Assessing Atlantic Kelp Forest Restoration Efforts in Southern Europe
<p>(<b>A</b>) Section of the western continental Portuguese coast where the deployments took place. Three distinct zones were selected: (<b>B</b>) The coast of Peniche, with Marques-Neves as the reference Kelp forest (I) and Consolação (II); (<b>C</b>) In the Berlengas Islands at the sites Elefante (III) and Galos (IV); (<b>D</b>) and in the Cascais area at Boca do Inferno (V).</p> "> Figure 2
<p>(<b>A</b>) Technique used to deploy the gravel from the surface; (<b>B</b>) Scientific divers deployed buoys marking the area for deployment (100 m<sup>2</sup>) in Berlengas at the Galos site; (<b>C</b>) close-up of the deployed green gravel.</p> "> Figure 3
<p>Percentage of each bottom substratum category (reef plateau, boulders, and sand) measured in 25 m transects at the different studied sites (<span class="html-italic">n</span> = 5). Numbers within each bar indicate the site’s Rugosity Index (RI) achieved (<span class="html-italic">n</span> = 5).</p> "> Figure 4
<p>(<b>A</b>) Average seawater temperature (measured in situ); (<b>B</b>) sea surface temperature—SST; (<b>C</b>) near surface chlorophyll <span class="html-italic">a</span> level—Chla <span class="html-italic">a</span>, and (<b>D</b>) absolute average water movement in all monitored sites. Statistically significant different groups (a, b, and c) are shown (Tukey’s HSD; <span class="html-italic">p</span> ≤ 0.05). Error bars are ±2 sd of means (n.a. = not assessed).</p> "> Figure 5
<p>(<b>A</b>) Concentration of phosphates, (<b>B</b>) nitrates, and (<b>C</b>) nitrites at depth at all monitored sites. Statistically significant different groups (a and b) are shown (Tukey’s HSD; <span class="html-italic">p</span> ≤ 0.05). Error bars are ±2 sd of means. (<span class="html-italic">n</span> = 9 per site).</p> "> Figure 6
<p>(<b>A</b>) Gravel retention and (<b>B</b>) deployment success at the four deployment sites in the three monitoring moments after 3, 6, and 8 months of deployment.</p> "> Figure 7
<p>Coefficient plot of the first component of the PLS regression model. The model included data from all the deployment sites to explain the green gravel success index. Importance was deemed as high if the coefficient was higher than 0.15 (<span class="html-italic">n</span> = 80).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Green Gravel Cultures
2.2. Green Gravel Deployment
2.3. Deployment Areas Monitoring
2.4. Statistical Analysis
3. Results
3.1. Biological Community
3.2. Bottom Type and Rugosity Index (RI)
3.3. Environmental Data
3.4. Retention and Success
3.5. Partial Least Squares Regression Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wernberg, T.; Krumhansl, K.; Filbee-Dexter, K.; Pedersen, M.F. Status and Trends for the World’s Kelp Forests. In World Seas: An Environmental Evaluation: Ecological Issues and Environmental Impacts; Academic Press: Cambridge, MA, USA, 2019; Volume III, pp. 57–78. [Google Scholar]
- Bennett, S.; Wernberg, T.; Connell, S.D.; Hobday, A.J.; Johnson, C.R.; Poloczanska, E.S. The ‘Great Southern Reef’: Social, Ecological and Economic Value of Australia’s Neglected Kelp Forests. Mar. Freshw. Res. 2015, 67, 47–56. [Google Scholar] [CrossRef]
- Peters, J.R.; Reed, D.C.; Burkepile, D.E. Climate and Fishing Drive Regime Shifts in Consumer-Mediated Nutrient Cycling in Kelp Forests. Glob. Chang. Biol. 2019, 25, 3179–3192. [Google Scholar] [CrossRef] [PubMed]
- Teagle, H.; Hawkins, S.J.; Moore, P.J.; Smale, D.A. The Role of Kelp Species as Biogenic Habitat Formers in Coastal Marine Ecosystems. J. Exp. Mar. Biol. Ecol. 2017, 492, 81–98. [Google Scholar] [CrossRef]
- Graham, M.H. Effects of Local Deforestation on the Diversity and Structure of Southern California Giant Kelp Forest Food Webs. Ecosystems 2004, 7, 341–357. [Google Scholar] [CrossRef]
- Steneck, R.S.; Graham, M.H.; Bourque, B.J.; Corbett, D.; Erlandson, J.M.; Estes, J.A.; Tegner, M.J. Kelp Forest Ecosystems: Biodiversity, Stability, Resilience and Future. Environ. Conserv. 2002, 29, 436–459. [Google Scholar] [CrossRef]
- Salomidi, M.; Katsanevakis, S.; Borja, Á.; Braeckman, U.; Damalas, D.; Galparsoro, I.; Mifsud, R.; Mirto, S.; Pascual, M.; Pipitone, C.; et al. Assessment of Goods and Services, Vulnerability, and Conservation Status of European Seabed Biotopes: A Stepping Stone towards Ecosystem-Based Marine Spatial Management. Mediterr. Mar. Sci. 2012, 13, 49–88. [Google Scholar] [CrossRef]
- Bertocci, I.; Araújo, R.; Oliveira, P.; Sousa-Pinto, I. REVIEW: Potential Effects of Kelp Species on Local Fisheries. J. Appl. Ecol. 2015, 52, 1216–1226. [Google Scholar] [CrossRef]
- Wing, S.R.; Durante, L.M.; Connolly, A.J.; Sabadel, A.J.M.; Wing, L.C. Overexploitation and Decline in Kelp Forests Inflate the Bioenergetic Costs of Fisheries. Glob. Ecol. Biogeogr. 2022, 31, 621–635. [Google Scholar] [CrossRef]
- Smale, D.A.; Burrows, M.T.; Moore, P.; O’Connor, N.; Hawkins, S.J. Threats and Knowledge Gaps for Ecosystem Services Provided by Kelp Forests: A Northeast Atlantic Perspective. Ecol. Evol. 2013, 3, 4016–4038. [Google Scholar] [CrossRef]
- Eger, A.M.; Marzinelli, E.M.; Beas-Luna, R.; Blain, C.O.; Blamey, L.K.; Byrnes, J.E.K.; Carnell, P.E.; Choi, C.G.; Hessing-Lewis, M.; Kim, K.Y.; et al. The Value of Ecosystem Services in Global Marine Kelp Forests. Nat. Commun. 2023, 14, 1894. [Google Scholar] [CrossRef]
- Campbell, A.H.; Marzinelli, E.M.; Vergés, A.; Coleman, M.A.; Steinberg, P.D. Towards Restoration of Missing Underwater Forests. PLoS ONE 2014, 9, e84106. [Google Scholar] [CrossRef] [PubMed]
- Araújo, R.M.; Assis, J.; Aguillar, R.; Airoldi, L.; Bárbara, I.; Bartsch, I.; Bekkby, T.; Christie, H.; Davoult, D.; Derrien-Courtel, S.; et al. Status, Trends and Drivers of Kelp Forests in Europe: An Expert Assessment. Biodivers. Conserv. 2016, 25, 1319–1348. [Google Scholar] [CrossRef]
- Krumhansl, K.A.; Okamoto, D.K.; Rassweiler, A.; Novak, M.; Bolton, J.J.; Cavanaugh, K.C.; Connell, S.D.; Johnson, C.R.; Konar, B.; Ling, S.D.; et al. Global Patterns of Kelp Forest Change over the Past Half-Century. Proc. Natl. Acad. Sci. USA 2016, 113, 13785–13790. [Google Scholar] [CrossRef] [PubMed]
- Filbee-Dexter, K.; Wernberg, T. Rise of Turfs: A New Battlefront for Globally Declining Kelp Forests. Bioscience 2018, 68, 64–76. [Google Scholar] [CrossRef]
- Martínez, B.; Radford, B.; Thomsen, M.S.; Connell, S.D.; Carreño, F.; Bradshaw, C.J.A.; Fordham, D.A.; Russell, B.D.; Gurgel, C.F.D.; Wernberg, T. Distribution Models Predict Large Contractions of Habitat-Forming Seaweeds in Response to Ocean Warming. Divers. Distrib. 2018, 24, 1350–1366. [Google Scholar] [CrossRef]
- Duarte, C.M.; Agusti, S.; Barbier, E.; Britten, G.L.; Castilla, J.C.; Gattuso, J.-P.; Fulweiler, R.W.; Hughes, T.P.; Knowlton, N.; Lovelock, C.E.; et al. Rebuilding Marine Life. Nature 2020, 580, 39–51. [Google Scholar] [CrossRef]
- European Parliament and the Council. European Commission Regulation of the European Parliament and of the Council on Nature Restoration and Amending Regulation (EU) 2022/869; PE-CONS 74/23; European Parliament and the Council: Brussels, Belgium, 2024. [Google Scholar]
- Alsuwaiyan, N.A.; Filbee-Dexter, K.; Vranken, S.; Burkholz, C.; Cambridge, M.; Coleman, M.A.; Wernberg, T. Green Gravel as a Vector of Dispersal for Kelp Restoration. Front. Mar. Sci. 2022, 9, 910417. [Google Scholar] [CrossRef]
- Eger, A.M.; Vergés, A.; Choi, C.G.; Christie, H.; Coleman, M.A.; Fagerli, C.W.; Fujita, D.; Hasegawa, M.; Kim, J.H.; Mayer-Pinto, M.; et al. Financial and Institutional Support Are Important for Large-Scale Kelp Forest Restoration. Front. Mar. Sci. 2020, 7, 535277. [Google Scholar] [CrossRef]
- Verdura, J.; Sales, M.; Ballesteros, E.; Cefalì, M.E.; Cebrian, E. Restoration of a Canopy-Forming Alga Based on Recruitment Enhancement: Methods and Long-Term Success Assessment. Front. Plant Sci. 2018, 9, 416710. [Google Scholar] [CrossRef]
- Wood, G.V.; Filbee-Dexter, K.; Coleman, M.A.; Valckenaere, J.; Aguirre, J.D.; Bentley, P.M.; Carnell, P.; Dawkins, P.D.; Dykman, L.N.; Earp, H.S.; et al. Upscaling Marine Forest Restoration: Challenges, Solutions and Recommendations from the Green Gravel Action Group. Front. Mar. Sci. 2024, 11, 1364263. [Google Scholar] [CrossRef]
- Earp, H.S.; Smale, D.A.; Pérez-Matus, A.; Gouraguine, A.; Shaw, P.W.; Moore, P.J. A Quantitative Synthesis of Approaches, Biases, Successes, and Failures in Marine Forest Restoration, with Considerations for Future Work. Aquat. Conserv. Mar. Freshw. Ecosyst. 2022, 32, 1717–1731. [Google Scholar] [CrossRef]
- Fredriksen, S.; Filbee-Dexter, K.; Norderhaug, K.M.; Steen, H.; Bodvin, T.; Coleman, M.A.; Moy, F.; Wernberg, T. Green Gravel: A Novel Restoration Tool to Combat Kelp Forest Decline. Sci. Rep. 2020, 10, 3983. [Google Scholar] [CrossRef] [PubMed]
- Falace, A.; Kaleb, S.; De La Fuente, G.; Asnaghi, V.; Chiantore, M. Ex Situ Cultivation Protocol for Cystoseira amentacea var. stricta (Fucales, Phaeophyceae) from a Restoration Perspective. PLoS ONE 2018, 13, e0193011. [Google Scholar] [CrossRef] [PubMed]
- Vanderklift, M.A.; Doropoulos, C.; Gorman, D.; Leal, I.; Minne, A.J.P.; Statton, J.; Steven, A.D.L.; Wernberg, T. Using Propagules to Restore Coastal Marine Ecosystems. Front. Mar. Sci. 2020, 7, 565403. [Google Scholar] [CrossRef]
- Earp, H.S.; Smale, D.A.; Catherall, H.J.N.; Moore, P.J. An Assessment of the Utility of Green Gravel as a Kelp Restoration Tool in Wave-Exposed Intertidal Habitats. J. Mar. Biol. Assoc. UK 2024, 104, e28. [Google Scholar] [CrossRef]
- Wernberg, T.; Thomsen, M.S.; Baum, J.K.; Bishop, M.J.; Bruno, J.F.; Coleman, M.A.; Filbee-Dexter, K.; Gagnon, K.; He, Q.; Murdiyarso, D.; et al. Impacts of Climate Change on Marine Foundation Species. Ann. Rev. Mar. Sci. 2024, 16, 247–282. [Google Scholar] [CrossRef]
- Shears, N.T.; Babcock, R.C. Marine Reserves Demonstrate Top-down Control of Community Structure on Temperate Reefs. Oecologia 2002, 132, 131–142. [Google Scholar] [CrossRef]
- Azevedo, J.; Franco, J.N.; Vale, C.G.; Lemos, M.F.L.; Arenas, F. Rapid Tropicalization Evidence of Subtidal Seaweed Assemblages along a Coastal Transitional Zone. Sci. Rep. 2023, 13, 11720. [Google Scholar] [CrossRef]
- Pereira, T.R.; Engelen, A.H.; Pearson, G.A.; Valero, M.; Serrão, E.A. Population Dynamics of Temperate Kelp Forests near Their Low-Latitude Limit. Aquat. Bot. 2017, 139, 8–18. [Google Scholar] [CrossRef]
- Pereira, T.R.; Azevedo, I.C.; Oliveira, P.; Silva, D.M.; Sousa-Pinto, I. Life History Traits of Laminaria ochroleuca in Portugal: The Range-Center of Its Geographical Distribution. Aquat. Bot. 2019, 152, 1–9. [Google Scholar] [CrossRef]
- Biskup, S.; Bertocci, I.; Arenas, F.; Tuya, F. Functional Responses of Juvenile Kelps, Laminaria ochroleuca and Saccorhiza polyschides, to Increasing Temperatures. Aquat. Bot. 2014, 113, 117–122. [Google Scholar] [CrossRef]
- Fernández, C. The Retreat of Large Brown Seaweeds on the North Coast of Spain: The Case of Saccorhiza polyschides. Eur. J. Phycol. 2011, 46, 352–360. [Google Scholar] [CrossRef]
- Soares, C.; Švarc-Gajić, J.; Oliva-Teles, M.T.; Pinto, E.; Nastić, N.; Savić, S.; Almeida, A.; Delerue-Matos, C. Mineral Composition of Subcritical Water Extracts of Saccorhiza polyschides, a Brown Seaweed Used as Fertilizer in the North of Portugal. J. Mar. Sci. Eng. 2020, 8, 244. [Google Scholar] [CrossRef]
- Provasoli, L. Media and Prospects for the Cultivation of Marine Algae. In Cultures and Collections of Algae, Proceedings of the US-Japan Conference, Hakone, Japan, 12–15 September 1966; Japanese Society of Plant Physiology: Kyoto, Japan, 1968; pp. 63–75. [Google Scholar]
- Franco, J.N.; Arenas, F.; Sousa-Pinto, I.; de los Santos, C.B. Snapshot of Macroalgae and Fish Assemblages in Temperate Reefs in the Southern European Atlantic Ecoregion. Diversity 2020, 12, 26. [Google Scholar] [CrossRef]
- Henriques, S.; Pais, M.P.; Costa, M.J.; Cabral, H. Development of a Fish-Based Multimetric Index to Assess the Ecological Quality of Marine Habitats: The Marine Fish Community Index. Mar. Pollut. Bull. 2008, 56, 1913–1934. [Google Scholar] [CrossRef]
- Henriques, S.; Pais, M.P.; Costa, M.J.; Cabral, H.N. Seasonal Variability of Rocky Reef Fish Assemblages: Detecting Functional and Structural Changes Due to Fishing Effects. J. Sea Res. 2013, 79, 50–59. [Google Scholar] [CrossRef]
- Sala, E.; Zabala, M. Fish Predation and the Structure of the Sea Urchin Paracentrotus lividus Populations in the NW Mediterranean. Mar. Ecol. Prog. Ser. 1996, 140, 71–81. [Google Scholar] [CrossRef]
- Horta, M.; Costa, M.J.; Cabral, H. Spatial and Trophic Niche Overlap between Diplodus bellottii and Diplodus vulgaris in the Tagus Estuary, Portugal. J. Mar. Biol. Assoc. UK 2004, 84, 837–842. [Google Scholar] [CrossRef]
- Walbridge, S.; Slocum, N.; Pobuda, M.; Wright, D.J. Unified Geomorphological Analysis Workflows with Benthic Terrain Modeler. Geosciences 2018, 8, 94. [Google Scholar] [CrossRef]
- Acker, J.G.; Leptoukh, G. Online Analysis Enhances Use of NASA Earth Science Data. EOS Trans. Am. Geophys. Union 2007, 88, 14–17. [Google Scholar] [CrossRef]
- Chemello, S.; Pinto, I.S.; Pereira, T.R. Optimising Kelp Cultivation to Scale up Habitat Restoration Efforts: Effect of Light Intensity on “Green Gravel” Production. Hydrobiology 2023, 2, 347–353. [Google Scholar] [CrossRef]
- Boudouresque, C.F.; Verlaque, M. Ecology of Paracentrotus lividus. In Developments in Aquaculture and Fisheries Science; Elsevier: Amsterdam, The Netherlands, 2001; Volume 32, pp. 177–216. [Google Scholar] [CrossRef]
- Boudouresque, C.F.; Verlaque, M. Paracentrotus lividus. In Developments in Aquaculture and Fisheries Science; Elsevier: Amsterdam, The Netherlands, 2020; Volume 43, pp. 447–485. [Google Scholar]
- Guillou, M.; Grall, J.; Connan, S. Can Low Sea Urchin Densities Control Macro-Epiphytic Biomass in a North-East Atlantic Maerl Bed Ecosystem (Bay of Brest, Brittany, France)? J. Mar. Biol. Assoc. UK 2002, 82, 867–876. [Google Scholar] [CrossRef]
- Tsirintanis, K.; Sini, M.; Doumas, O.; Trygonis, V.; Katsanevakis, S. Assessment of Grazing Effects on Phytobenthic Community Structure at Shallow Rocky Reefs: An Experimental Field Study in the North Aegean Sea. J. Exp. Mar. Biol. Ecol. 2018, 503, 31–40. [Google Scholar] [CrossRef]
- Vasco-Rodrigues, N.; Mendes, S.; Franco, J.; Castanheira, M.F.; Castro, N.; Maranhão, P. Fish Diversity in the Berlengas Natural Reserve (Portugal), a Marine Protected Area. Ecologia 2011, 3, 35–43. [Google Scholar]
- Barrientos, S.; Piñeiro-Corbeira, C.; Barreiro, R. Temperate Kelp Forest Collapse by Fish Herbivory: A Detailed Demographic Study. Front. Mar. Sci. 2022, 9, 817021. [Google Scholar] [CrossRef]
- Vergés, A.; Doropoulos, C.; Malcolm, H.A.; Skye, M.; Garcia-Pizá, M.; Marzinelli, E.M.; Campbell, A.H.; Ballesteros, E.; Hoey, A.S.; Vila-Concejo, A.; et al. Long-Term Empirical Evidence of Ocean Warming Leading to Tropicalization of Fish Communities, Increased Herbivory, and Loss of Kelp. Proc. Natl. Acad. Sci. USA 2016, 113, 13791–13796. [Google Scholar] [CrossRef]
- Franco, J.N.; Tuya, F.; Bertocci, I.; Rodríguez, L.; Martínez, B.; Sousa-Pinto, I.; Arenas, F. The ‘Golden Kelp’ Laminaria ochroleuca under Global Change: Integrating Multiple Eco-physiological Responses with Species Distribution Models. J. Ecol. 2018, 106, 47–58. [Google Scholar] [CrossRef]
- Eger, A.M.; Marzinelli, E.M.; Christie, H.; Fagerli, C.W.; Fujita, D.; Gonzalez, A.P.; Hong, S.W.; Kim, J.H.; Lee, L.C.; McHugh, T.A.; et al. Global Kelp Forest Restoration: Past Lessons, Present Status, and Future Directions. Biol. Rev. 2022, 97, 1449–1475. [Google Scholar] [CrossRef]
- Silva, C.O.; Lemos, M.F.L.; Gaspar, R.; Gonçalves, C.; Neto, J.M. The Effects of the Invasive Seaweed Asparagopsis armata on Native Rock Pool Communities: Evidences from Experimental Exclusion. Ecol. Indic. 2021, 125, 107463. [Google Scholar] [CrossRef]
- Ponte, J.M.S.; Seca, A.M.L.; Barreto, M.C. Asparagopsis Genus: What We Really Know About Its Biological Activities and Chemical Composition. Molecules 2022, 27, 1787. [Google Scholar] [CrossRef] [PubMed]
- Carney, L.; Waaland, J.; Klinger, T.; Ewing, K. Restoration of the Bull Kelp Nereocystis luetkeana in Nearshore Rocky Habitats. Mar. Ecol. Prog. Ser. 2005, 302, 49–61. [Google Scholar] [CrossRef]
- Duggins, D.; Eckman, J.; Siddon, C.; Klinger, T. Interactive Roles of Mesograzers and Current Flow in Survival of Kelps. Mar. Ecol. Prog. Ser. 2001, 223, 143–155. [Google Scholar] [CrossRef]
- Taylor, D.I.; Schiel, D.R. Algal Populations Controlled by Fish Herbivory across a Wave Exposure Gradient on Southern Temperate Shores. Ecology 2010, 91, 201–211. [Google Scholar] [CrossRef]
- Franco, J.; Wernberg, T.; Bertocci, I.; Duarte, P.; Jacinto, D.; Vasco-Rodrigues, N.; Tuya, F. Herbivory Drives Kelp Recruits into ‘Hiding’ in a Warm Ocean Climate. Mar. Ecol. Prog. Ser. 2015, 536, 1–9. [Google Scholar] [CrossRef]
- Morris, R.L.; Hale, R.; Strain, E.M.A.; Reeves, S.E.; Vergés, A.; Marzinelli, E.M.; Layton, C.; Shelamoff, V.; Graham, T.D.J.; Chevalier, M.; et al. Key Principles for Managing Recovery of Kelp Forests through Restoration. Bioscience 2020, 70, 688–698. [Google Scholar] [CrossRef]
- Hambäck, P.A.; Englund, G. Patch Area, Population Density and the Scaling of Migration Rates: The Resource Concentration Hypothesis Revisited. Ecol. Lett. 2005, 8, 1057–1065. [Google Scholar] [CrossRef]
- Eger, A.M.; Aguirre, J.D.; Altamirano, M.; Arafeh-Dalmau, N.; Arroyo, N.L.; Bauer-Civiello, A.M.; Beas-Luna, R.; Bekkby, T.; Bennett, S.; Bernal, B.; et al. The Kelp Forest Challenge: A Collaborative Global Movement to Protect and Restore 4 Million Hectares of Kelp Forests. J. Appl. Phycol. 2024, 36, 951–964. [Google Scholar] [CrossRef]
- Layton, C.; Shelamoff, V.; Cameron, M.J.; Tatsumi, M.; Wright, J.T.; Johnson, C.R. Resilience and Stability of Kelp Forests: The Importance of Patch Dynamics and Environment-Engineer Feedbacks. PLoS ONE 2019, 14, e0210220. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, A.F.S.; Sanchéz-Gallego, Á.; Correia, R.R.; Sousa-Pinto, I.; Chemello, S.; Louro, I.; Lemos, M.F.L.; Franco, J.N. Assessing Atlantic Kelp Forest Restoration Efforts in Southern Europe. Sustainability 2024, 16, 9176. https://doi.org/10.3390/su16219176
Marques AFS, Sanchéz-Gallego Á, Correia RR, Sousa-Pinto I, Chemello S, Louro I, Lemos MFL, Franco JN. Assessing Atlantic Kelp Forest Restoration Efforts in Southern Europe. Sustainability. 2024; 16(21):9176. https://doi.org/10.3390/su16219176
Chicago/Turabian StyleMarques, Alexandre F. S., Álvaro Sanchéz-Gallego, Rodrigo R. Correia, Isabel Sousa-Pinto, Silvia Chemello, Inês Louro, Marco F. L. Lemos, and João N. Franco. 2024. "Assessing Atlantic Kelp Forest Restoration Efforts in Southern Europe" Sustainability 16, no. 21: 9176. https://doi.org/10.3390/su16219176
APA StyleMarques, A. F. S., Sanchéz-Gallego, Á., Correia, R. R., Sousa-Pinto, I., Chemello, S., Louro, I., Lemos, M. F. L., & Franco, J. N. (2024). Assessing Atlantic Kelp Forest Restoration Efforts in Southern Europe. Sustainability, 16(21), 9176. https://doi.org/10.3390/su16219176