance to permanent deformation;
- Increased resistance to fatigue;
- Decreased sensitivity to water;
- Increased durability of the mixture;
- Increased resistance to fuels;
- Increased resistance to indirect traction.
- Decrease in macrotexture;
- Decreased resistance to friction;
- Reduced layer thickness.
- Decrease in the production cost of the mixture;
- Increased durability of the layer;
- Increased maintenance cycles.
- The leachate collected from the mixtures with plastics did not show an increase in contaminants.
2.2. Objectives
3. Materials
3.1. Plastic Samples
3.2. Aggregates
3.3. Bitumen
4. Experimental Procedures
4.1. Melting Point
4.2. Formulation and Optimum Bitumen Content
4.3. Mechanical Tests
Scope (Standard) | Conditions |
---|---|
Determination of the water sensitivity (EN 12697-12) [81] | Method A: Indirect tensile strength Temperature: 15 °C Specimen conditioning: 72 h (dry and wet conditions) |
Determination of permanent deformation Wheel tracking test (EN 12697-22) [82] | Method: Small size device; Procedure B in air Temperature: 60 °C Specimen conditioning: 6 h at 60 °C |
Stiffness (EN 12697-26) [83] | Method: Four-point bending test (4PTB) Temperature: 10 °C, 20 °C and 30 °C Frequencies: 1, 3, 5, 10, 20, 30 and 1 Hz |
5. Results and Discussion
5.1. Melting Point
5.2. Formulation and OBC
5.3. Determination of the Water Sensitivity
5.4. Wheel Tracking
5.5. Stiffness
6. Environmental and Economic Analysis
7. Conclusions
- The most suitable plastics for incorporating using the dry method are those presenting the lowest melting point.
- The optimum bitumen content for plastic bituminous mixtures was found to be 4.2%. This value is lower than that of the reference mixtures, as melted plastic can acquire binding properties similar to bitumen.
- The plastic bituminous mixture displayed excellent water resistance and did not degrade when exposed to water, implying durability in adverse weather conditions for use as a surface course.
- The bituminous mixture with plastic incorporation revealed a high resistance to permanent deformation and pavement strength with a RDAIR of only 0.2 mm.
- The stiffness behaviour of the bituminous mixtures varies with temperature. At 10 °C, these mixtures exhibit high stiffness. However, at 20 °C and 30 °C, the stiffness decreases, suggesting that the plastic provides greater flexibility at higher temperatures. These changes enable the plastic mixture to offer good performance in cold climates by providing greater rigidity and in hot climates by offering greater flexibility, contributing to the durability and resistance of pavements under various environmental conditions.
- Economically, using a plastic bituminous mixture is significantly more cost-effective compared to the AC 14 surf 35/50 reference mixture, with a 26.5% reduction in the cost per kilometre of road due to reduced raw material requirements.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plastics Europe. Plastics—the Facts 2022; Plastics Europe: Brussels, Belgium, 2022. [Google Scholar]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Hamilton, L.A.; Feit, S.; Muffett, C.; Kelso, M.; Rubright, S.M.; Bernhardt, C.; Schaeffer, E.; Moon, D.; Morris, J.; Labbé-Bellas, R. Plastic & Climate: The Hidden Costs of a Plastic Planet; Center for International Environmental Law 2019. Available online: https://www.ciel.org/plasticandclimate/ (accessed on 1 July 2022).
- Soares, J.; Miguel, I.; Lopes, I.; Oliveira, M. Perspectives on Micro (Nano) Plastics in the Marine Environment: Biological and Societal Considerations. Water 2020, 12, 3208. [Google Scholar] [CrossRef]
- Circular Plastic Alliance. Executive Summary—State of Play for Collected and Sorted Plastic Waste in Europe; Circular Plastic Alliance: Aalsmeer, The Netherlands, 2020. [Google Scholar]
- Giustozzi, F.; Xuan, D.L.; Enfrin, M.; Masood, H.; Audy, R.; Boom, Y.J. Use of Road-Grade Recycled Plastics for Sustainable Asphalt Pavements Towards the Selection of Road-Grade Plastics—An Evaluation Framework and Preliminary Experimental Results; ARRB Group Limited: Port Melbourne, VIC, Australia, 2021. [Google Scholar]
- Eunomia Research & Consulting Ltd. Eunomia Plastics in the Marine Environment; Eunomia Research & Consulting Ltd.: Bristol, UK, 2016; Available online: https://safety4sea.com/wp-content/uploads/2016/06/Eunomia-Plastics-in-the-Marine-Environment-2016_06.pdf (accessed on 20 September 2023).
- Khan, A.; Qadeer, A.; Wajid, A.; Ullah, Q.; Rahman, S.U.; Ullah, K.; Safi, S.Z.; Ticha, L.; Skalickova, S.; Chilala, P.; et al. Microplastics in Animal Nutrition: Occurrence, Spread, and Hazard in Animals. J. Agric. Food Res. 2024, 17, 101258. [Google Scholar] [CrossRef]
- Plastic Oceans Infographic: Humans Eating Plastic. Available online: https://plasticoceans.org/infographic-about-humans-eating-plastic/ (accessed on 20 September 2024).
- EEA. Plastics, the Circular Economy and Europe′s Environment—A Priority for Action; EEA Report No. 18/2020; European Environment Agency: Copenhagen, Denmark, 2020. [Google Scholar] [CrossRef]
- Emenike, E.C.; Okorie, C.J.; Ojeyemi, T.; Egbemhenghe, A.; Iwuozor, K.O.; Saliu, O.D.; Okoro, H.K.; Adeniyi, A.G. From Oceans to Dinner Plates: The Impact of Microplastics on Human Health. Heliyon 2023, 9, e20440. [Google Scholar] [CrossRef]
- Xue, Y.; Hou, H.; Zhu, S.; Zha, J. Utilization of Municipal Solid Waste Incineration Ash in Stone Mastic Asphalt Mixture: Pavement Performance and Environmental Impact. Constr. Build. Mater. 2009, 23, 989–996. [Google Scholar] [CrossRef]
- Melotti, R.; Santagata, E.; Bassani, M.; Salvo, M.; Rizzo, S. A Preliminary Investigation into the Physical and Chemical Properties of Biomass Ashes Used as Aggregate Fillers for Bituminous Mixtures. Waste Manag. 2013, 33, 1906–1917. [Google Scholar] [CrossRef]
- Rogo, K.; Rosli, M.; Khairul, M.; Mohd, I.; Naqiuddin, M.; Warid, M.; Nur, S.; Kamarudin, N.; Abdulrahman, S. Palm Oil Fuel Ash Application in Cold Mix Dense-Graded Bituminous Mixture. Constr. Build. Mater. 2021, 287, 123033. [Google Scholar] [CrossRef]
- Skaf, M.; Bartolomé, J.; Gonzalo-orden, H.; Linares-unamunzaga, A.; Skaf, M.; Bartolomé, J.; Gonzalo-orden, H.; Ortega-lópez, V.; Manso, J.M.; Ortega-lópez, V.; et al. Bituminous Base Courses for Flexible Pavements with Steel Slags Bituminous Base Courses for Flexible Pavements with Steel Slags. Transp. Res. Procedia 2021, 58, 83–89. [Google Scholar] [CrossRef]
- Yang, C.; Wu, S.; Cui, P.; Amirkhanian, S.; Zhao, Z.; Wang, F.; Zhang, L.; Wei, M.; Zhou, X.; Xie, J. Performance Characterization and Enhancement Mechanism of Recycled Asphalt Mixtures Involving High RAP Content and Steel Slag. J. Clean. Prod. 2022, 336, 130484. [Google Scholar] [CrossRef]
- Paolo, L.; Lu, X.; Ferrotti, G.; Conti, C.; Canestrari, F. Investigating the “Circular Propensity” of Road Bio-Binders: Effectiveness in Hot Recycling of Reclaimed Asphalt and Recyclability Potential. J. Clean. Prod. 2020, 255, 120193. [Google Scholar] [CrossRef]
- Antunes, V.; Neves, J.; Freire, A.C. Could High RAP Mixtures Be Multi-Recycled? Validation through Long-Term Performance Assessment. Transp. Eng. 2023, 14, 100215. [Google Scholar] [CrossRef]
- Vandewalle, D.; Antunes, V.; Neves, J.; Freire, A.C. Assessment of Eco-Friendly Pavement Construction and Maintenance Using Multi-Recycled RAP Mixtures. Recycling 2020, 5, 17. [Google Scholar] [CrossRef]
- Little, D. Analysis of the Influence of Low Density Polyethylene Modification (Novophalt) of Asphalt Concrete on Mixture Shear Strength and Creep Deformation Potential. In Polymer Modified Asphalt Binders; ASTM International: West Conshohocken, PA, USA, 1992; p. 186. ISBN 978-0-8031-5180-2. [Google Scholar]
- Serfass, J.P.; Bauduin, A.; Garnier, J.F. High Modulus Asphalt Mixes—Laboratory Evaluation, Practical Aspects and Structural Design. In Proceedings of the 7th International Conference on Asphalt Pavements, Nottingham, UK, 16–20 August 1992; pp. 275–288. [Google Scholar]
- Alhadidi, Y.I.; Al-Qadi, I.L.; Mohamed Ali, U.; García Mainieri, J.J.; Sharma, B.K. Impact of Nonrecyclable Plastics on Asphalt Binders and Mixtures. Transp. Res. Rec. J. Transp. Res. Board 2024. [Google Scholar] [CrossRef]
- Vasudevan, R.; Ramalinga Chandra Sekar, A.; Sundarakannan, B.; Velkennedy, R. A Technique to Dispose Waste Plastics in an Ecofriendly Way—Application in Construction of Flexible Pavements. Constr. Build. Mater. 2012, 28, 311–320. [Google Scholar] [CrossRef]
- Maupin, G.W. Report VTRC 94R-9. In Evaluation of a Modified Asphalt: Novophalt; Virginia Transportation Research Council: Charlottesville, VA, USA, 1993. [Google Scholar]
- Harbinson, B.; Remtulla, A. The Development and Performance of an Environmentally Responsible Modified Binder. In Proceedings of the 9th AAPA International Asphalt Conference, Surfers Paradise, Australia, 13–17 November 1994. [Google Scholar]
- Abd-Allah, A.M.; El-sharkawi Attia, M.I.; Abd-Elmaksoud Khamis, M.F.; Mohammed DeefAllah, E.M. Effect of Using Polymers on Bituminous Mixtures Characteristics in Egypt. IOSR J. Mech. Civ. Eng. 2014, 11, 54–63. [Google Scholar] [CrossRef]
- Fang, C.; Wu, C.; Hu, J.; Yu, R.; Zhang, Z.; Nie, L.; Zhou, S.; Mi, X. Pavement Properties of Asphalt Modified with Packaging-Waste Polyethylene. J. Vinyl Addit. Technol. 2014, 20, 31–35. [Google Scholar] [CrossRef]
- Ali, T. Sustainability Assessment of Bitumen with Polyethylene as Polymer. IOSR J. Mech. Civ. Eng. 2013, 10, 01–06. [Google Scholar] [CrossRef]
- Yu, R.; Fang, C.; Liu, P.; Liu, X.; Li, Y. Storage Stability and Rheological Properties of Asphalt Modified with Waste Packaging Polyethylene and Organic Montmorillonite. Appl. Clay Sci. 2015, 104, 1–7. [Google Scholar] [CrossRef]
- Nejad, F.M.; Naderi, K.; Zarroodi, R. Effect of Cross-Linkers on the Performance of Polyethylene-Modified Asphalt Binders. Proc. Inst. Civ. Eng. Constr. Mater. 2017, 170, 186–193. [Google Scholar] [CrossRef]
- Jan, H.; Aman, M.Y.; Tawab, M.; Ali, K.; Ali, B. Performance Evaluation of Hot Mix Asphalt Concrete by Using Polymeric Waste Polyethylene. In Modeling, Simulation, and Optimization; Vasant, P., Litvinchev, I., Marmolejo-Saucedo, J., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 91–99. ISBN 9783319705422. [Google Scholar]
- Dalhat, M.A.; Wahhab, H.A. Performance of Recycled Plastic Waste Modified Asphalt Binder in Saudi Arabia. Int. J. Pavement Eng. 2016, 18, 349–357. [Google Scholar] [CrossRef]
- Bala, N.; Napiah, M.; Kamaruddin, I.; Danlami, N. Rheological Properties Investigation of Bitumen Modified with Nanosilica and Polyethylene Polymer. Int. J. Adv. Appl. Sci. 2017, 4, 165–174. [Google Scholar] [CrossRef]
- Wahhab, H.I.A.; Dalhat, M.A.; Habib, M.A. Storage Stability and High-Temperature Performance of Asphalt Binder Modified with Recycled Plastic. Road Mater. Pavement Des. 2017, 18, 1117–1134. [Google Scholar] [CrossRef]
- Appiah, J.K.; Berko-Boateng, V.N.; Tagbor, T.A. Use of Waste Plastic Materials for Road Construction in Ghana. Case Stud. Constr. Mater. 2017, 6, 1–7. [Google Scholar] [CrossRef]
- Hinislioglu, S.; Agar, E. Use of Waste High Density Polyethylene as Bitumen Modifier in Asphalt Concrete Mix. Mater. Lett. 2004, 58, 267–271. [Google Scholar] [CrossRef]
- Padhan, R.K.; Sreeram, A. Enhancement of Storage Stability and Rheological Properties of Polyethylene (PE) Modified Asphalt Using Cross Linking and Reactive Polymer Based Additives. Constr. Build. Mater. 2018, 188, 772–780. [Google Scholar] [CrossRef]
- White, G.; Reid, G. Recycled Waste Plastic Modification of Bituminous Binder. Bitum. Mix. Pavements 2019, 7, 3–12. [Google Scholar] [CrossRef]
- Yin, F.; Moraes, R.; Fortunatus, M.; Tran, N.; Elwardany, M.D.; Planche, J.P. Performance Evaluation and Chemical Characterization of Asphalt Binders and Mixtures Containing Recycled Polyethylene—Final Report. 2020. Available online: https://plasticsindustry.org/wp-content/uploads/2022/12/PLASTICS-NEMO-Film-Phase-I-Final-Report-03102020-1.pdf (accessed on 1 July 2022).
- Hussein, I.A.; Iqbal, M.H.; Al-Abdul-Wahhab, H.I. Influence of Mw of LDPE and Vinyl Acetate Content of EVA on the Rheology of Polymer Modified Asphalt. Rheol. Acta 2005, 45, 92–104. [Google Scholar] [CrossRef]
- González, O.; Muñoz, M.E.; Santamaría, A. Bitumen/Polyethylene Blends: Using m-LLDPEs to Improve Stability and Viscoelastic Properties. Rheol. Acta 2006, 45, 603–610. [Google Scholar] [CrossRef]
- Ho, S.; Church, R.; Klassen, K.; Law, B.; MacLeod, D.; Zanzotto, L. Study of Recycled Polyethylene Materials as Asphalt Modifiers. Can. J. Civ. Eng. 2006, 33, 968–981. [Google Scholar] [CrossRef]
- Casey, D.; McNally, C.; Gibney, A.; Gilchrist, M.D. Development of a Recycled Polymer Modified Binder for Use in Stone Mastic Asphalt. Resour. Conserv. Recycl. 2008, 52, 1167–1174. [Google Scholar] [CrossRef]
- Al-Hadidy, A.I.; Tan, Y. Effect of Polyethylene on Life of Flexible Pavements. Constr. Build. Mater. 2009, 23, 1456–1464. [Google Scholar] [CrossRef]
- Vargas, M.A.; Vargas, M.A.; Sánchez-Sólis, A.; Manero, O. Asphalt/Polyethylene Blends: Rheological Properties, Microstructure and Viscosity Modeling. Constr. Build. Mater. 2013, 45, 243–250. [Google Scholar] [CrossRef]
- Wang, X.; Duan, Z.; Wu, L.; Yang, D. Estimation of Carbon Dioxide Emission in Highway Construction: A Case Study in Southwest Region of China. J. Clean. Prod. 2015, 103, 705–714. [Google Scholar] [CrossRef]
- Baghaee Moghaddam, T.; Soltani, M.; Karim, M.R. Stiffness Modulus of Polyethylene Terephthalate Modified Asphalt Mixture: A Statistical Analysis of the Laboratory Testing Results. Mater. Des. 2015, 68, 88–96. [Google Scholar] [CrossRef]
- Baghaee Moghaddam, T.; Soltani, M.; Karim, M.R.; Shamshirband, S.; Petković, D.; Baaj, H. Estimation of the Rutting Performance of Polyethylene Terephthalate Modified Asphalt Mixtures by Adaptive Neuro-Fuzzy Methodology. Constr. Build. Mater. 2015, 96, 550–555. [Google Scholar] [CrossRef]
- Lastra-González, P.; Calzada-Pérez, M.A.; Castro-Fresno, D.; Vega-Zamanillo, Á.; Indacoechea-Vega, I. Comparative Analysis of the Performance of Asphalt Concretes Modified by Dry Way with Polymeric Waste. Constr. Build. Mater. 2016, 112, 1133–1140. [Google Scholar] [CrossRef]
- Angelone, S.; Cauhapé Casaux, M.; Borghi, M.; Martinez, F.O. Green Pavements: Reuse of Plastic Waste in Asphalt Mixtures. Mater. Struct. Constr. 2016, 49, 1655–1665. [Google Scholar] [CrossRef]
- Sojobi, A.O.; Nwobodo, S.E.; Aladegboye, O.J. Recycling of Polyethylene Terephthalate (PET) Plastic Bottle Wastes in Bituminous Asphaltic Concrete. Cogent Eng. 2016, 3, 1133480. [Google Scholar] [CrossRef]
- Usman, N.; Masirin, M.I.B.M.; Ahmad, K.A.; Wurochekke, A.A. Reinforcement of Asphalt Concrete Mixture Using Recycle Polyethylene Terephthalate Fibre. Indian J. Sci. Technol. 2016, 9, 107143. [Google Scholar] [CrossRef]
- El-naga, I.A.; Ragab, M. Benefits of Utilization the Recycle Polyethylene Terephthalate Waste Plastic Materials as a Modifier to Asphalt Mixtures. Constr. Build. Mater. 2019, 219, 81–90. [Google Scholar] [CrossRef]
- Dalhat, M.A.; Wahhab, H.I.A.; Al-Adham, K. Recycled Plastic Waste Asphalt Concrete via Mineral Aggregate Substitution and Binder Modification. J. Mater. Civ. Eng. 2019, 31, 04019134. [Google Scholar] [CrossRef]
- Martin-Alfonso, J.E.; Cuadri, A.A.; Torres, J.; Hidalgo, M.E.; Partal, P. Use of Plastic Wastes from Greenhouse in Asphalt Mixes Manufactured by Dry Process. Road Mater. Pavement Des. ISSN 2019, 20, 265–281. [Google Scholar] [CrossRef]
- Capuano, L.; Magatti, G.; Perucca, M.; Dettori, M.; Mantecca, P. Use of recycled plastics as a second raw material in the production of road pavements: An example of circular economy evaluated with LCA methodology. Procedia Environ. Sci. Eng. Manag. 2020, 7, 37–43. [Google Scholar]
- Hassani, A.; Ganjidoust, H.; Maghanaki, A.A. Use of Plastic Waste (Poly-Ethylene Terephthalate) in Asphalt Concrete Mixture as Aggregate Replacement. Waste Manag. Res. 2005, 23, 322–327. [Google Scholar] [CrossRef]
- Sangita; Khan, T.A.; Sabina; Sharma, D.K. Effect of Waste Polymer Modifier on the Properties of Bituminous Concrete Mixes. Constr. Build. Mater. 2011, 25, 3841–3848. [Google Scholar] [CrossRef]
- Ahmadinia, E.; Zargar, M.; Karim, M.R.; Abdelaziz, M.; Shafigh, P. Using Waste Plastic Bottles as Additive for Stone Mastic Asphalt. Mater. Des. 2011, 32, 4844–4849. [Google Scholar] [CrossRef]
- Rongali, U.; Singh, G.; Chourasiya, A.; Jain, P.K. Laboratory Investigation on Use of Fly Ash Plastic Waste Composite in Bituminous Concrete Mixtures. Procedia—Soc. Behav. Sci. 2013, 104, 89–98. [Google Scholar] [CrossRef]
- Khurshid, M.B.; Ahmed, S.; Irfan, M.; Mehmood, S. Comparative Analysis of Conventional and Waste Polyethylene Modified Bituminous Mixes. In Proceedings of the 2013 the International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE 2013), Nanjing, China, 26–28 July 2013; Atlantis Press: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- IRC:SP:98; Guidelines for the Use of Waste Plastic in Hot Bituminous Mixes (Dry Process) in Wearing Courses. Indian Road Congress: New Delhi, India, 2013; pp. 1–24.
- Muzaffar Khan, K.; Hanifullah; Afzal, M.; Ali, F.; Ahmed, A.; Sultan, T. Rutting Performance of Polyethylene, Lime and Elvaloy Modified Asphalt Mixes. Life Sci. J. 2013, 10, 363–371. [Google Scholar]
- Moghaddam, T.B.; Karim, M.R.; Soltani, M. Utilization of Waste Plastic Bottles in Asphalt Mixture. J. Eng. Sci. Technol. 2013, 8, 264–271. [Google Scholar]
- Aschuri, I.; Woodward, D. Modification of a 14 mm Asphalt Concrete Surfacing Using RAP and Waste HDPE Plastic. Int. J. Pavements 2010, 9, 70–78. [Google Scholar]
- Diefenderfer, S.; Mcghee, K. Installation and Laboratory Evaluation of Alternatives to Conventional Polymer Modification for Asphalt—Final Report VCTIR 15-R15; Virginia Center for Transportation Innovation and Research: Charlottesville, VA, USA, 2015. [Google Scholar]
- Khan, I.M.; Kabir, S.; Alhussain, M.A.; Almansoor, F.F. Asphalt Design Using Recycled Plastic and Crumb-Rubber Waste for Sustainable Pavement Construction. Procedia Eng. 2016, 145, 1557–1564. [Google Scholar] [CrossRef]
- Yan, Y.; Roque, R.; Hernando, D.; Chun, S. Cracking Performance Characterisation of Asphalt Mixtures Containing Reclaimed Asphalt Pavement with Hybrid Binder. Road Mater. Pavement Des. 2019, 20, 347–366. [Google Scholar] [CrossRef]
- Willis, R.; Yin, F.; Moraes, R. Recycled Plastics in Asphalt Part A: State of the Knowledge; NAPA-IS-14; National Asphalt Pavement Association: Greenbelt, MD, USA, 2020; p. 36. [Google Scholar]
- Cardoso, J.; Ferreira, A.; Almeida, A.; Santos, J. Incorporation of Plastic Waste into Road Pavements: A Systematic Literature Review on the Fatigue and Rutting Performances. Constr. Build. Mater. 2023, 407, 133441. [Google Scholar] [CrossRef]
- Modarres, A.; Hamedi, H. Effect of Waste Plastic Bottles on the Stiffness and Fatigue Properties of Modified Asphalt Mixes. J. Mater. 2014, 61, 8–15. [Google Scholar] [CrossRef]
- Ahmadinia, E.; Zargar, M.; Karim, M.R.; Abdelaziz, M.; Ahmadinia, E. Performance Evaluation of Utilization of Waste Polyethylene Terephthalate (PET) in Stone Mastic Asphalt. Constr. Build. Mater. 2012, 36, 984–989. [Google Scholar] [CrossRef]
- Abdel-goad, M.A. Waste Polyvinyl Chloride-Modified Bitumen. J. Appl. Polym. Sci. 2006, 101, 1501–1505. [Google Scholar] [CrossRef]
- EP Construction Specifications Book. 14.03—Materials; Infraestruturas de Portugal: Lisbon, Portugal, 2012. (In Portuguese)
- CEN NP EN 12591:2011; Bitumen and Bituminous Binders. Specification for Paving Grade Bitumens. European Committee for Standardization: Brussels, Belgium, 2011.
- CEN EN 12697-35; Bituminous Mixtures. Test Methods for Hot Mix Asphalt—Part 35: Laboratory Mixing. European Committee for Standardization: Brussels, Belgium, 2004.
- CEN EN 12697-6:2012; Bituminous Mixtures. Test Methods for Hot Mix Asphalt. Part 6: Determination of Bulk Density of Bituminous Specimens. IPQ: Brussels, Belgium, 2012.
- CEN EN 12697-5:2009; Bituminous Mixtures—Test Methods for Hot Mix Asphalt. Part 5: Determination of the Maximum Density. European Committee for Standardization: Brussels, Belgium, 2009.
- CEN EN 12697-34:2012; Bituminous Mixtures. Test Methods for Hot Mix Asphalt. Part: 34 Marshall Test. European Committee for Standardization: Brussels, Belgium, 2012.
- CEN EN 12697-33:2003; Bituminous Mixtures—Test Methods for Hot Mix Asphalt—Part 33: Specimen Prepared by Roller Compactor. European Committee for Standardization: Brussels, Belgium, 2003.
- CEN EN 12697-12:2018; Bituminous Mixtures. Test Methods—Part 12: Determination of the Water Sensitivity of Bituminous Specimens. European Committee for Standardization: Brussels, Belgium, 2018.
- CEN EN 12697-22:2007; Bituminous Mixtures. Test Methods for Hot Mix Asphalt. Part 22: Wheel Tracking. European Committee for Standardization: Brussels, Belgium, 2007.
- CEN EN 12697-26:2018; Bituminous Mixtures. Test Methods—Part 26: Stiffness. European Committee for Standardization: Brussels, Belgium, 2018.
- Eriksson, O.; Finnveden, G. Plastic Waste as a Fuel—CO2-Neutral or Not? Energy Environ. Sci. 2009, 2, 907–914. [Google Scholar] [CrossRef]
- Tonini, D.; Garcia-Gutierrez, P.; Nessi, S. Environmental Effects of Plastic Waste Recycling; EUR 30668 EN; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Yadav, V.; Sherly, M.A.; Ranjan, P.; Prasad, V.; Tinoco, R.O.; Laurent, A. Risk of Plastics Losses to the Environment from Indian Landfills. Resour. Conserv. Recycl. 2022, 187, 106610. [Google Scholar] [CrossRef]
Constituents [%] | Formulation | |||
---|---|---|---|---|
Reference Mixture | Plastic Bituminous Mixture | |||
3.5% | 4.0% | 4.5% | ||
Bitumen | 5.0 | 3.5 | 4.0 | 4.5 |
Basalt 10/16 | 24.0 | 24.0 | 24.0 | 24.0 |
Basalt 4/12 | 33.0 | 33.0 | 33.0 | 33.0 |
Limestone 0/4 | 29.0 | 19.0 | 19.0 | 19.0 |
Basalt 0/4 | 11.0 | 11.0 | 11.0 | 11.0 |
Commercial filler | 3.0 | 3.0 | 3.0 | 3.0 |
Plastic | 0 | 10.0 | 10.0 | 10.0 |
Constituents | OBC Formulation [%] |
---|---|
Bitumen | 4.2 |
Basalt 10/16 | 24.0 |
Basalt 4/12 | 33.0 |
Limestone 0/4 | 19.0 |
Basalt 0/4 | 11.0 |
Commercial filler | 3.0 |
Plastic | 10.0 |
Property | Bituminous Mixture with Plastic | Reference Mixture |
---|---|---|
WTSAIR [mm/103 cycles] | 0.0 | 0.28 |
PRDAIR [%] | 0.3 | 11.70 |
Property | Unit | Reference Mixture | Bituminous Mixture with Plastic |
---|---|---|---|
Thickness | [m] | 0.06 | |
Width | [m] | 8 | |
Length | [m] | 1000 | |
Volume | [m3] | 480 | |
Bulk density | [Mg/m3] | 2.56 | 2.19 |
Required mass | [Mg] | 1228.8 | 1051.2 |
Constituent | Reference Mixture | Bituminous Mixture with Plastic | ||||
---|---|---|---|---|---|---|
Mass [Mg] | Unit Price [€/Mg] | Cost [€] | Mass [Mg] | Unit Price [€/Mg] | Cost [€] | |
Bitumen | 58.5 | 976 | 57,110 | 42.4 | 976 | 41,354 |
Basalt 10/16 | 280.9 | 15 | 4213 | 242.1 | 15 | 3632 |
Basalt 4/12 | 386.2 | 15 | 5793 | 332.9 | 15 | 4994 |
Limestone 0/4 | 339.4 | 16 | 5430 | 191.7 | 16 | 3067 |
Basalt 0/4 | 128.7 | 15 | 1931 | 111.0 | 15 | 1665 |
Commercial filler | 35.1 | 15 | 527 | 30.3 | 15 | 454 |
Plastic | 0.0 | 0 | 0 | 100.9 | 0 | 0 |
Total | 1228.8 | - | 75,004 | 1051.2 | - | 55,165 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca, J.; Antunes, V.; Freire, A.C. Contributions to Incorporation of Non-Recyclable Plastics in Bituminous Mixtures. Sustainability 2024, 16, 9945. https://doi.org/10.3390/su16229945
Fonseca J, Antunes V, Freire AC. Contributions to Incorporation of Non-Recyclable Plastics in Bituminous Mixtures. Sustainability. 2024; 16(22):9945. https://doi.org/10.3390/su16229945
Chicago/Turabian StyleFonseca, João, Vítor Antunes, and Ana Cristina Freire. 2024. "Contributions to Incorporation of Non-Recyclable Plastics in Bituminous Mixtures" Sustainability 16, no. 22: 9945. https://doi.org/10.3390/su16229945
APA StyleFonseca, J., Antunes, V., & Freire, A. C. (2024). Contributions to Incorporation of Non-Recyclable Plastics in Bituminous Mixtures. Sustainability, 16(22), 9945. https://doi.org/10.3390/su16229945