Sensitivity Analysis Study of Engine Control Parameters on Sustainable Engine Performance
<p>Schematic diagram of the engine stand.</p> "> Figure 2
<p>Schematic digamma of SVM.</p> "> Figure 3
<p>Comparison of training and test data for NOx and CO in SVMs.</p> "> Figure 4
<p>Input parameter impact weights for the ID.</p> "> Figure 5
<p>HC impact weighting analysis.</p> "> Figure 6
<p>Weighting of the impact of each parameter on the indicator parameter.</p> ">
Abstract
:1. Introduction
2. Experimental Parts
2.1. Engine Test Stand
2.2. Test Fuel and Test Methods
3. Data Processing Methods
3.1. Modeling Based on SVM
3.2. Sobol’s Sensitivity Analysis Methods
4. Results and Analysis
4.1. Modeling Results
4.2. Sensitivity Analysis
5. Conclusions
- (1)
- A hierarchical SVM regression model is developed in this paper for the problem of oil–engine synergy performance improvement. Bringing in the feature data yields R2 > 0.9, MSE < 0.014, and MAPE < 3.5%, indicating that the model has high accuracy. On this basis, a sensitivity analysis was performed in conjunction with the Sobol sensitivity analysis algorithm. The method, which can effectively establish the correlation and sensitivity between parameters and performance under the condition of a small amount of characteristic data, provides a reference and basis for parameter selection and program optimization.
- (2)
- This paper proposes to take the diesel engine mixture formation and combustion process as the entry point to characterize the performance and construct a feature data matrix. The matrix covers physical and chemical properties characterizing fuel ignition, volatility, and engine control parameters. The modeling results show that there is a strong correlation and sensitivity between the constructed feature data matrix and all the performance indicators.
- (3)
- In this paper, the model validation is carried out for the same type of engine with different rotational speeds, and the results show a high degree of consistency between the experimental data patterns and sensitivities shown in the experiments and the data patterns and sensitivities predicted by the model, which fully proves that the model established in this paper is usable and can generalize.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Najafi, G.; Ghobadian, B.; Moosavian, A.; Yusaf, T.; Mamat, R.; Kettner, M.; Azmi, W.H. SVM and ANFIS for prediction of performance and exhaust emissions of a SI engine with gasoline–ethanol blended fuels. Appl. Therm. Eng 2016, 95, 186–203. [Google Scholar]
- Niu, X.; Yang, C.; Wang, H.; Wang, Y. Investigation of ANN and SVM based on limited samples for performance and emissions prediction of a CRDI-assisted marine diesel engine. Appl. Therm. Eng. 2017, 111, 1353–1364. [Google Scholar] [CrossRef]
- Bukkarapu, K.R.; Krishnasamy, A. Support vector regression approach to optimize the biodiesel composition for improved engine performance and lower exhaust emissions. Fuel 2023, 348, 128604. [Google Scholar]
- Shi, C.; Ji, C.; Wang, H.; Wang, S.; Yang, J.; Ge, Y. Comparative evaluation of intelligent regression algorithms for performance and emissions prediction of a hydrogen-enriched Wankel engine. Fuel 2021, 290, 120005. [Google Scholar]
- Huang, Y.; Ma, F. Intelligent regression algorithm study based on performance and NOx emission experimental data of a hydrogen enriched natural gas engine. Int. J. Engine Res. 2016, 41, 11308–11320. [Google Scholar]
- Duan, H.; Huang, Y.; Mehra, R.K.; Song, P.; Ma, F. Study on influencing factors of prediction accuracy of support vector machine (SVM) model for NOx emission of a hydrogen enriched compressed natural gas engine. Fuel 2018, 234, 954–964. [Google Scholar]
- Hao, D.; Mehra, R.K.; Luo, S.; Nie, Z.; Ren, X.; Fanhua, M. Experimental study of hydrogen enriched compressed natural gas (HCNG) engine and application of support vector machine (SVM) on prediction of engine performance at specific condition. Int. J. Engine Res. 2020, 45, 5309–5325. [Google Scholar] [CrossRef]
- Ebert, N.; Goos, J.C.; Kirschbaum, F.; Yildiz, E.; Koch, T. Methods of sensitivity analysis in model-based calibration. Automot. Engine Technol. 2020, 5, 45–56. [Google Scholar]
- Sobol, I.M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 2001, 55, 271–280. [Google Scholar]
- Sharifi, A.; Ahmadi, M.; Badfar, H.; Hosseini, M. Modeling and sensitivity analysis of NOx emissions and mechanical efficiency for diesel engine. Environ. Sci. Pollut. Res 2019, 26, 25190–25207. [Google Scholar]
- Pei, Y.; Shan, R.; Som, S.; Lu, T.; Longman, D.; Davis, M.J. Global Sensitivity Analysis of a Diesel Engine Simulation with Multi-Target Functions; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2014. [Google Scholar]
- Iooss, B.; Lemaître, P. A review on global sensitivity analysis methods. In Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications; Springer: Berlin/Heidelberg, Germany, 2015; pp. 101–122. [Google Scholar]
- Gülmez, Y.; Özmen, G. Effect of exhaust backpressure on performance of a diesel engine: Neural network based sensitivity analysis. Int. J. Automot. Technol. 2022, 23, 215–223. [Google Scholar] [CrossRef]
- Nikzadfar, K.; Shamekhi, A.H. Investigating the relative contribution of operational parameters on performance and emissions of a common-rail diesel engine using neural network. Fuel 2014, 125, 116–128. [Google Scholar] [CrossRef]
- Ma, K.; Du, J.; Liu, Y. Nonlinear dynamic behavior analysis of closed-loop self-excited crankshaft model using improved Newmark-β method. Nonlinear Dyn. 2023, 111, 5107–5124. [Google Scholar] [CrossRef]
- Navid, A.; Khalilarya, S.; Abbasi, M. Diesel engine optimization with multi-objective performance characteristics by non-evolutionary Nelder-Mead algorithm: Sobol sequence and Latin hypercube sampling methods comparison in DoE process. Fuel 2018, 228, 349–367. [Google Scholar] [CrossRef]
- De Carvalho, R.N.; Machado, G.B.; Colaço, M.J. Estimating gasoline performance in internal combustion engines with simulation metamodels. Fuel 2017, 193, 230–240. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Chen, X.; Yan, Y.; Yang, R.; Liu, Z.; Fu, J. The prediction of spark-ignition engine performance and emissions based on the SVR algorithm. Processes 2022, 10, 312. [Google Scholar] [CrossRef]
- Ly, H.B.; Le, L.M.; Duong, H.T.; Nguyen, T.C.; Pham, T.A.; Le, T.T.; Le, V.M.; Nguyen-Ngoc, L.; Pham, B.T. Hybrid artificial intelligence approaches for predicting critical buckling load of structural members under compression considering the influence of initial geometric imperfections. Appl. Sci. 2019, 9, 2258. [Google Scholar] [CrossRef]
- Gordon, D.; Norouzi, A.; Blomeyer, G.; Bedei, J.; Aliramezani, M.; Andert, J.; Koch, C.R. Support vector machine based emissions modeling using particle swarm optimization for homogeneous charge compression ignition engine. Int. J. Eng. Res. 2023, 24, 536–551. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhu, L.; Wang, Y.; Filev, D.; Yao, X. Internal combustion engine calibration using optimization algorithms. Appl. Energy 2022, 305, 117894. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, L.; Zhao, S.; Liu, Q.; Luo, F.; Wu, H. Effect of Cetane-Coupled Pilot Injection Parameters on Diesel Engine Combustion and Emissions. ACS Omega 2022, 7, 46550–46563. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, J.; Xie, G.; Wang, S.; Ye, Y.; Huang, G.; Tan, D. Effect of assisted hydrogen on combustion and emission characteristics of a diesel engine fueled with biodiesel. Energy 2022, 254, 124269. [Google Scholar] [CrossRef]
- Loo, D.L.; Teoh, Y.H.; How, H.G.; Teh, J.S.; Andrei, L.C.; Starčević, S.; Sher, F. Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review. Sustainability 2021, 13, 9677. [Google Scholar] [CrossRef]
- Wu, H.; Xie, F.; Han, Y.; Zhang, Q.; Li, Y. Effect of cetane coupled injection parameters on diesel engine combustion and emissions. Fuel 2022, 319, 123714. [Google Scholar] [CrossRef]
- Wu, H.; Xie, F.; Han, Y. Effect of cetane coupled with various engine conditions on diesel engine combustion and emission. Fuel 2022, 322, 124164. [Google Scholar] [CrossRef]
- Kim, S.Y.; Han, J.E.; Sohn, Y.S. Demand Forecasting for Heavy-Duty Diesel Engines Considering Emission Regulations. Sustainability 2017, 9, 166. [Google Scholar] [CrossRef]
- Alptekin, E. Emission, injection and combustion characteristics of biodiesel and oxygenated fuel blends in a common rail diesel engine. Energy 2017, 119, 44–52. [Google Scholar] [CrossRef]
- Teoh, Y.H.; How, H.G.; Sher, F.; Le, T.D.; Nguyen, H.T.; Yaqoob, H. Fuel Injection Responses and Particulate Emissions of a CRDI Engine Fueled with Cocos nucifera Biodiesel. Sustainability 2021, 13, 4930. [Google Scholar] [CrossRef]
- Ge, J.C.; Kim, J.Y.; Yoo, B.O.; Song, J.H. Effects of Engine Load and Ternary Mixture on Combustion and Emissions from a Diesel Engine Using Later Injection Timing. Sustainability 2023, 15, 1391. [Google Scholar] [CrossRef]
- Bao, J.; Qu, P.; Wang, H.; Zhou, C.; Zhang, L.; Shi, C. Implementation of various bowl designs in an HPDI natural gas engine focused on performance and pollutant emissions. Chemosphere 2022, 303, 135275. [Google Scholar] [CrossRef]
- Bao, J.; Wang, H.; Wang, R.; Wang, Q.; Di, L.; Shi, C. Comparative experimental study on macroscopic spray characteristics of various oxygenated diesel fuels. Energy Sci. Eng. 2023, 11, 1579–1588. [Google Scholar] [CrossRef]
- Shi, C.; Chai, S.; Wang, H.; Ji, C.; Ge, Y.; Di, L. An insight into direct water injection applied on the hydrogen-enriched rotary engine. Fuel 2023, 339, 127352. [Google Scholar] [CrossRef]
Property | Resolution | Uncertainty |
---|---|---|
Dynamometer (speed measurement) | 1 rpm | ±0.3% |
Dynamometer (torque measurement) | 0.01 N·m | ±0.2% |
CO measurement | 0.01 ppm | ±0.3% |
HC measurement | 2 ppm | <0.2% |
NOx measurement | 1 ppm | <0.2% |
Fuel Properties | CN = 51 | 53.9 | 55.3 | 57.4 | 59.3 | #1 | #2 | #3 |
---|---|---|---|---|---|---|---|---|
Calorific value (MJ/kg) | 42.96 | 42.92 | 42.99 | 42.95 | 43.01 | 42.94 | 42.95 | 42.95 |
Density (kg/m3) | 820.9 | 817.8 | 818.8 | 823.6 | 825.6 | 818.8 | 819.3 | 820.6 |
Initial distillation Temperature (°C) | 131.5 | 144.3 | 143.2 | 179.2 | 143.6 | 145.1 | 143.5 | 143.2 |
50% distillation temperature (°C) | 256.5 | 244.3 | 234.6 | 266.1 | 282.7 | 244.4 | 234.8 | 259.6 |
90% distillation temperature (°C) | 335.5 | 300.1 | 338.6 | 328.3 | 341.5 | 342.6 | 339.4 | 360.3 |
95% distillation temperature (°C) | 356.6 | 342.6 | 359.1 | 349.8 | 361.9 | 350.8 | 360.2 | 362.7 |
Sulfur content (mg/kg) | 3.8 | 2.4 | 3.8 | 3.5 | 4.4 | 3.7 | 3.9 | 4.1 |
Cyclic aromatic hydrocarbon content (%) | 18.4 | 15.2 | 21.2 | 14.5 | 19.3 | 22.4 | 20.7 | 14.9 |
Alkane content (%) | 47.6 | 50.2 | 47.3 | 35.8 | 43.9 | 46.1 | 47.9 | 37.8 |
Indicators | Parameter | Training | Test |
---|---|---|---|
R2 | ID | 0.9765 | 0.9573 |
CD | 0.9178 | 0.9327 | |
Combustion Temperature | 0.9522 | 0.9109 | |
Premix ratio | 0.9023 | 0.9185 | |
MSE | ID | 0.0074 | 0.0108 |
CD | 0.0105 | 0.0128 | |
Combustion Temperature | 0.0095 | 0.0110 | |
Premix ratio | 0.0105 | 0.0125 | |
MAPE% | ID | 2.7764 | 2.4683 |
CD | 2.4921 | 2.2347 | |
Combustion Temperature | 1.5572 | 1.3292 | |
Premix ratio | 1.6875 | 1.8523 |
Indicators | Parameter | Training | Test |
---|---|---|---|
R2 | BSFC | 0.9676 | 0.9446 |
BTE | 0.9235 | 0.9215 | |
HC | 0.9765 | 0.9573 | |
NOx | 0.9691 | 0.9535 | |
Amount of PM | 0.9536 | 0.9705 | |
PM mass | 0.9384 | 0.9271 | |
MSE | BSFC | 0.0098 | 0.0133 |
BTE | 0.0115 | 0.0135 | |
HC | 0.0074 | 0.0118 | |
NOx | 0.0102 | 0.0116 | |
Amount of PM | 0.0011 | 0.0015 | |
PM mass | 0.0126 | 0.0127 | |
MAPE% | BSFC | 2.5930 | 2.8230 |
BTE | 1.7573 | 2.1259 | |
HC | 2.1257 | 3.0576 | |
NOx | 2.9576 | 3.2573 | |
Amount of PM | 3.0324 | 3.1153 | |
PM mass | 3.3482 | 3.4638 |
Combustion Parameters | Input Parameters | S | ST |
---|---|---|---|
ID | injection pressure | 0.12 | 0.14 |
injection timing | 0.15 | 0.16 | |
pre-injection ratio | 0.09 | 0.12 | |
pre-injection timing | 0.10 | 0.11 | |
EGR | 0.20 | 0.22 | |
load | 0.25 | 0.27 | |
CN | 0.06 | 0.08 | |
volatility | 0.03 | 0.05 | |
CD | injection pressure | 0.11 | 0.13 |
injection timing | 0.18 | 0.20 | |
pre-injection ratio | 0.09 | 0.11 | |
pre-injection timing | 0.08 | 0.10 | |
EGR | 0.21 | 0.24 | |
load | 0.24 | 0.26 | |
CN | 0.06 | 0.08 | |
volatility | 0.03 | 0.04 | |
Combustion Temperature | injection pressure | 0.12 | 0.14 |
injection timing | 0.17 | 0.19 | |
pre-injection ratio | 0.07 | 0.08 | |
pre-injection timing | 0.09 | 0.11 | |
EGR | 0.19 | 0.21 | |
load | 0.28 | 0.30 | |
CN | 0.05 | 0.06 | |
volatility | 0.03 | 0.04 | |
Premix ratio | injection pressure | 0.09 | 0.11 |
injection timing | 0.25 | 0.27 | |
pre-injection ratio | 0.08 | 0.10 | |
pre-injection timing | 0.07 | 0.09 | |
EGR | 0.21 | 0.23 | |
load | 0.22 | 0.24 | |
CN | 0.04 | 0.06 | |
volatility | 0.02 | 0.04 |
Indicator | Input Parameters | S | ST |
---|---|---|---|
HC | ID | 0.35 | 0.37 |
CD | 0.30 | 0.31 | |
Combustion temperature | 0.20 | 0.21 | |
Premix ratio | 0.15 | 0.16 | |
CO | ID | 0.37 | 0.38 |
CD | 0.26 | 0.28 | |
Combustion temperature | 0.21 | 0.22 | |
Premix ratio | 0.16 | 0.17 | |
NOx | ID | 0.18 | 0.20 |
CD | 0.21 | 0.23 | |
Combustion temperature | 0.36 | 0.38 | |
Premix ratio | 0.25 | 0.26 | |
Amount of PM | ID | 0.18 | 0.20 |
CD | 0.21 | 0.22 | |
Combustion temperature | 0.36 | 0.38 | |
Premix ratio | 0.25 | 0.26 | |
PM mass | ID | 0.17 | 0.18 |
CD | 0.21 | 0.23 | |
Combustion temperature | 0.39 | 0.41 | |
Premix ratio | 0.23 | 0.24 | |
BSFC | ID | 0.18 | 0.20 |
CD | 0.31 | 0.32 | |
Combustion temperature | 0.40 | 0.42 | |
Premix ratio | 0.11 | 0.13 | |
BTE | ID | 0.16 | 0.17 |
CD | 0.24 | 0.26 | |
Combustion temperature | 0.37 | 0.39 | |
Premix ratio | 0.23 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, B.; Hong, W.; Shao, K.; Wu, H. Sensitivity Analysis Study of Engine Control Parameters on Sustainable Engine Performance. Sustainability 2024, 16, 11107. https://doi.org/10.3390/su162411107
Huang B, Hong W, Shao K, Wu H. Sensitivity Analysis Study of Engine Control Parameters on Sustainable Engine Performance. Sustainability. 2024; 16(24):11107. https://doi.org/10.3390/su162411107
Chicago/Turabian StyleHuang, Bingfeng, Wei Hong, Kun Shao, and Heng Wu. 2024. "Sensitivity Analysis Study of Engine Control Parameters on Sustainable Engine Performance" Sustainability 16, no. 24: 11107. https://doi.org/10.3390/su162411107
APA StyleHuang, B., Hong, W., Shao, K., & Wu, H. (2024). Sensitivity Analysis Study of Engine Control Parameters on Sustainable Engine Performance. Sustainability, 16(24), 11107. https://doi.org/10.3390/su162411107