Determination of Particle Size for Optimum Biogas Production from Ouagadougou Municipal Organic Solid Waste
<p>Different sizes of waste used in anaerobic digestion tests.</p> "> Figure 2
<p>Principal component analysis plot of variables biogas production, CO<sub>2</sub> and CH<sub>4</sub> proportions and distribution of combinations on 1 × 2 axis of principal components.</p> "> Figure 3
<p>Three-dimensional-view response surface plot corresponding to the chosen equation: (<b>a</b>) effect of particle size and incubation time on CH<sub>4</sub> content and (<b>b</b>) effect of particle size and incubation time on CO<sub>2</sub> content.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Characteristic of Waste
2.2. Preparing Samples of Municipal Organic Waste
2.3. Biogas Production Setup
2.4. Data Analysis
3. Results and Discussion
3.1. Characterization of Organic Fraction of Municipal Solid Waste from Ouagadougou City
3.2. Biogas Production Depending on Particle Size
3.3. Biogas Production Depending on Particle Size PCA of Biogas Production as a Function of Particle Size
3.4. Mathematical Models
3.5. Mathematical Models Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nalinga, Y.; Legonda, I. The effect of particles size on biogas production. Int. J. Innov. Res. Technol. Sci. 2016, 4, 9–13. [Google Scholar]
- Liu, X.; Bayard, R.; Benbelkacem, H.; Buffière, P.; Gourdon, R. Évaluation Du Potentiel Biométhanogène De Biomasses Lignocellulosiques. Environ. Ing. Dév. 2014, 67, 36–49. [Google Scholar] [CrossRef]
- Mancini, E.; Raggi, A. A review of circularity and sustainability in anaerobic digestion processes. J. Environ. Manag. 2021, 291, 112695. [Google Scholar] [CrossRef]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular Economy: The Concept and its Limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The circular economy—A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Nikiema, M.; Barsan, N.; Maiga, Y.; Somda, M.K.; Mosnegutu, E.; Ouattara, C.A.T.; Dianou, D.; Traore, A.S.; Nedeff, V.; Ouattara, A.S. Optimization of Biogas Production from Sewage Sludge: Impact of Combination with Bovine Dung and Leachate from Municipal Organic Waste. Sustainability 2022, 14, 4380. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Li, B.; Patel, K.; Wang, L.B. A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion. Int. J. Environ. Res. Public Health 2018, 15, 2224. [Google Scholar] [CrossRef]
- Chew, R.K.; Leong, H.Y.; Khoo, S.K.D.; Anjum, V.V.N.H.; Chang, C.K. Effects of anaerobic digestion of food waste on biogas production and environmental impacts: A review Intergovernmental Panel on Climate Change United States Department of Agriculture. Environ. Chem. Lett. 2021, 19, 2921–2939. [Google Scholar] [CrossRef]
- Coelho, N.M.G.; Droste, R.L.; Kennedy, K.J. Evaluation of continuous mesophilic, thermophilic and temperature phased anaerobic digestion of microwaved activated sludge. Water Res. 2011, 45, 2822–2834. [Google Scholar] [CrossRef]
- Boe, K. Online Monitoring and Control of the Biogas Process. Ph.D. Thesis, Institute of Environment & Resources, Technical University of Denmark, Kongens Lyngby, Denmark, 2006. Available online: https://orbit.dtu.dk/files/127333186/MR2006_055.pdf (accessed on 15 June 2024).
- Dhamodharan, K.; Kumar, V.; Kalamdhad, A.S. Effect of different livestock dungs as inoculum on food waste anaerobic digestion and its kinetics. Bioresour. Technol. 2015, 180, 237–241. [Google Scholar] [CrossRef]
- Luo, K.; Pang, Y.; Yang, Q.; Wang, D.; Li, X.; Lei, M.; Huang, Q. A critical review of volatile fatty acids produced from waste activated sludge: Enhanced strategies and its applications. Environ. Sci. Pollut. Res. 2019, 26, 13984–13998. [Google Scholar] [CrossRef] [PubMed]
- Vavilin, V.A.; Fernandez, B.; Palatsi, J.; Flotats, X. Hydrolysis kinetics in anaerobic degradation of particulate organic material: An overview. Waste Manag. 2008, 28, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Izumi, K.; Okishio, Y.K.; Nagao, N.; Niwa, C.; Yamamoto, S.; Toda, T. International Biodeterioration and Biodegradation. Int. Biodeterior. Biodegrad. 2010, 64, 601–608. [Google Scholar] [CrossRef]
- Raposo, F.; Fernandez-Cegri, V.; De la Rubia, M.A.; Borja, R.; Béline, F.; Cavinato, C.; Demirer, G.; Fernández, B.; Fernández-Polanco, M.; Frigon, J.; et al. Biochemical methane potential (BMP) of solid organic substrates: Evaluation of anaerobic biodegradability using data from an international interlaboratory study. J. Chem. Technol. Biotechnol. 2011, 86, 1088–1098. [Google Scholar] [CrossRef]
- MarouŠekm, J. Removal of hardly fermentable ballast from the maize silage to accelerate biogas production. Ind. Crops Prod. 2013, 44, 253–257. [Google Scholar] [CrossRef]
- Nieves, D.C.; Ruiz, H.A.; de Cárdenas, L.Z.; Alvarez, G.M.; Aguilar, C.N.; Ilyina, A.; Hernández, J.L.M. Enzymatic hydrolysis of chemically pretreated mango stem bark residues at high solid loading. Ind. Crops Prod. 2016, 83, 500–508. [Google Scholar] [CrossRef]
- Barakat, A.; de Vries, H.; Rouau, X. Dry fractionation process as an important step in current and future lignocellulose biorefineries: A review. Bioresour. Technol. 2013, 134, 362–373. [Google Scholar] [CrossRef]
- Afilal, M.E.; Belkhadi, N.; Daoudi, H.; Elasri, O. Methanic fermentation of different organic substrates. J. Mater. Environ. Sci. 2013, 4, 11–16. [Google Scholar]
- Mrosso, R.; Mecha, A.C.; Kiplagat, J. Characterization of kitchen and municipal organic waste for biogas production: Effect of parameters. Heliyon 2023, 9, e16360. [Google Scholar] [CrossRef]
- Dumas, C.; Silva Ghizzi Damasceno, G.; Abdellatif, B.; Carrère, H.; Steyer, J.P.; Rouau, X. Effects of grinding processes on anaerobic digestion of wheat straw. Ind. Crops Prod. 2015, 74, 450–456. [Google Scholar] [CrossRef]
- Kothari, N.; Bhagia, S.; Pu, Y.; Chang Geun Yoo, C.G.; Li, M.; Venketachalam, S.; Pattathil, S.; Kumar, R.; Cai, C.M.; Hahn, M.H.; et al. The effect of switchgrass plant cell wall properties on its deconstruction by thermochemical pretreatments coupled with fungal enzymatic hydrolysis or Clostridium thermocellum consolidated bioprocessing. Green Chem. 2020, 22, 7924–7945. [Google Scholar] [CrossRef]
- Chaudhari, Y.B.; Várnai, A.; Sørlie, M.; Horn, S.; Eijsink, V.G.H. Engineering cellulases for conversion of lignocellulosic biomass. Protein Eng. Des. Sel. 2023, 36, gzad002. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, S.; Doherty, W.; Dubal, D.; Atanda, L.; Moghaddam, L.; Sonar, P.; Hessel, V.; Ostrikov, K. Pretreatment and Fermentation of Lignocellulosic Biomass: Reaction Mechanisms and Process Engineering. React. Chem. Eng. 2020, 5, 2017–2047. [Google Scholar] [CrossRef]
- Parra-Orobio, B.A.; Torres-Lozada, P.; Marmolejo-Rebellón, L.F. Anaerobic digestion of municipal biowaste for the production of renewable energy: Effect of particle size. Braz. J. Chem. Eng. 2017, 34, 481–491. [Google Scholar] [CrossRef]
- Banks, C.J.; Chesshire, M.; Heaven, S.; Arnold, R. Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance. Bioresour. Technol. 2011, 102, 612–620. [Google Scholar] [CrossRef]
- Mshandete, A.; Björnsson, L.; Kivaisi, A.K.; Rubindamayugi, M.S.T.; Mattiasson, B. Effect of particle size on biogas yield from sisal fibre waste. Renew. Energy 2006, 31, 2385–2392. [Google Scholar] [CrossRef]
- Hills, D.J.; Nakano, K. Effects of particle size on anaerobic digestion of tomato solid wastes. Agric. Wastes 1984, 10, 285–295. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ahring, B. Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Sci. Technol. 2000, 41, 189–194. [Google Scholar] [CrossRef]
- Sebola, M.; Tesfagiorgis, H.; Muzenda, E. Effect of particle size on anaerobic digestion of different feedstocks. S. Afr. J. Chem. Eng. 2015, 20, 11–26. [Google Scholar]
- Morgenroth, E.; Kommedal, R.; Harremoës, P. Processes and modeling of hydrolysis of particulate organic matter in aerobic wastewater treatment—A review. Water Sci. Technol. 2002, 45, 25–40. [Google Scholar] [CrossRef]
- Sharma, S.K.; Mishra, I.M.; Sharma, M.P.; Saini, J.S. Effect of particle size on biogas generation from biomass residues. Biomass 1988, 17, 251–263. [Google Scholar] [CrossRef]
- Monlaum, F.; Barakat, A.; Trably, E.; Dumas, C.; Steyer, J.P.; Carrère, H. Lignocellulosic Materials into Biohydrogen and Biomethane: Impact of Structural Features and Pretreatment. Crit. Rev. Environ. Sci. Technol. 2023, 43, 260–322. [Google Scholar] [CrossRef]
- Kumar, R.; Mago, G.; Balan, V.; Wyman, C.E. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour. Technol. 2009, 100, 3948–3962. [Google Scholar] [CrossRef] [PubMed]
- Willför, S.; Sundberg, A.; Hemming, J.; Holmbom, B. Polysaccharides in some industrially important softwood species. Wood Sci. Technol. 2005, 39, 245–258. [Google Scholar] [CrossRef]
- Gupta, R.; Lee, Y.Y. Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide. Bioresour. Technol. 2010, 101, 8185–8191. [Google Scholar] [CrossRef]
- Lopez, M.J.; del Carmen Vargas-García, M.; Suárez-Estrella, F.; Nichols, N.N.; Dien, B.S.; Moreno, J. Lignocellulose-degrading enzymes produced by the ascomycete Coniochaeta ligniaria and related species: Application for a lignocellulosic substrate treatment. Enzyme Microb. Technol. 2007, 40, 794–800. [Google Scholar] [CrossRef]
- Yu, L.; Wensel, P.C. Mathematical Modeling in Anaerobic Digestion (AD). J. Bioremediat. Biodegrad. 2013, S4, 003. [Google Scholar] [CrossRef]
- Zheng, Y.Y. Mathematical Model of Anaerobic Processes Applied to the Anaerobic Sequencing Batch Reactor. Ph.D. Thesis, Department of Civil Engineering, University of Toronto, Toronto, ON, Canada, 2003; 486p. [Google Scholar]
- Hill, D.T.; Barth, C.L. A dynamic model for simulation of animal waste digestion. J. Water Pollut. Control Fed. 1977, 10, 2129–2143. [Google Scholar]
- Moletta, R.; Verrier, D.; Albagnac, G. Dynamic modelling of anaerobic digestion. Water Res. 1986, 20, 427–434. [Google Scholar] [CrossRef]
- Flores-Estrella, R.A.; Estrada-Baltazar, A.; Femat, R. A mathemematical model and dynamic analyse of anaerobic digestion of soluble organic fraction of municipal solid waste towards control design. Rev. Mex. Ing. Quím. 2012, 15, 97–104. [Google Scholar]
- Batstone, D.J.; Keller, J.; Angelidak, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.M.; Siegrist, H.A.; Vavilin, V.A. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Piątek, M.; Lisowski, A.; Dąbrowska, M. Surface-related kinetic models for anaerobic digestion of mi-crocrystalline cellulose: The role of particle size. Materials 2021, 14, 487. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, M.A.; Santell, E.R.; Oliveira, E.P.; Villar, L.S. Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Zwain, H.M.; Barghash, H.; Vakili, M.; Majdi, H.S.; Dahlan, I. Modeling and optimization of process parametric interaction during high-rate anaerobic digestion of recycled paper mill wastewater using the response surface methodology. Water Reuse 2022, 12, 78. [Google Scholar] [CrossRef]
- Nikiema, M.; Somda, M.K.; Sawadogo, J.B.; Bambara, S.; Barsan, N.; Maiga, Y.; Ouili, S.A.; Compaoré, C.O.T.; Mogmenga, I.; Dianou, D.; et al. Optimization for improved biomethane yield from cashew nut hulls through response surface methodology. Biomass Convers. Biorefinery 2024, 1–12. [Google Scholar] [CrossRef]
- Mosnegutu, E.; Panainte Lehadus, M.; Nedeff, V.; Tomozei, C.; Barsan, N.; Chitimus, D.; Jasinski, M. Extraction of mathematical correlations applied in the aerodynamic separation of solid particles. Processes 2022, 10, 1234. [Google Scholar] [CrossRef]
- Hajji, A.; Rhachi, M. The Influence of Particle Size on the Performance of Anaerobic Digestion of Municipal Solid Waste. Energy Procedia 2013, 36, 515–520. [Google Scholar] [CrossRef]
- Awny, A.; Faid Allah, R. Effect of Fermentation Mixture and Particle Size on Biogas Production from Organic and Agricultural Wastes. Misr. J. Agric. Eng. 2018, 35, 1423–1440. [Google Scholar] [CrossRef]
- Ghizzi, G.; Silva, D.; Couturier, M.; Berrin, J.; Buléon, A.; Rouau, X. Effects of grinding processes on enzymatic degradation of wheat straw. Bioresour. Technol. 2012, 103, 192–200. [Google Scholar]
- Armah, E.K.; Chetty, M.; Deenadayalu, N. Effect of particle size on biogas generation from sugarcane bagasse and corn silage. Chem. Eng. Trans. 2019, 76, 1471–1476. [Google Scholar]
- Eriksson, T.; Borjesson, J.; Tjerneld, F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microbiol. Technol. 2002, 31, 353–364. [Google Scholar] [CrossRef]
- Hu, Z.H.; Yu, H.Q.; Zhu, R.F. Influence of particle size and pH on anaerobic degradation of cellulose by ruminal microbes. Int. Biodeterior. Biodegrad. 2005, 55, 233–238. [Google Scholar] [CrossRef]
- Luo, L.; Qu, Y.; Gong, W.; Qin, L.; Li, W.; Sun, Y. Effect of particle size on the aerobic and anaerobic digestion characteristics of whole rice straw. Energies 2021, 14, 3960. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Keyhani, A.; Mostofi-Sarkari, M.R.; Jafari, A. Optimization of seed corn harvesting losses applying response surface methodology. Res. J. Appl. Sci. Eng. Technol. 2012, 4, 2350–2356. [Google Scholar]
- Milaiti, M.; Traoré, A.S.; Moletta, R. Essais de fermentation à partir de Calotropis procera production de CH4 en fonction de la charge en substrat et en fonction de la température. Sci. Méd. 2003, 2, 73–78. [Google Scholar]
- Wang, Y.; Zhang, Y.; Wang, J.; Meng, L. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass Bioenergy 2009, 33, 848–853. [Google Scholar] [CrossRef]
- Chynoweth, D.P.; Pullammanappallil, P. Anaerobic digestion of municipal solid wastes. In Microbiology of Solid Waste; Palmisano, A.C., Barlaz, M.A., Eds.; CRC Press: Boca Raton, FL, USA, 1996; Chapter 3; 223p. [Google Scholar]
- Nikiema, M.; Sawadogo, J.B.; Somda, M.K.; Traore, D.; Dianou, D. Optimisation de la production de biométhane à partir des déchets organiques municipaux Optimization of biomethane production from municipal solid organic wastes. Int. J. Biol. Chem. Sci. 2015, 9, 2743–27756. [Google Scholar] [CrossRef]
- Nozhevnikova, A.N.; Zepp, K.; Vazquez, F.; Zehnder, A.J.B.; Holliger, C. Evidence for the existence of psychrophilic methanogenic communities in anoxic sediments of deep lakes. Appl. Environ. Microbiol. 2003, 69, 1832–1835. [Google Scholar] [CrossRef]
- Thiele, J.H.; Zeikus, J.G. The anion-exchange substrate shuttle process: A new approach to two-stage biomethanation of organic and toxic wastes. Biotechnol. Bioeng. 1988, 31, 521–535. [Google Scholar] [CrossRef]
- Pan, B.; Hsu, K.; AghaKouchak, A.; Sorooshian, S. Improving Precipitation Estimation Using Convolutional Neural Network. Water Resour. Res. 2019, 55, 2301–2321. [Google Scholar] [CrossRef]
Type of Waste | Composition |
---|---|
Lignocellulosic green waste | Mango tree leaves |
Calotropis procera leaves | |
Leaves of Saba senegalensis | |
Pawpaw leaves | |
Branches and twigs | |
Grass | |
Lawn clippings | |
Fruit, vegetables and other waste | Green beans |
Peppers | |
Squash Parsley | |
Peppers | |
Okra fruits | |
Mint | |
Cassava rhizomes | |
Sweet potato | |
Saba senegalensis fruits | |
Oranges | |
Lemons | |
Tomato | |
Cabbage | |
Aubergines | |
Carrot leaves | |
Banana peel | |
Mangoes | |
Onions | |
Cucumbers | |
Leftover food | Bread |
Average (L·kg−1 de MSV) | |||
---|---|---|---|
Size (µm) | Biogas | CH4 | CO2 |
45 | 184.87 bc | 98.22 ab | 52.82 c |
63 | 210.92 bc | 125.12 ab | 53.49 c |
125 | 201.25 bc | 107.08 ab | 60.33 c |
250 | 308.89 ab | 187.53 a | 96.28 bc |
500 | 385.33 a | 182.22 bc | 142.53 bc |
1000 | 238.24 abc | 115.93 ab | 116.71 a |
2000 | 249.58 abc | 129.33 ab | 106.72 ab |
4000 | 115.62 c | 40.58 c | 39.14 bc |
X Observed (Time Days) | Y Observed (Size µm) | Z Observed (%CH4) | Z Predicted (%CH4) | Z Residual | Average Relative Error | RMSE |
---|---|---|---|---|---|---|
25 | 4000 | 55.65 | 67.34 | −11.69 | 0.17 | 0.42 |
25 | 2000 | 88.51 | 84.18 | 4.32 | 0.05 | 0.23 |
25 | 1000 | 88.89 | 79.71 | 9.18 | 0.12 | 0.34 |
25 | 500 | 76.33 | 84.02 | −7.69 | 0.09 | 0.30 |
25 | 250 | 90.84 | 86.76 | 4.08 | 0.05 | 0.22 |
25 | 125 | 89.70 | 87.99 | 1.71 | 0.02 | 0.14 |
25 | 63 | 88.20 | 88.53 | −0.33 | 0.00 | 0.06 |
25 | 45 | 89.09 | 88.67 | 0.42 | 0.00 | 0.07 |
20 | 4000 | 51.95 | 57.28 | −5.33 | 0.09 | 0.31 |
20 | 2000 | 81.22 | 74.12 | 7.10 | 0.10 | 0.31 |
20 | 1000 | 68.42 | 69.65 | −1.22 | 0.02 | 0.13 |
20 | 500 | 65.31 | 73.96 | −8.65 | 0.12 | 0.34 |
20 | 250 | 76.14 | 76.70 | −0.56 | 0.01 | 0.09 |
20 | 125 | 71.14 | 77.93 | −6.79 | 0.09 | 0.30 |
20 | 63 | 87.08 | 78.47 | 8.61 | 0.11 | 0.33 |
20 | 45 | 85.46 | 78.61 | 6.84 | 0.09 | 0.30 |
15 | 4000 | 42.58 | 43.69 | −1.11 | 0.03 | 0.16 |
15 | 2000 | 58.58 | 60.53 | −1.95 | 0.03 | 0.18 |
15 | 1000 | 52.07 | 56.05 | −3.98 | 0.07 | 0.27 |
15 | 500 | 44.38 | 60.37 | −15.99 | 0.26 | 0.51 |
15 | 125 | 62.92 | 64.34 | −1.42 | 0.02 | 0.15 |
15 | 63 | 75.76 | 64.88 | 10.88 | 0.17 | 0.41 |
15 | 45 | 56.14 | 65.02 | −8.88 | 0.14 | 0.37 |
10 | 4000 | 19.08 | 13.39 | 5.69 | 0.42 | 0.65 |
10 | 2000 | 21.49 | 30.23 | −8.74 | 0.29 | 0.54 |
10 | 1000 | 21.15 | 25.75 | −4.60 | 0.18 | 0.42 |
10 | 500 | 35.80 | 30.06 | 5.73 | 0.19 | 0.44 |
10 | 250 | 44.48 | 32.80 | 11.68 | 0.36 | 0.60 |
10 | 125 | 31.73 | 34.04 | −2.31 | 0.07 | 0.26 |
10 | 45 | 26.85 | 34.72 | −7.87 | 0.23 | 0.48 |
5 | 4000 | 6.25 | −6.22 | 12.47 | 2.01 | 1.42 |
5 | 2000 | 9.28 | 10.62 | −1.34 | 0.13 | 0.36 |
5 | 1000 | 12.75 | 6.15 | 6.60 | 1.07 | 1.04 |
5 | 500 | 14.64 | 10.46 | 4.18 | 0.40 | 0.63 |
5 | 250 | 6.51 | 13.20 | −6.69 | 0.51 | 0.71 |
5 | 125 | 10.58 | 14.43 | −3.85 | 0.27 | 0.52 |
5 | 63 | 10.58 | 14.97 | −4.39 | 0.29 | 0.54 |
5 | 45 | 8.14 | 15.11 | −6.98 | 0.46 | 0.68 |
X Observed (Time Days) | Y Observed (Size µm) | Z Observed (%CO2) | Z Predicted (%CO2) | Z Residual | Average Relative Error | RMSE |
---|---|---|---|---|---|---|
25 | 4000 | 16.74 | 12.06 | 4.68 | 0.39 | 0.62 |
25 | 2000 | 10.31 | 20.98 | −10.66 | 0.51 | 0.71 |
25 | 1000 | 9.11 | 27.09 | −17.98 | 0.66 | 0.81 |
25 | 500 | 23.67 | 15.55 | 8.12 | 0.52 | 0.72 |
25 | 250 | 9.16 | 9.34 | −0.18 | 0.02 | 0.14 |
25 | 125 | 10.46 | 6.84 | 3.62 | 0.53 | 0.73 |
25 | 63 | 11.80 | 5.86 | 5.94 | 1.01 | 1.01 |
25 | 45 | 12.07 | 5.61 | 6.46 | 1.15 | 1.07 |
20 | 4000 | 20.73 | 21.83 | −1.10 | 0.05 | 0.22 |
20 | 2000 | 14.32 | 30.75 | −16.43 | 0.53 | 0.73 |
20 | 1000 | 31.58 | 36.86 | −5.28 | 0.14 | 0.38 |
20 | 500 | 34.69 | 25.32 | 9.37 | 0.37 | 0.61 |
20 | 250 | 23.86 | 19.11 | 4.75 | 0.25 | 0.50 |
20 | 125 | 28.86 | 16.61 | 12.24 | 0.74 | 0.86 |
20 | 63 | 12.92 | 15.63 | −2.71 | 0.17 | 0.42 |
20 | 45 | 14.54 | 15.38 | −0.84 | 0.05 | 0.23 |
15 | 4000 | 15.00 | 21.11 | −6.11 | 0.29 | 0.54 |
15 | 2000 | 29.99 | 30.02 | −0.03 | 0.00 | 0.03 |
15 | 1000 | 44.99 | 36.13 | 8.85 | 0.24 | 0.49 |
15 | 500 | 33.26 | 24.60 | 8.66 | 0.35 | 0.59 |
15 | 250 | 10.37 | 18.39 | −8.02 | 0.44 | 0.66 |
15 | 125 | 15.00 | 15.89 | −0.89 | 0.06 | 0.24 |
15 | 63 | 12.11 | 14.90 | −2.79 | 0.19 | 0.43 |
15 | 45 | 15.00 | 14.66 | 0.34 | 0.02 | 0.15 |
10 | 4000 | 56.67 | 55.99 | 0.68 | 0.01 | 0.11 |
10 | 2000 | 76.08 | 64.90 | 11.18 | 0.17 | 0.41 |
10 | 1000 | 84.35 | 71.01 | 13.33 | 0.19 | 0.43 |
10 | 500 | 59.58 | 59.48 | 0.10 | 0.00 | 0.04 |
10 | 250 | 52.48 | 53.27 | −0.78 | 0.01 | 0.12 |
10 | 125 | 39.36 | 50.77 | −11.40 | 0.22 | 0.47 |
10 | 63 | 37.49 | 49.79 | −12.30 | 0.25 | 0.50 |
10 | 45 | 48.73 | 49.54 | −0.80 | 0.02 | 0.13 |
5 | 4000 | 60.14 | 58.28 | 1.85 | 0.03 | 0.18 |
5 | 2000 | 83.09 | 67.20 | 15.89 | 0.24 | 0.49 |
5 | 1000 | 74.98 | 73.31 | 1.66 | 0.02 | 0.15 |
5 | 500 | 33.74 | 61.78 | −28.04 | 0.45 | 0.67 |
5 | 250 | 59.98 | 55.56 | 4.42 | 0.08 | 0.28 |
5 | 125 | 56.23 | 53.06 | 3.17 | 0.06 | 0.24 |
5 | 63 | 52.48 | 52.08 | 0.40 | 0.01 | 0.09 |
5 | 45 | 52.48 | 51.84 | 0.65 | 0.01 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikiema, M.; Barsan, N.; Ouili, A.S.; Mosnegutu, E.; Somda, K.M.; Maiga, Y.; Tidiane, C.C.O.; Ouattara, C.A.T.; Nedeff, V.; Ouattara, A.S. Determination of Particle Size for Optimum Biogas Production from Ouagadougou Municipal Organic Solid Waste. Sustainability 2024, 16, 9792. https://doi.org/10.3390/su16229792
Nikiema M, Barsan N, Ouili AS, Mosnegutu E, Somda KM, Maiga Y, Tidiane CCO, Ouattara CAT, Nedeff V, Ouattara AS. Determination of Particle Size for Optimum Biogas Production from Ouagadougou Municipal Organic Solid Waste. Sustainability. 2024; 16(22):9792. https://doi.org/10.3390/su16229792
Chicago/Turabian StyleNikiema, Mahamadi, Narcis Barsan, Amidou S. Ouili, Emilian Mosnegutu, K. Marius Somda, Ynoussa Maiga, Compaoré Cheik Omar Tidiane, Cheik A. T. Ouattara, Valentin Nedeff, and Aboubakar S. Ouattara. 2024. "Determination of Particle Size for Optimum Biogas Production from Ouagadougou Municipal Organic Solid Waste" Sustainability 16, no. 22: 9792. https://doi.org/10.3390/su16229792
APA StyleNikiema, M., Barsan, N., Ouili, A. S., Mosnegutu, E., Somda, K. M., Maiga, Y., Tidiane, C. C. O., Ouattara, C. A. T., Nedeff, V., & Ouattara, A. S. (2024). Determination of Particle Size for Optimum Biogas Production from Ouagadougou Municipal Organic Solid Waste. Sustainability, 16(22), 9792. https://doi.org/10.3390/su16229792