Update of the Interpretive Conceptual Model of Ladeira de Envendos Hyposaline Hydromineral System (Central Portugal): A Contribution to Its Sustainable Use
<p>The Amêndoa-Carvoeiro syncline (NE flank) and the tectonic structures (major faults) that control its division into three “inselbergs”: Serra da Moita da Asna (1), Serra da Amieirosa (2), and Serra das Águas Quentes (3). Photo by J.M. Marques (2020). Adapted from [<a href="#B9-sustainability-16-05179" class="html-bibr">9</a>].</p> "> Figure 2
<p>Simplified geological map of the region of the Ladeira de Envendos hydromineral system, showing the location of the spring (Vital 1) and bore hole (Vital 2 and Vital 3) natural mineral waters. (*) See text for details on these geological formations. Adapted from [<a href="#B12-sustainability-16-05179" class="html-bibr">12</a>].</p> "> Figure 3
<p>Example of the quartzite ridge in the Ladeira de Envendos region. Dashed line indicates the contact between the Armorican quartzite (1) and the Padrão-Silveira (2) geological formations. Photo by J. M. Marques (2019).</p> "> Figure 4
<p>Location and discharge altitudes of groundwater sampling sites. Adapted from [<a href="#B9-sustainability-16-05179" class="html-bibr">9</a>].</p> "> Figure 5
<p>Piper diagram of the Ladeira de Envendos natural mineral waters, where (red) Vital 1 spring, (green) Vital 2 borehole, and (blue) Vital 3 borehole are shown. Adapted from [<a href="#B9-sustainability-16-05179" class="html-bibr">9</a>].</p> "> Figure 6
<p>Temporal evolution (2010–2019) of total mineralization in the natural mineral waters of Ladeira de Envendos (Vital 1 spring, and Vital 2 and Vital 3 boreholes). Data from the Super Bock Group Enterprise.</p> "> Figure 7
<p>(<b>a</b>–<b>c</b>) Temporal evolution (2010–2019) (<b>a</b>) Cl<sup>−</sup>, (<b>b</b>) Na<sup>+</sup>, and (<b>c</b>) SiO<sub>2</sub> in the natural mineral waters of Ladeira de Envendos (Vital 1 spring, and Vital 2 and Vital 3 boreholes). Data from the Super Bock Group Enterprise.</p> "> Figure 8
<p>Projection of the isotopic composition of the natural mineral waters and “normal” groundwaters of the region under study on a δ<sup>2</sup>H-δ<sup>18</sup>O diagram. The lines represent the Global Meteoric Water Line G-MWL δ<sup>2</sup>H = 8 × δ<sup>18</sup>O + 10 [<a href="#B27-sustainability-16-05179" class="html-bibr">27</a>] and the Portugal Meteoric Water Line Portugal-MWL δ<sup>2</sup>H = 6.78 × δ<sup>18</sup>O + 4.45 [<a href="#B28-sustainability-16-05179" class="html-bibr">28</a>].</p> "> Figure 9
<p>Pourbaix diagram for the natural mineral waters of Ladeira de Envendos hydromineral system.</p> "> Figure 10
<p>Natural mineral water circulation paths ascribed to the Ladeira de Envendos hydromineral system. Limit of geomorphological units/inselbergs blocks (orange); preferential flow paths direction (cyan), natural mineral waters from Vital 1 spring, and Vital 2 and Vital 3 boreholes (blue). Adapted from [<a href="#B9-sustainability-16-05179" class="html-bibr">9</a>].</p> "> Figure 11
<p>Altitudes of the quartzite ridges that constitute the different “inselbergs” blocks in the region of the Ladeira de Envendos hydromineral system. (1) Block 1; (2) Block 2; (3) Block 3. Adapted from [<a href="#B9-sustainability-16-05179" class="html-bibr">9</a>]. The dashed line stands for the NW–SE transect outlined in <a href="#sustainability-16-05179-f012" class="html-fig">Figure 12</a>.</p> "> Figure 12
<p>Schematic representation of the updated conceptual hydrogeological circulation model of the Ladeira de Envendos hydromineral system (not to scale). F stands for the major fault systems. The diaclases system of the quartzite rocks and associated groundwater flow paths have been simplified, in order not to overload the schematic cross section, although the diaclases are affecting the whole entire inselbergs, either all over the surface or at depth. Adapted from [<a href="#B9-sustainability-16-05179" class="html-bibr">9</a>].</p> ">
Abstract
:1. Introduction
2. Regional Geological, Tectonic, Hydrogeological, and Climatological Framework
- -
- Brejo Fundeiro (middle Ordovician)—consisting of a high fossiliferous pelitic sequence intercalated with thin quartzite bands and siltstones;
- -
- Armorican quartzite (early Ordovician)—involving, from base to top, arkose conglomerates followed by a series of quartzite benches with a thickness between 0.3 and 1.5 m. Silt-arenitic strata and siltstones of small size intercalated with quartzites and pelites, with a thickness of about 80 m.
- -
- Padrão-Silveira (Schist-Greywacke complex–pre-Ordovician)—with great expression in the study region, outcropping around the Amêndoa-Carvoeiro synform. This geological formation consists of a succession of metagreywackes with metapelites of a few tens of meters.
3. Materials and Methods
4. Results
4.1. Physico-Chemical Signatures of the Waters
4.2. Chemical Geothermometers
4.3. Isotopic (δ2H, δ18O and 3H) Signatures of the Waters
5. Discussion
5.1. Physico-Chemical Signatures of the Waters
5.2. Chemical Geothermometers
- -
- TReservoir is the reservoir temperature provided by the chemical geothermometer (in °C);
- -
- Tair is the average annual air temperature for the region (in °C);
- -
- GG is the geothermal gradient of the region (in °C/km),
5.3. Isotopic (δ2H, δ18O and 3H) Signatures of the Waters
6. Contribution to the Update of the Conceptual Hydrogeological Circulation Model of the Ladeira de Envendos Hydromineral System
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lepierre, C. (1930/31) Chimie et physico-chimie des eaux. Port. Hydrol. Clim. 1930/31, 1, 75–106. [Google Scholar]
- APIAM. Águas Minerais Naturais e Águas de Nascente. Livro Branco, 1st ed.; APIAM: Lisboa, Portugal, 2015; pp. 12–62. (In Portuguese) [Google Scholar]
- Vieira da Silva, A.M.; Condesso Melo, M.T.; Marques da Silva, M.A. Modelo conceptual e caracterização hidrogeológica preliminar do sistema aquífero da Serra do Buçaco. In Proceedings of the Actas das Jornadas Luso-Espanholas sobre As Águas Subterrâneas no Noroeste da Península Ibérica, La Coruña, Espanha, 3–6 July 2000. (In Portuguese). [Google Scholar]
- Cortez, S. Águas Minerais Naturais e de Nascente da Região Centro, 1st ed.; Mare Liberum: Aveiro, Portugal, 2012; pp. 483–485. (In Portuguese) [Google Scholar]
- Madureira de Sousa, A.A. Estudo de Sistemas Hidrogeológicos no Norte e Centro de Portugal. MSc Thesis, Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências, Universidade do Porto, Porto, Portugal, 2015. [in Portuguese]. [Google Scholar]
- Almeida, A.M.; Dias, D.; Almeida, M.; Marques, J.M.; Antunes da Silva, M. Contribuição para o desenvolvimento do modelo conceptual de circulação da Água Mineral Natural de Castelo de Vide. In Proceedings of the 12th Seminário Sobre Águas Subterrâneas, Coimbra, Portugal, 7–8 March 2019. (In Portuguese). [Google Scholar]
- Henriques, F.F. Aquilégio Medicinal; Oficina da Música: Lisboa, Portugal, 1726; p. 48. (In Portuguese) [Google Scholar]
- Wang, L.; Xiao, Y.; Yang, H.; Zhang, Y.; Wang, S.; Qi, Z.; Han, J.; Hu, W.; Wang, J.; Hao, Q.; et al. Formation mechanism of high-altitude glacial mineral water in the Kunlun Mountains of Tibetan Plateau: Insights from isotopes and hydrochemistry. J. Hydrol. Reg. Stud. 2024, 53, 101789. [Google Scholar] [CrossRef]
- Caçador, P. Elaboração de um Modelo Interpretativo do Aquífero Hidromineral de Ladeira de Envendos. Master’s Thesis, Instituto Superior Técnico, Lisboa, Portugal, 2021. (In Portuguese). [Google Scholar]
- Romão, J.; Esperancinha, A. Carta geológica de Portugal-Folha 28-A Mação. Nota Explicativa, 1st ed.; Departamento de Geologia, Instituto Nacional de Engenharia, Tecnologia e Inovação: Lisboa, Portugal, 2006; pp. 1–77. [Google Scholar]
- Freeze, A.R.; Cherry, J.A. Groundwater; Englewood Cliffs: Prentice-Hall, NJ, USA, 1979; pp. 82–134. [Google Scholar]
- HM-27—Ladeira de Envendos. Available online: https://hidrogenoma.dgeg.gov.pt/agua-mineral-natural/ladeira-de-envendos (accessed on 13 November 2023).
- Cordovil, C.M.S.; Cruz, S.; Brito, A.G.; Cameira, M.R.; Poulsen, J.R.; Thodsen, H.; Kronvang, B. A simplified nitrogen assessment in Tagus River basin: A management focused review. Water 2018, 10, 406. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- IAEA. Training Course Series 35 Laser Spectroscopic Analysis of Liquid Water Samples for Stable Hydrogen and Oxygen Isotopes. Performance Testing and Procedures for Installing and Operating the LGR DT-100 Liquid Water Stable Analyser, 1st ed.; International Atomic Energy Agency: Vienna, Austria, 2009; pp. 1–27. [Google Scholar]
- IAEA. Procedure and Technique Critique for Tritium Enrichment by Electrolysis at IAEA Laboratory, 1st ed.; Technical Procedure nº19; International Atomic Energy Agency: Vienna, Austria, 1976; pp. 1–42. [Google Scholar]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution, 1st ed.; Balkema: Rotterdam, The Netherlands, 1993; pp. 1–168. [Google Scholar]
- IPMA. Available online: http://portaldoclima.pt/pt/ (accessed on 13 December 2020).
- Directive 2009/54/EC. Available online: http://data.europa.eu/eli/dir/2009/54/oj (accessed on 15 November 2023).
- Fournier, R.O. Chemical geothermometers and mixing models for geothermal systems. Geothermics 1977, 5, 41–50. [Google Scholar] [CrossRef]
- Truesdell, A.H. Summary of Section III. Geochemical techniques in exploration. In Proceedings of the Second United Nations Symposium on the Development and Use of Geothermal Resources, Lawrence Berkley Laboratory, University of California, San Francisco, CA, USA, 20–29 May 1975. [Google Scholar]
- Mook, W.G. Environmental Isotopes in the Hydrological Cycle: Principles and Applications, 1st ed.; IHP-V Technical Documents in Hydrology No. 39; UNESCO: Paris, France, 2000; Volume 1, pp. 89–142. [Google Scholar]
- Giggenbach, W.; Gonfiantini, R.; Jangi, B.L.; Truesdell, A.H. Isotopic and chemical composition of the Parbati Valley geothermal discharges, North-West Himalaya, India. Geothermics 1983, 12, 199–222. [Google Scholar] [CrossRef]
- Albu, M.; Banks, D.; Nash, H. Mineral and Thermal Groundwater Resources, 1st ed.; Chapman and Hall: London, UK, 1997; pp. 48–144. [Google Scholar]
- Aggarwal, P.K.; Froehlich, K.; Gonfiantini, R.; Gat, J.R. Isotope hydrology: A historical perspective from the IAEA. In Isotopes in the Water Cycle. Past, Present and Future of a Developing Science, 1st ed.; Aggarwal, P.K., Gat, J.R., Froehlich, K.F.O., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 3–8. [Google Scholar]
- Marques, J.M.; Carreira, P.M.; Aires-Barros, L.A.; Monteiro Santos, F.A.; Antunes da Silva, M.; Represas, P. Assessment of Chaves Low-Temperature CO2-Rich Geothermal System (N-Portugal) Using an Interdisciplinary Geosciences Approach. Geofluids Spec. Issue—Geotherm. Syst. Interdiscip. Approaches Eff. Explor. 2019, 2019, 1379093. [Google Scholar] [CrossRef]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Carreira, P.; Nunes, D.; Valério, P.; Araújo, M.F. A 15-year record of seasonal variation in the isotopic composition. J. Radioanal. Nucl. Chem. 2009, 281, 153–156. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed.; National Association of Corrosion Engineers: Houston, TX, USA, 1974. [Google Scholar]
- Afonso, M.J.; Chaminé, H.I.; Carvalho, J.M.; Marques, J.M.; Gomes, A.; Araújo, M.A.; Fonseca, P.E.; Teixeira, J.; Marques da Silva, M.A.; Rocha, F.T. Urban groundwater resources: A case study of Porto City in northwest Portugal. In Urban Groundwater: Meeting the Challenge. Chapter 20—Urban Aquifer Management. International Association of Hydrogeologists Selected Papers, 1st ed.; Howard, K.W.F., Ed.; Taylor & Francis Group: London, UK, 2006; Volume 8, pp. 271–287. [Google Scholar]
- Almeida, A.M.; Dias, D.; Almeida, M.; Marques, J.M.; Antunes da Silva, M. Modelo Conceptual de Circulação da Água Mineral Natural de Castelo de Vide; Relatório de Estágio, Instituto Superior Técnico/Super Bock Group: Lisboa, Portugal, 2019; Unpublished Report. (In Portuguese) [Google Scholar]
- IGM. Recursos Geotérmicos em Portugal Continental (Baixa Entalpia), 1st ed.; Instituto Geológico e Mineiro: Lisboa, Portugal, 1998; pp. 8–22. (In Portuguese) [Google Scholar]
- Carreira, P.M.; Araújo, M.F.; Nunes, D. Isotopic composition of rain and water vapour samples from Lisbon region: Characterization of monthly and daily events. In Isotopic Composition of Precipitation in the Mediterranean Basin in Relation to Air Circulation Patterns and Climate; Final report of a Coordinated Research Project; 2005; IAEA-TECDOC-1453; pp. 141–156. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/te_1453_web.pdf (accessed on 13 November 2023).
- Cruz-San Julian, J.; Araguás-Araguás, L.; Rozanski, K.; Benavente, J.; Cardenal, J.; Hidalgo, M.C.; Garcia-Lopez, S.; Martinez-Garrido, J.C.; Moral, F.; Olias, M. Sources of precipitation over South-Eastern Spain and groundwater recharge. An isotopic study. Tellus 1992, 44B, 226–236. [Google Scholar] [CrossRef]
- Natali, S.; Doveri, M.; Giannecchini, R.; Baneschi, I.; Zanchetta, G. Is the deuterium excess in precipitation a reliable tracer of moisture sources and water resources fate in the western Mediterranean? New insights from the Apuan Alps (Italy). J. Hydrol. 2022, 614, 128497. [Google Scholar] [CrossRef]
- Carreira, P.M.; Valério, P.; Nunes, D.; Araújo, M.F. Temporal and seasonal variations of stable isotopes (δ2H and δ18O) and tritium in precipitation over Portugal. Proceedings of the International Conference Isotopes in Environmental Studies. Aquatic Forum 2004. IAEA-CSP-26, 2006, (IAEA-CN-118/63), 370–373. Available online: https://www.iaea.org/publications/7404/isotopes-in-environmental-studies-aquatic-forum-2004 (accessed on 13 November 2023).
- Ben Ammar, S.; Taupin, J.-D.; Alaya, M.B.; Zouari, K.; Patris, N.; Khouatmia, M. Using geochemical and isotopic tracers to characterize groundwater dynamics and salinity sources in the Wadi Guenniche coastal plain in northern Tunisia. J. Arid. Environ. 2020, 178, 104150. [Google Scholar] [CrossRef]
- Moore, J.E. Field Hydrogeology: A Guide for Site Investigations and Report Preparation, 1st ed.; Lewis Publishers: New York, NY, USA, 2002; pp. 47–59. [Google Scholar]
- Sharp, J.M., Jr. Fractured aquifers/reservoirs: Approaches, problems, and opportunities. In Proceedings of the Mem. 24th Congress of IAH, Part 1, Oslo, Norway, 28 June–2 July 1993. [Google Scholar]
- Brassington, F.C. A proposed conceptual model for the genesis of the Derbyshire thermal springs. Q. J. Eng. Geol. Hydrogeol. 2007, 40, 35–46. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, Q.; Cui, Y.; Shao, J.; Xiao, Y.; Zhang, P.; Liu, J. Hydrogeochemistry and genesis analysis of thermal and mineral springs in Arxan, Northeastern China. Water 2017, 9, 61. [Google Scholar] [CrossRef]
1st Field Work Campaign | 2nd Field Work Campaign | |||||||
---|---|---|---|---|---|---|---|---|
Sampling Site | pH | EC (µS/cm) | T (°C) | Eh (mV) | pH | EC (µS/cm) | T (°C) | Eh (mV) |
Vital 1 * | 4.79 | 50.2 | 23.0 | 137.6 | 4.28 | 44.1 | 19.5 | 164.8 |
Bica da Estrada ** | 4.63 | 43.3 | 23.0 | 147.6 | 4.99 | 44.0 | 19.9 | 124.7 |
Vital 2 ** | 4.25 | 49.3 | 22.6 | 167.8 | 4.40 | 51.4 | 19.4 | 158.1 |
Vital 3 ** | 4.47 | 38.9 | 22.0 | 165.3 | 4.16 | 38.4 | 19.2 | 171.3 |
Cabroeira direita * | 5.73 | 43.0 | 22.2 | 83.4 | 5.54 | 44.1 | 17.0 | 92.7 |
Cabroeira esquerda * | 4.88 | 46.9 | 21.5 | 131.7 | 5.13 | 48.2 | 17.0 | 116.1 |
Charneira 1 * | 4.71 | 28.6 | 21.6 | 141.2 | 4.51 | 60.3 | 13.3 | 149.1 |
Charneira 2 * | 4.78 | 36.6 | 16.8 | 135.1 | 4.72 | 40.8 | 15.3 | 138.2 |
Pego da Rainha * | 4.37 | 38.4 | 20.7 | 160.1 | 4.39 | 43.7 | 17.8 | 158.6 |
Sampling Site | HCO3− | Cl− | SO42− | NO3− | Na+ | K+ | Ca2+ | Mg2+ | SiO2 |
---|---|---|---|---|---|---|---|---|---|
Vital 1 (n = 26) | 0.49 ± 0.43 | 7.25 ± 0.16 | 1.90 ± 0.11 | 1.51 ± 0.14 | 4.17 ± 0.09 | 0.35 ± 0.05 | 0.49 ± 0.07 | 0.74 ± 0.03 | 10.07 ± 0.48 |
Vital 2 (n = 26) | 0.53 ± 0.65 | 7.51 ± 0.15 | 3.03 ± 0.18 | 1.06 ± 0.10 | 4.43 ± 0.14 | 0.31 ± 0.05 | 0.45 ± 0.13 | 0.67 ± 0.04 | 9.07 ± 0.45 |
Vital 3 (n = 26) | 0.47 ± 0.42 | 6.60 ± 0.16 | 1.62 ± 0.09 | 1.23 ± 0.09 | 3.87 ± 0.07 | 0.19 ± 0.05 | 0.36 ± 0.10 | 0.56 ± 0.03 | 8.62 ± 0.48 |
Truesdell (1975) 1 | SiO2 (mg/L) | Reservoir Temperature (°C) | Circulation Depth (km) |
---|---|---|---|
Vital 1 | 10.07 | 39.8 | 0.78 |
Vital 2 | 9.07 | 36.5 | 0.68 |
Vital 3 | 8.62 | 34.9 | 0.63 |
Sampling Site | 1st Field Work Campaign | 2nd Field Work Campaign | ||||
---|---|---|---|---|---|---|
δ18O | δ2H | d | δ18O | δ2H | d | |
Vital 1 * | −5.82 | −30.2 | 16.36 | −5.62 | −31.6 | 13.36 |
Bica da Estrada * | −5.88 | −30.1 | 16.94 | −5.50 | −30.7 | 13.30 |
Vital 2 ** | −5.70 | −31.7 | 13.90 | −5.59 | −30.7 | 14.02 |
Vital 3 ** | −5.67 | −29.5 | 15.86 | −5.95 | −31.9 | 15.70 |
Cabroeira direita * | −5.56 | −31.2 | 13.28 | −5.85 | −30.8 | 16.00 |
Cabroeira esquerda * | −5.53 | −30.0 | 14.24 | −5.88 | −30.0 | 17.04 |
Charneira 1 * | −4.90 | −27.4 | 11.80 | −4.88 | −24.7 | 14.34 |
Charneira 2 * | −5.43 | −30.1 | 13.34 | −5.65 | −29.2 | 16.00 |
Pego da Rainha * | −5.45 | −30.6 | 13.00 | −5.32 | −29.9 | 12.66 |
Sampling Site | 1st Field Work Campaign | 2nd Field Work Campaign |
---|---|---|
3H | 3H | |
Vital 1 * | 1.10 | 1.07 |
Bica da Estrada * | 1.10 | 0.54 |
Vital 2 ** | 0.68 | 0.57 |
Vital 3 ** | 1.07 | n.d. |
Cabroeira direita * | 1.04 | 0.45 |
Cabroeira esquerda * | 0.37 | 0.47 |
Charneira 1 * | 0.51 | 1.47 |
Charneira 2 * | 0.72 | n.d. |
Pego da Rainha * | 0.78 | 1.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, J.M.; Carreira, P.M.; Caçador, P.; Antunes da Silva, M. Update of the Interpretive Conceptual Model of Ladeira de Envendos Hyposaline Hydromineral System (Central Portugal): A Contribution to Its Sustainable Use. Sustainability 2024, 16, 5179. https://doi.org/10.3390/su16125179
Marques JM, Carreira PM, Caçador P, Antunes da Silva M. Update of the Interpretive Conceptual Model of Ladeira de Envendos Hyposaline Hydromineral System (Central Portugal): A Contribution to Its Sustainable Use. Sustainability. 2024; 16(12):5179. https://doi.org/10.3390/su16125179
Chicago/Turabian StyleMarques, José M., Paula M. Carreira, Pedro Caçador, and Manuel Antunes da Silva. 2024. "Update of the Interpretive Conceptual Model of Ladeira de Envendos Hyposaline Hydromineral System (Central Portugal): A Contribution to Its Sustainable Use" Sustainability 16, no. 12: 5179. https://doi.org/10.3390/su16125179
APA StyleMarques, J. M., Carreira, P. M., Caçador, P., & Antunes da Silva, M. (2024). Update of the Interpretive Conceptual Model of Ladeira de Envendos Hyposaline Hydromineral System (Central Portugal): A Contribution to Its Sustainable Use. Sustainability, 16(12), 5179. https://doi.org/10.3390/su16125179