Known and Unknown Environmental Impacts Related to Climate Changes in Pakistan: An Under-Recognized Risk to Local Communities
<p>SDGs are the only approach to tackling climate change, modified from [<a href="#B7-sustainability-16-06108" class="html-bibr">7</a>].</p> "> Figure 2
<p>(<b>a</b>) Map showing climate and hunger vulnerability scores; (<b>b</b>) mapping exposure to harm from air pollution. Exposure to air pollution (PM2.5) combined with poverty shows how local boundaries are crossed and how local people may be affected (Reprinted from refs. [<a href="#B51-sustainability-16-06108" class="html-bibr">51</a>], with permission of the publisher).</p> "> Figure 3
<p>Comparison between conventional water management and foreign funding.</p> "> Figure 4
<p>Essential to closely monitor the ongoing fluctuations in the CPEC project.</p> "> Figure 5
<p>Essential elements for developing and scaling beneficial effects, with examples from the four case-study technologies, (modified from [<a href="#B146-sustainability-16-06108" class="html-bibr">146</a>]).</p> "> Figure 6
<p>Policy concerns and related issues.</p> ">
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Temperature and Its Impact on Sustainability
3.2. Population and Its Impact on Food and Economic Sustainability
3.2.1. Issue of Population
3.2.2. Issue of Food Security
3.2.3. Issue of Economic Development
3.3. Foreign Aid and Its Impact on Pakistan’s Economy
3.3.1. CPEC, Economic Growth and Sustainability
3.4. Water-Associated Issues
3.4.1. No Maintenance and Management of Water Networks
3.5. Infrastructure and Its Improvement Strategies
3.6. Agriculture Sector
3.7. Long-Term Research Needs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saqib, Z.; Saeed, R.; Qasim, M.; Saqib, A.; Hassan, M. Environmental Impact Assessment (EIA) of CPEC road project by following EIA index approach for sustainability. Eur. J. Sustain. Dev. Res. 2023, 7, em0220. [Google Scholar] [CrossRef]
- Ullah, S.; Barykin, S.; Jianfu, M.; Saifuddin, T.; Khan, M.A.; Kazaryan, R. Green Practices in Mega Development Projects of China–Pakistan Economic Corridor. Sustainability 2023, 15, 5870. [Google Scholar] [CrossRef]
- Adnan, M.; Xiao, B.; Ali, M.U.; Bibi, S.; Yu, H.; Xiao, P.; Zhao, P.; Haiyan, W.; An, X. Human inventions and its environmental challenges, especially artificial intelligence: New challenges require new thinking. Environ. Chall. 2024, 16, 100976. [Google Scholar] [CrossRef]
- Fawzy, S.; Osman, A.; Doran, W.; Rooney, D. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- He, Q.; Silliman, B.R. Climate Change, Human Impacts, and Coastal Ecosystems in the Anthropocene. Curr. Biol. 2019, 29, R1021–R1035. [Google Scholar] [CrossRef]
- Vij, S.; Biesbroek, R.; Stock, R.J.; Gardezi, M.; Ishtiaque, A.; Groot, A.; Termeer, K. ‘Power-sensitive design principles’ for climate change adaptation policy-making in South Asia. Earth Syst. Gov. 2021, 9, 100109. [Google Scholar] [CrossRef]
- Wang, F.; Harindintwali, J.D.; Wei, K.; Shan, Y.; Mi, Z.; Costello, M.; Grunwald, S.; Feng, Z.; Wang, F.; Guo, Y.; et al. Climate change: Strategies for mitigation and adaptation. Innov. Geosci. 2023, 1, 100015. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Yan, H.; Liu, D.L.; Meinke, H.; Hoogenboom, G.; Wang, B.; Peng, B.; Guan, K.; Jaegermeyr, J.; et al. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat. Commun. 2023, 14, 765. [Google Scholar] [CrossRef]
- Adnan, M.; Xiao, B.; Bibi, S.; Xiao, P.; Zhao, P.; Wang, H. Addressing current climate issues in Pakistan: An opportunity for a sustainable future. Environ. Chall. 2024, 15, 100887. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Archontoulis, S.V.; Huth, N.; Yang, R.; Liu, D.L.; Yan, H.; Meinke, H.; Huber, I.; Feng, P.; et al. Climate change shifts forward flowering and reduces crop waterlogging stress. Environ. Res. Lett. 2021, 16, 094017. [Google Scholar] [CrossRef]
- Muleke, A.; Harrison, M.T.; Eisner, R.; de Voil, P.; Yanotti, M.; Liu, K.; Monjardino, M.; Yin, X.; Wang, W.; Nie, J.; et al. Sustainable intensification with irrigation raises farm profit despite climate emergency. Plants People Planet 2023, 5, 368–385. [Google Scholar] [CrossRef]
- Yan, H.; Harrison, M.T.; Liu, K.; Wang, B.; Feng, P.; Fahad, S.; Meinke, H.; Yang, R.; Liu, D.L.; Archontoulis, S.; et al. Crop traits enabling yield gains under more frequent extreme climatic events. Sci. Total Environ. 2022, 808, 152170. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Khan, A.; Ahmed, A.; Rehman, M.U. Estimating the Nexus Among Demographic Dividend, Economic Growth, and Environmental Degradation for Pakistan. NUST J. Soc. Sci. Humanit. 2022, 8, 63–87. [Google Scholar]
- Rehman, M.; Ahmed, A.; Khan, A.; Khan, A. The Role of Poverty, Food Security, and Rapid Population Growth on Human Development in Pakistan. NUST J. Soc. Sci. Humanit. 2022, 8, 89–105. [Google Scholar] [CrossRef]
- Ali, S.; Liu, Y.; Nazir, A.; Ishaq, M.; Khan, S.; Shah, T. Does technical progress mitigate climate effect on crops yield in Pakistan? JAPS. J. Anim. Plant Sci. 2020, 30, 663–676. [Google Scholar]
- Chrysafi, A.; Virkki, V.; Jalava, M.; Sandström, V.; Piipponen, J.; Porkka, M.; Lade, S.J.; La Mere, K.; Wang-Erlandsson, L.; Scherer, L.; et al. Quantifying Earth system interactions for sustainable food production via expert elicitation. Nat. Sustain. 2022, 5, 830–842. [Google Scholar] [CrossRef]
- Toreti, A.; Caiola, N.; Chentouf, M.; Llasat, M.; Mohamed, A.; Santeramo, F.G.; Sanz-Cobena, A.; Tsikliras, A. Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future—Chapter 3 Resources|Subchapter 3.2 Food; Union for the Mediterranean: Marseille, France, 2020; pp. 237–264. [Google Scholar]
- Mrabet, R.; Savé, R.; Toreti, A.; Caiola, N.; Chentouf, M.; Llasat, M.C.; Mohamed, A.A.A.; Santeramo, F.G.; Sanz-Cobena, A.; Tsikliras, A. Resources 2-Food. In Climate and Environmental Change in the Mediterranean Basin–Current Situation and Risks for the Future. First Mediterranean Assessment Report; Cramer, W., Guiot, J., Marini, K., Eds.; Union for the Mediterranean, Plan Bleu, UNEP/MAP: Marseille, France, 2020; pp. 237–264. Available online: https://www.researchgate.net/publication/351215310_RESOURCES_2-FOOD (accessed on 14 July 2024).
- Hristov, J.; Toreti, A.; Domínguez, I.; Dentener, F.; Fellmann, T.; Elleby, C.; Ceglar, A.; Fumagalli, D.; Niemeyer, S.; Cerrani, I.; et al. Analysis of Climate Change Impacts on EU Agriculture by 2050; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Walker, T.R. The tropics should not become the world’s plastic pollution problem. J. Trop. Futures 2024, 1, 12–24. [Google Scholar] [CrossRef]
- Adnan, M.; Xiao, B.; Ali, M.U.; Xiao, P.; Zhao, P.; Wang, H.; Bibi, S. Heavy metals pollution from smelting activities: A threat to soil and groundwater. Ecotoxicol. Environ. Saf. 2024, 274, 116189. [Google Scholar] [CrossRef] [PubMed]
- Adnan, M.; Xiao, B.; Xiao, P.; Zhao, P.; Li, R.; Bibi, S. Research Progress on Heavy Metals Pollution in the Soil of Smelting Sites in China. Toxics 2022, 10, 231. [Google Scholar] [CrossRef]
- Adnan, M.; Xiao, B.; Xiao, P.; Zhao, P.; Bibi, S. Heavy Metal, Waste, COVID-19, and Rapid Industrialization in This Modern Era—Fit for Sustainable Future. Sustainability 2022, 14, 4746. [Google Scholar] [CrossRef]
- Chandio, S.; Talpur, M.; Chandio, M. Role of Agriculture Sector in the Economic Development of Pakistan. Int. Case Stud. J. 2022, 11, 54. [Google Scholar]
- Bint Zaman, S.; Ishaq, M.; Niazi, M.A. Contribution of Agriculture Sector in Economic Growth of Pakistan: An Empirical Analysis. J. Appl. Econ. Bus. Stud. 2021, 5, 103–120. [Google Scholar] [CrossRef]
- Ahmed, J.U.; Akter, S.; Majumder, K.A. Impact of COVID-19 on agricultural production and distribution in South Asia. World Food Policy 2021, 7, 168–182. [Google Scholar] [CrossRef]
- Gul, A.; Chandio, A.A.; Siyal, S.A.; Rehman, A.; Wu, X. How climate change is impacting the major yield crops of Pakistan? an exploration from long-and short-run estimation. Environ. Sci. Pollut. Res. 2022, 29, 26660–26674. [Google Scholar] [CrossRef] [PubMed]
- Tariq, G.; Sun, H.; Ali, I.; Ali, S.; Shah, Q. Influence of access to clean fuels and technology, food production index, consumer price index, and income on greenhouse gas emissions from food system: Evidence from developed countries. Environ. Sci. Pollut. Res. 2023, 30, 59528–59539. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Adhale, P.; Guleria, A.; Bhoi, P.B.; Bhoi, A.K.; Bacco, M.; Barsocchi, P. Crop Diversification in South Asia: A Panel Regression Approach. Sustainability 2022, 14, 9363. [Google Scholar] [CrossRef]
- Abid, N.; Wu, J.; Ahmad, F.; Draz, M.U.; Chandio, A.A.; Xu, H. Incorporating environmental pollution and human development in the energy-growth nexus: A novel long run investigation for Pakistan. Int. J. Environ. Res. Public Health 2020, 17, 5154. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Zheng, Y.; Ahmad, F.; Ozturk, I.; Wang, Y.; Tian, T.; Rehman, A. Environmental Regulations and Chinese Energy Sustainability: Mediating Role of Green Technology Innovations in Chinese Provinces. Sustainability 2023, 15, 8950. [Google Scholar] [CrossRef]
- Abid, N.; Ahmad, F.; Aftab, J.; Razzaq, A. A blessing or a burden? Assessing the impact of Climate Change Mitigation efforts in Europe using Quantile Regression Models. Energy Policy 2023, 178, 113589. [Google Scholar] [CrossRef]
- Zhang, N.; Deng, J.; Jiang, Y.; Ahmad, F. How does the development of digital inclusive finance in China affect green technology innovation? A theoretical mechanism study and empirical analysis. Environ. Sci. Pollut. Res. 2023, 30, 66254–66273. [Google Scholar] [CrossRef]
- Tariq, G.; Sun, H.; Fernandez-Gamiz, U.; Mansoor, S.; Pasha, A.A.; Ali, S.; Khan, M.S. Effects of globalization, foreign direct investment and economic growth on renewable electricity consumption. Heliyon 2023, 9, e14635. [Google Scholar] [CrossRef] [PubMed]
- Abid, M.; Ashfaq, A. CPEC: Challenges and opportunities for Pakistan. J. Pak. Vis. 2015, 16, 142–169. [Google Scholar]
- Javed, H.M.; Ismail, M. CPEC and Pakistan: Its economic benefits, energy security and regional trade and economic integration. Chin. Political Sci. Rev. 2021, 6, 207–227. [Google Scholar] [CrossRef]
- Islam, M.N.; Cansu, E.E. BRI, CPEC, and Pakistan: A Qualitative Content Analysis on China’s Grand Strategies. Int. J. World Peace 2020, 37, 35–64. [Google Scholar]
- Haq, R.; Farooq, N. Impact of CPEC on social welfare in Pakistan: A district level analysis. Pak. Dev. Rev. 2016, 597–618. [Google Scholar]
- Kanwal, S.; Pitafi, A.H.; Pitafi, A.; Nadeem, M.A.; Younis, A.; Chong, R. China–Pakistan Economic Corridor (CPEC) development projects and entrepreneurial potential of locals. J. Public Aff. 2019, 19, e1954. [Google Scholar] [CrossRef]
- Ali, M. China–Pakistan economic corridor: Prospects and challenges. Contemp. South Asia 2020, 28, 100–112. [Google Scholar] [CrossRef]
- Husain, I. CPEC & Pakistani Economy: An Appraisal; IBA Library: Karachi, Pakistan, 2018. [Google Scholar]
- Mazhin, S.A.; Khankeh, H.; Farrokhi, M.; Aminizadeh, M.; Poursadeqiyan, M. Migration health crisis associated with climate change: A systematic review. J. Educ. Health Promot. 2020, 9, 97. [Google Scholar]
- McMichael, A.J.; Lindgren, E. Climate change: Present and future risks to health, and necessary responses. J. Intern. Med. 2011, 270, 401–413. [Google Scholar] [CrossRef]
- Schwerdtle, P.; Bowen, K.; McMichael, C. The health impacts of climate-related migration. BMC Med. 2018, 16, 1. [Google Scholar] [CrossRef]
- Atanga, R.A.; Tankpa, V. Climate change, flood disaster risk and food security nexus in Northern Ghana. Front. Sustain. Food Syst. 2021, 5, 706721. [Google Scholar] [CrossRef]
- Romanello, M.; Di Napoli, C.; Drummond, P.; Green, C.; Kennard, H.; Lampard, P.; Scamman, D.; Arnell, N.; Ayeb-Karlsson, S.; Ford, L.B.; et al. The 2022 report of the Lancet Countdown on health and climate change: Health at the mercy of fossil fuels. Lancet 2022, 400, 1619–1654. [Google Scholar] [CrossRef] [PubMed]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.; Adeyi, O.; Arnold, R.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; Breysse, P.N.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef]
- Chaudhary, A.R.; Hanif, U. Climate Change and Food Security: Steps towards Sustainable Development Goals. iRASD J. Econ. 2022, 4, 310–328. [Google Scholar]
- Pant, K.P. Climate change and food security in Nepal. J. Agric. Environ. 2012, 13, 9–19. [Google Scholar] [CrossRef]
- Herath, P.; Thatcher, M.; Jin, H.; Bai, X. Comparing the cooling effectiveness of operationalisable urban surface combination scenarios for summer heat mitigation. Sci. Total Environ. 2023, 874, 162476. [Google Scholar] [CrossRef] [PubMed]
- Gupta, J.; Liverman, D.; Prodani, K.; Aldunce, P.; Bai, X.; Broadgate, W.; Ciobanu, D.; Gifford, L.; Gordon, C.; Hurlbert, M.; et al. Earth system justice needed to identify and live within Earth system boundaries. Nat. Sustain. 2023, 6, 630–638. [Google Scholar] [CrossRef]
- Shafi, A.; Wang, Z.; Ehsan, M.; Riaz, F.A.; Ali, M.R.; Mamodson, Z.A.; Abbasi, S.S. A game theory approach to the logic of illegitimate behavior induced during land conflict litigation in urban and peri-urban areas of Pakistan. Cities 2022, 130, 103990. [Google Scholar] [CrossRef]
- He, C.; Zhang, Y.; Schneider, A.; Chen, R.; Zhang, Y.; Ma, W.; Kinney, P.L.; Kan, H. The inequality labor loss risk from future urban warming and adaptation strategies. Nat. Commun. 2022, 13, 3847. [Google Scholar] [CrossRef]
- Richardson, K.J.; Lewis, K.H.; Krishnamurthy, P.K.; Kent, C.; Wiltshire, A.J.; Hanlon, H.M. Food security outcomes under a changing climate: Impacts of mitigation and adaptation on vulnerability to food insecurity. Clim. Chang. 2018, 147, 327–341. [Google Scholar] [CrossRef]
- Krishnamurthy, P.K.; Lewis, K.; Choularton, R. A methodological framework for rapidly assessing the impacts of climate risk on national-level food security through a vulnerability index. Glob. Environ. Chang. 2014, 25, 121–132. [Google Scholar] [CrossRef]
- Zahid, F.; Hanif, U.; Javed, F. Climate Change and Food Security: Are Asian Economies Tracking Sustainable Development Goals? iRASD J. Econ. 2022, 4, 561–582. [Google Scholar] [CrossRef]
- Akter, S. The effects of food export restrictions on the domestic economy of exporting countries: A review. Glob. Food Secur. 2022, 35, 100657. [Google Scholar] [CrossRef]
- Glavan, J. Technical Report: UAE Food Security under Climate Change; AGEDI: Abu Dhabi, United Arab Emirates, 2016. [Google Scholar]
- Sovacool, B.K.; Bazilian, M.; Griffiths, S.; Kim, J.; Foley, A.; Rooney, D. Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options. Renew. Sustain. Energy Rev. 2021, 143, 110856. [Google Scholar] [CrossRef]
- Arthington, Á.H.; Naiman, R.J.; Mcclain, M.E.; Nilsson, C. Preserving the biodiversity and ecological services of rivers: New challenges and research opportunities. Freshw. Biol. 2010, 55, 1–16. [Google Scholar] [CrossRef]
- Akram, S.; Pervaiz, Z.; Chaudhary, A.R. The Impact of Income Inequality and Intergenerational Mobility on Human Development: An empirical evidence from Pakistan. Int. J. Disaster Recovery Bus. Contin. 2021, 12, 263–268. [Google Scholar]
- Simpson, N.P.; Mach, K.J.; Constable, A.; Hess, J.; Hogarth, R.; Howden, M.; Lawrence, J.; Lempert, R.J.; Muccione, V.; Mackey, B.; et al. A framework for complex climate change risk assessment. One Earth 2021, 4, 489–501. [Google Scholar] [CrossRef]
- Zhang, Z.; Sheng, N.; Zhao, D.; Cai, K.; Yang, G.; Song, Q. Are residents more willing to buy and pay for electric vehicles under the “carbon neutrality”? Energy Rep. 2023, 9, 510–521. [Google Scholar] [CrossRef]
- Alderman, K.; Turner, L.R.; Tong, S. Floods and human health: A systematic review. Environ. Int. 2012, 47, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Gavonel, M.F.; Adger, W.N.; de Campos, R.S.; Boyd, E.; Carr, E.R.; Fábos, A.; Fransen, S.; Jolivet, D.; Zickgraf, C.; NA Codjoe, S.; et al. The migration-sustainability paradox: Transformations in mobile worlds. Curr. Opin. Environ. Sustain. 2021, 49, 98–109. [Google Scholar] [CrossRef]
- Jamshed, A.; Birkmann, J.; McMillan, J.M.; Rana, I.A.; Feldmeyer, D.; Sauter, H. How do rural-urban linkages change after an extreme flood event? Empirical evidence from rural communities in Pakistan. Sci. Total Environ. 2021, 750, 141462. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, A.R.; Wang, J.; Guo, S.; Zeng, Z. Flood vulnerability assessment using MOVE framework: A case study of the northern part of district Peshawar, Pakistan. Nat. Hazards 2020, 101, 385–408. [Google Scholar] [CrossRef]
- Potočki, K.; Hartmann, T.; Slavikova, L.; Collentine, D.; Veidemane, K.; Raška, P.; Barstad, J.; Evans, R. Land Policy for Flood Risk Management—Towards a new working paradigm. Earth’s Future 2022, 10, e2021EF002491. [Google Scholar] [CrossRef]
- Mach, K.J.; Hino, M.; Siders, A.; Koller, S.F.; Kraan, C.M.; Niemann, J.; Sanders, B.F. From Flood Control to Flood Adaptation. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2022. [Google Scholar]
- Hametner, M. Economics without ecology: How the SDGs fail to align socioeconomic development with environmental sustainability. Ecol. Econ. 2022, 199, 107490. [Google Scholar] [CrossRef]
- Jamshed, A.; Birkmann, J.; Rana, I.A.; McMillan, J.M. The relevance of city size to the vulnerability of surrounding rural areas: An empirical study of flooding in Pakistan. Int. J. Disaster Risk Reduct. 2020, 48, 101601. [Google Scholar] [CrossRef]
- Fazey, I.; Schäpke, N.; Caniglia, G.; Hodgson, A.; Kendrick, I.; Lyon, C.; Page, G.; Patterson, J.; Riedy, C.; Strasser, T.; et al. Transforming knowledge systems for life on Earth: Visions of future systems and how to get there. Energy Res. Soc. Sci. 2020, 70, 101724. [Google Scholar] [CrossRef]
- Wu, L.; Wang, S.; Bai, X.; Luo, G.; Wang, J.; Chen, F.; Li, C.; Ran, C.; Zhang, S. Accelerating the Improvement of Human Well-Being in China through Economic Growth and Policy Adjustment. Int. J. Environ. Res. Public Health 2022, 19, 12566. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Tachiiri, K.; Su, X. Heat stress, labor productivity, and economic impacts: Analysis of climate change impacts using two-way coupled modeling. Environ. Res. Commun. 2021, 3, 125001. [Google Scholar] [CrossRef]
- Cheema, Z.I.; Cheema, M.A. Anti-Money Laundering Regime in Pakistan; Deficiencies and A Way Forward. Law Policy Rev. 2022, 1, 1–16. [Google Scholar]
- Akhtar, S. Sino-Pakistani relations. Strateg. Stud. 2009, 29, 64–80. [Google Scholar]
- Bhattacharjee, D. China Pakistan Economic Corridor; SSRN 2608927; Elsevier Inc.: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Khan, S.; Liu, G. The China–Pakistan economic corridor (CPEC): Challenges and prospects. Area Dev. Policy 2019, 4, 466–473. [Google Scholar] [CrossRef]
- Afzaal, M. Prospects for China’s Belt and Road Initiative (BRI): Implications, Assessment and Challenges: China’s Globalization and the Belt and Road Initiative; Berlie, J.A., Ed.; Springer: Cham, Switzerland; Palgrave Macmillan: London, UK, 2020; pp. xxii+260. ISBN 978-3-030-22291-8. [Google Scholar]
- Li, R.; Xu, L.; Hui, J.; Cai, W.; Zhang, S. China’s investments in renewable energy through the belt and road initiative stimulated local economy and employment: A case study of Pakistan. Sci. Total Environ. 2022, 835, 155308. [Google Scholar] [CrossRef] [PubMed]
- Ali, T.; Xie, W. Why Pakistan needs more reservoirs, and fast. Nature 2018, 560, 431. [Google Scholar] [CrossRef] [PubMed]
- MacNeil, J.L.; Adams, M.; Walker, T.R. Evaluating the Efficacy of Sustainability Initiatives in the Canadian Port Sector. Sustainability 2022, 14, 373. [Google Scholar] [CrossRef]
- Hossain, T.; Adams, M.; Walker, T.R. Sustainability initiatives in Canadian ports. Mar. Policy 2019, 106, 103519. [Google Scholar] [CrossRef]
- Hossain, T.; Adams, M.; Walker, T.R. Role of sustainability in global seaports. Ocean Coast. Manag. 2021, 202, 105435. [Google Scholar] [CrossRef]
- Hua, C.; Chen, J.; Wan, Z.; Xu, L.; Bai, Y.; Zheng, T.; Fei, Y. Evaluation and governance of green development practice of port: A sea port case of China. J. Clean. Prod. 2020, 249, 119434. [Google Scholar] [CrossRef]
- Xu, L.; Huang, J.; Chen, J. How does the initiative of 21st century maritime silk road incentive logistics development in China’s coastal region? Ocean. Coast. Manag. 2023, 239, 106606. [Google Scholar] [CrossRef]
- Leong, C.K. Special economic zones and growth in China and India: An empirical investigation. Int. Econ. Econ. Policy 2013, 10, 549–567. [Google Scholar] [CrossRef]
- Lin, L.; Feng, K.; Wang, P.; Wan, Z.; Kong, X.; Li, J. Hazardous waste from the global shipbreaking industry: Historical inventory and future pathways. Glob. Environ. Chang. 2022, 76, 102581. [Google Scholar] [CrossRef]
- Verhoeven, P. A review of port authority functions: Towards a renaissance? Marit. Policy Manag. 2010, 37, 247–270. [Google Scholar] [CrossRef]
- Muneer, T.; Asif, M. Prospects for secure and sustainable electricity supply for Pakistan. Renew. Sustain. Energy Rev. 2007, 11, 654–671. [Google Scholar] [CrossRef]
- Lowans, C.; Del Rio, D.F.; Caulfield, B.; Sovacool, B.K.; Griffiths, S.; Rooney, D. What Causes Energy and Transport Poverty in Ireland? Analyzing the Demographic, Economic, and Social Dynamics and Policy Solutions. Energy Policy 2023, 172, 113313. [Google Scholar] [CrossRef]
- Lowans, C.; Del Rio, D.F.; Sovacool, B.K.; Rooney, D.; Foley, A.M. What is the state of the art in energy and transport poverty metrics? A critical and comprehensive review. Energy Econ. 2021, 101, 105360. [Google Scholar] [CrossRef]
- Bhutto, A.W.; Bazmi, A.A.; Zahedi, G. Greener energy: Issues and challenges for Pakistan—Wind power prospective. Renew. Sustain. Energy Rev. 2013, 20, 519–538. [Google Scholar] [CrossRef]
- Malafaia, C.; Fernandes-Jesus, M. Youth Climate Activism: Addressing Research Pitfalls and Centring Young People’s Voice; De Gruyter Mouton: Berlin, Germany, 2023. [Google Scholar]
- Kumar, P.; Sahani, J.; Rawat, N.; Debele, S.; Tiwari, A.; Emygdio, A.P.M.; Abhijith, K.; Kukadia, V.; Holmes, K.; Pfautsch, S. Using empirical science education in schools to improve climate change literacy. Renew. Sustain. Energy Rev. 2023, 178, 113232. [Google Scholar] [CrossRef]
- Ojala, M. Hope and anticipation in education for a sustainable future. Futures 2017, 94, 76–84. [Google Scholar] [CrossRef]
- Zipper, S.; Jaramillo, F.; Wang-Erlandsson, L.; Cornell, S.; Gleeson, T.; Porkka, M.; Häyhä, T.; Crépin, A.; Fetzer, I.; Gerten, D.; et al. Integrating the Water Planetary Boundary With Water Management From Local to Global Scales. Earth’s Future 2020, 8, e2019EF001377. [Google Scholar] [CrossRef] [PubMed]
- Wang-Erlandsson, L.; Tobian, A.; van der Ent, R.J.; Fetzer, I.; te Wierik, S.; Porkka, M.; Staal, A.; Jaramillo, F.; Dahlmann, H.; Singh, C.; et al. A planetary boundary for green water. Nat. Rev. Earth Environ. 2022, 3, 380–392. [Google Scholar] [CrossRef]
- Karlsson, T.; Dell, J.; Gündoğdu, S.; Carney, B. Plastic Waste Trade: The Hidden Numbers; IPEN: Berkeley, CA, USA, 2023. [Google Scholar]
- Villarrubia-Gómez, P.; Almroth, B.C.; Syberg, K.; Dey, T.; Bergmann, M.; Brander, S.M.; Cardenas, A.M.; Conkle, J.; Karlsson, T.; Tangri, N.; et al. Technology cannot fix this: To stay within planetary boundaries, plastic growth must be tackled. EarthArXiv 2023. [Google Scholar] [CrossRef]
- Brander, S.; Krieger, A.; Bergmann, M.; Almroth, B.C.; Dey, T.; Gundogdu, S.; Green, D.S. Op-Ed: Closing the Plastic Tap. Why the UN’s Plastic Treaty Must Cap Production and Include Chemicals too; Environmental Health News: Bozeman, MT, USA, 2022. [Google Scholar]
- Bergmann, M.; Almroth, B.C.; Brander, S.M.; Dey, T.; Green, D.S.; Gundogdu, S.; Krieger, A.; Wagner, M.; Walker, T.R. A global plastic treaty must cap production. Science 2022, 376, 469–470. [Google Scholar] [CrossRef] [PubMed]
- McGlade, J.; Fahim, I.; Green, D.; Landrigan, P.; Andrady, A.; Costa, M.; Geyer, R.; Gomes, R.; Tan Shau Hwai, A.; Jambeck, J.; et al. From Pollution to Solution: A Global Assessment of Marine Litter and Plastic Pollution; UNEP: Nairobi, Kenya, 2021. [Google Scholar]
- An, X.; Wang, Y.; Adnan, M.; Li, W.; Zhang, Y. Natural Factors of Microplastics Distribution and Migration in Water: A Review. Water 2024, 16, 1595. [Google Scholar] [CrossRef]
- Raza, M.; Hussain, F.; Lee, J.-Y.; Shakoor, M.; Kwon, K. Groundwater status in Pakistan: A review of contamination, health risks, and potential needs. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1713–1762. [Google Scholar] [CrossRef]
- An, X.; Li, W.; Lan, J.; Adnan, M. Preliminary Study on the Distribution, Source, and Ecological Risk of Typical Microplastics in Karst Groundwater in Guizhou Province, China. Int. J. Environ. Res. Public Health 2022, 19, 14751. [Google Scholar] [CrossRef] [PubMed]
- Alves, R.I.; Sampaio, C.F.; Nadal, M.; Schuhmacher, M.; Domingo, J.L.; Segura-Muñoz, S.I. Metal concentrations in surface water and sediments from Pardo River, Brazil: Human health risks. Environ. Res. 2014, 133, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.C.O.; Rocha, B.A.; Cruz, J.C.; Palir, N.; Campíglia, A.D.; Domingo, J.L.; Barbosa, F. Risk characterization of human exposure to polycyclic aromatic hydrocarbons in vulnerable groups. Sci. Total Environ. 2023, 892, 164219. [Google Scholar] [CrossRef] [PubMed]
- Zagui, G.S.; Moreira, N.C.; Santos, D.V.; Darini, A.L.C.; Domingo, J.L.; Segura-Muñoz, S.I.; Andrade, L.N. High occurrence of heavy metal tolerance genes in bacteria isolated from wastewater: A new concern? Environ. Res. 2021, 196, 110352. [Google Scholar] [CrossRef] [PubMed]
- Zagui, G.S.; Andrade, L.N.; Sierra, J.; Rovira, J.; Darini, A.L.C.; Segura-Muñoz, S. Plastisphere as a pathway for antimicrobial-resistant bacteria spread to the environment: New challenge and open questions. Environ. Res. 2022, 214 Pt 4, 114156. [Google Scholar] [CrossRef]
- Ceci, P. Forests and Water: International Momentum and Action; FAO: Rome, Italy, 2013. [Google Scholar]
- Liu, Z.; Liu, W.; Walker, T.R.; Adams, M.; Zhao, J. How does the global plastic waste trade contribute to environmental benefits: Implication for reductions of greenhouse gas emissions? J. Environ. Manag. 2021, 287, 112283. [Google Scholar] [CrossRef]
- Fawzy, S.; Osman, A.I.; Yang, H.; Doran, J.; Rooney, D.W. Industrial biochar systems for atmospheric carbon removal: A review. Environ. Chem. Lett. 2021, 19, 3023–3055. [Google Scholar] [CrossRef]
- Sarkar, R.; Orth, R.; Vogel, M. How Has Our Climate Changed Already? Front. Young Minds 2023, 14, 716536. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, M.; He, L.; Niazi, N.K.; Vithanage, M.; Li, B.; Wang, J.; Abdelrahman, H.; Antoniadis, V.; Rinklebe, J.; et al. Pandemic COVID-19 ends but soil pollution increases: Impacts and a new approach for risk assessment. Sci. Total Environ. 2023, 890, 164070. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Harrison, M.T.; Shabala, S.; Meinke, H.; Ahmed, I.; Zhang, Y.; Tian, X.; Zhou, M. The state of the art in modeling waterlogging impacts on plants: What do we know and what do we need to know. Earth’s Future 2020, 8, e2020EF001801. [Google Scholar] [CrossRef]
- Arora, N.K.; Mishra, I. Sustainable development goal 6: Global Water Security. Environ. Sustain. 2022, 5, 271–275. [Google Scholar] [CrossRef]
- Khattak, S.A.; Rashid, A.; Tariq, M.; Ali, L.; Gao, X.; Ayub, M.; Javed, A. Potential risk and source distribution of groundwater contamination by mercury in district Swabi, Pakistan: Application of multivariate study. Environ. Dev. Sustain. 2021, 23, 2279–2297. [Google Scholar] [CrossRef]
- Fan, C.; Liu, K.; Luo, S.; Chen, T.; Cheng, J.; Zhan, P.; Song, C. Detection of surface water temperature variations of Mongolian lakes benefiting from the spatially and temporally gap-filled MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103073. [Google Scholar] [CrossRef]
- Song, C.; Luo, S.; Liu, K.; Chen, T.; Zhang, P.; Fan, C. Widespread declines in water salinity of the endorheic Tibetan Plateau lakes. Environ. Res. Commun. 2022, 4, 091002. [Google Scholar] [CrossRef]
- Song, C.; Jiang, X.; Fan, C.; Li, L. High-resolution circa-2020 map of urban lakes in China. Sci. Data 2022, 9, 747. [Google Scholar] [CrossRef] [PubMed]
- Wittmer, H.; Berghöfer, A.; Büttner, L.; Chakrabarty, R.; Förster, J.; Khan, S.; König, C.; Krause, G.; Kreuer, D.; Locher, K.; et al. Transformative change for a sustainable management of global commons: Biodiversity, forests and the ocean. In Recommendations for International Cooperation Based on a Review of Global Assessment Reports and Project Experience; UFZ: Leipzig, Germany, 2021. [Google Scholar]
- Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 2019, 12, 7–21. [Google Scholar] [CrossRef]
- Zhang, S.; Han, G.; Zeng, J.; Malem, F. Source tracing and chemical weathering implications of strontium in agricultural basin in Thailand during flood season: A combined hydrochemical approach and strontium isotope. Environ. Res. 2022, 212, 113330. [Google Scholar] [CrossRef]
- Palom, A.R.; Pujol, D.S.; Cantos, J.O. Sustainable land use planning in areas exposed to flooding: Some international experiences. In Floods; Elsevier: Amsterdam, The Netherlands, 2017; pp. 103–117. [Google Scholar]
- Khan, A.N.; Ali, A. Implication of floods—2010 on education sector in Pakistan. In Disaster Recovery; Springer: Cham, Swittzerland, 2014; pp. 117–133. [Google Scholar]
- Liu, Z. The development and recent advances of flood forecasting activities in China. In Flood Forecasting; Elsevier: Amsterdam, The Netherlands, 2016; pp. 67–86. [Google Scholar]
- Kuang, D.; Liao, K.-H. How does flood resistance affect learning from flood experiences? A study of two communities in Central China. Clim. Chang. 2022, 173, 6. [Google Scholar] [CrossRef] [PubMed]
- McMichael, C.; Dasgupta, S.; Ayeb-Karlsson, S.; Kelman, I. A review of estimating population exposure to sea-level rise and the relevance for migration. Environ. Res. Lett. 2020, 15, 123005. [Google Scholar] [CrossRef]
- Benito, G.; Vázquez-Tarrío, D. Hazardous Processes: Flooding; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Zulkarnain, S.H.; Tsujimura, M.; Yuzir, M.A.; Razali, M.N.; Tarmidi, Z. A review of climate change (floods) and economic attributes response to residential property value in Malaysia. J. Water Clim. Chang. 2020, 11, 1084–1094. [Google Scholar] [CrossRef]
- Roth, F.; Bauer-Marschallinger, B.; Tupas, M.E.; Reimer, C.; Salamon, P.; Wagner, W. Sentinel-1 based analysis of the Pakistan Flood in 2022. EGUsphere 2022, preprint. [Google Scholar]
- Araos, M.; Jagannathan, K.; Shukla, R.; Ajibade, I.; de Perez, E.C.; Davis, K.; Ford, J.D.; Galappaththi, E.K.; Grady, C.; Hudson, A.; et al. Equity in human adaptation-related responses: A systematic global review. One Earth 2021, 4, 1454–1467. [Google Scholar] [CrossRef]
- Alborzi, A.; Zhao, Y.; Nazemi, A.; Mirchi, A.; Mallakpour, I.; Moftakhari, H.; Ashraf, S.; Izadi, R.; AghaKouchak, A. The tale of three floods: From extreme events and cascades of highs to anthropogenic floods. Weather Clim. Extrem. 2022, 38, 100495. [Google Scholar] [CrossRef]
- Zhao, J.; Van Oost, K.; Chen, L.; Govers, G. Moderate topsoil erosion rates constrain the magnitude of the erosion-induced carbon sink and agricultural productivity losses on the Chinese Loess Plateau. Biogeosciences 2016, 13, 4735–4750. [Google Scholar] [CrossRef]
- Ortiz, A.M.D.; Outhwaite, C.L.; Dalin, C.; Newbold, T. A review of the interactions between biodiversity, agriculture, climate change, and international trade: Research and policy priorities. One Earth 2021, 4, 88–101. [Google Scholar] [CrossRef]
- Peydayesh, M.; Bagnani, M.; Soon, W.L.; Mezzenga, R. Turning food protein waste into Sustainable Technologies. Chem. Rev. 2022, 123, 2112–2154. [Google Scholar] [CrossRef]
- Mondal, S.; KMishra, A.; Leung, R.; Cook, B. Global droughts connected by linkages between drought hubs. Nat. Commun. 2023, 14, 144. [Google Scholar] [CrossRef]
- Pai, S.J.; Heald, C.L.; Coe, H.; Brooks, J.; Shephard, M.W.; Dammers, E.; Apte, J.S.; Luo, G.; Yu, F.; Holmes, C.D.; et al. Compositional Constraints are Vital for Atmospheric PM2. 5 Source Attribution over India. ACS Earth Space Chem. 2022, 6, 2432–2445. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Zhang, C.; Zhang, S.; Bai, Y.; Callaghan, M.; Chang, N.; Chen, B.; Chen, H.; Cheng, L.; Cui, X.; et al. The 2022 China report of the Lancet Countdown on health and climate change: Leveraging climate actions for healthy ageing. Lancet Public Health 2022, 7, e1073–e1090. [Google Scholar] [CrossRef] [PubMed]
- Leclère, D.; Obersteiner, M.; Barrett, M.; Butchart, S.H.; Chaudhary, A.; De Palma, A.; DeClerck, F.A.J.; Di Marco, M.; Doelman, J.C.; Dürauer, M.; et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 2020, 585, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Chandio, A.A.; Magsi, H.; Ozturk, I. Examining the effects of climate change on rice production: Case study of Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 7812–7822. [Google Scholar] [CrossRef] [PubMed]
- Leal Filho, W.; Wolf, F.; Abubakar, I.R.; Al-Amin, A.Q.; Roy, S.; Malakar, K.; Alam, G.M.M.; Sarker, M.N.I. Understanding the socio-economic impacts of climate change on riparian communities in Bangladesh. River Res. Appl. 2022, 38, 1884–1892. [Google Scholar] [CrossRef]
- Chen, X.; Yu, L.; Du, Z.; Liu, Z.; Qi, Y.; Liu, T.; Gong, P. Toward sustainable land use in China: A perspective on China’s national land surveys. Land Use Policy 2022, 123, 106428. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Mason-D’Croz, D.; Palmer, J.; Benton, T.G.; Bodirsky, B.L.; Bogard, J.R.; Hall, A.; Lee, B.; Nyborg, K.; et al. Innovation can accelerate the transition towards a sustainable food system. Nat. Food 2020, 1, 266–272. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Mason-D’Croz, D.; Palmer, J.; Bodirsky, B.L.; Pradhan, P.; Barrett, C.B.; Benton, T.G.; Hall, A.; Pikaar, I.; et al. Articulating the effect of food systems innovation on the Sustainable Development Goals. Lancet Planet. Health 2021, 5, e50–e62. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Fang, N.; Shi, Z.; Lu, X.; Wang, Z. Soil organic carbon redistribution and delivery by soil erosion in a small catchment of the Yellow River basin. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005471. [Google Scholar] [CrossRef]
- Arora, N.K.; Tewari, S.; Singh, R. Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In Plant Microbe Symbiosis: Fundamentals and Advances; Springer: New Delhi, India, 2013; pp. 411–449. [Google Scholar]
- Yuan, X.; Shen, Y.; Withana, P.A.; Masek, O.; Lin, C.S.; You, S.; Tack, F.M.; Ok, Y.S. Thermochemical upcycling of food waste into engineered biochar for energy and environmental applications: A critical review. Chem. Eng. J. 2023, 469, 143783. [Google Scholar] [CrossRef]
- Malik, S.J.; Sheikh, A.T.; Jilani, A.H. Inclusive agricultural growth in Pakistan—Understanding some basic constraints. Pak. Dev. Rev. 2016, 55, 889–903. [Google Scholar]
- Mahmood, K.; Munir, S. Agricultural exports and economic growth in Pakistan: An econometric reassessment. Qual. Quant. 2018, 52, 1561–1574. [Google Scholar] [CrossRef]
- Sinha, S.; Chattopadhyay, S. A study on application of renewable energy technologies for mitigatting the adverse environmental impacts generated from power generation units in Himalayan region. Population 2015, 2030, 2050–2100. [Google Scholar]
- Saddiqa, A.; Batool, S.; Gill, S.A.; Khan, A.J. Water Governance and Management in the 21st Century: A Case Study of Pakistan. Pak. J. Humanit. Soc. Sci. 2022, 10, 29–42. [Google Scholar] [CrossRef]
- Yuefang, D.; Ali, S.; Bilal, H. Reforming benefit-sharing mechanisms for displaced populations: Evidence from the Ghazi Barotha Hydropower Project, Pakistan. J. Refug. Stud. 2021, 34, 3511–3531. [Google Scholar] [CrossRef]
- Payen, F.T.; Evans, D.L.; Falagán, N.; Hardman, C.A.; Kourmpetli, S.; Liu, L.; Marshall, R.; Mead, B.R.; Davies, J.A.C. How Much Food Can We Grow in Urban Areas? Food Production and Crop Yields of Urban Agriculture: A Meta-Analysis. Earth’s Future 2022, 10, e2022EF002748. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, J.T.S.; van Vuuren, D.; Gupta, J.; Santos, F.D.; Edmonds, J.; Swart, R. IPCC emission scenarios: How did critiques affect their quality and relevance 1990–2022? Glob. Environ. Chang. 2022, 75, 102538. [Google Scholar] [CrossRef]
- Schellnhuber, H.J.; Rahmstorf, S.; Winkelmann, R. Why the right climate target was agreed in Paris. Nat. Clim. Chang. 2016, 6, 649–653. [Google Scholar] [CrossRef]
- Tahir, F.; Al-Ghamdi, S.G. Climatic change impacts on the energy requirements for the built environment sector. Energy Rep. 2023, 9, 670–676. [Google Scholar] [CrossRef]
- Dimitrova, A.; Muttarak, R. After the floods: Differential impacts of rainfall anomalies on child stunting in India. Glob. Environ. Chang. 2020, 64, 102130. [Google Scholar] [CrossRef]
- Vandyck, T.; Ebi, K.; Green, D.; Cai, W.; Vardoulakis, S. Climate change, air pollution and human health. Environ. Res. Lett. 2022, 17, 100402. [Google Scholar] [CrossRef]
- Martin, M.A.; Sendra, O.A.; Bastos, A.; Bauer, N.; Bertram, C.; Blenckner, T.; Bowen, K.; Brando, P.M.; Rudolph, T.B.; Büchs, M.; et al. Ten new insights in climate science 2021, a horizon scan. Glob. Sustain. 2021, 4, e25. [Google Scholar] [CrossRef]
- Zhang, S.; An, K.; Li, J.; Weng, Y.; Zhang, S.; Wang, S.; Cai, W.; Wang, C.; Gong, P. Incorporating health co-benefits into technology pathways to achieve China’s 2060 carbon neutrality goal: A modelling study. Lancet Planet. Health 2021, 5, e808–e817. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Fan, C.; Zhu, J.; Wang, J.; Sheng, Y.; Liu, K.; Chen, T.; Zhan, P.; Luo, S.; Yuan, C.; et al. A comprehensive geospatial database of nearly 100 000 reservoirs in China. Earth Syst. Sci. Data 2022, 14, 4017–4034. [Google Scholar] [CrossRef]
- Nazir, M.; Zaman, K.; Khan, S.; Nassani, A.A.; Khan, H.; Haffar, M. Economic growth and carbon emissions in Pakistan: The effects of China’s Logistics Industry. Environ. Sci. Pollut. Res. 2023, 30, 53778–53795. [Google Scholar] [CrossRef]
- Walker, B.; Crépin, A.-S.; Nyström, M.; Anderies, J.; Andersson, E.; Elmqvist, T.; Queiroz, C.; Barrett, S.; Bennett, E.; Cardenas, J.C.; et al. Response diversity as a sustainability strategy. Nat. Sustain. 2023, 6, 621–629. [Google Scholar] [CrossRef]
Items Pakistan | Items Pakistan | Items | ||
---|---|---|---|---|
Pakistan | Pakistan | |||
1. Total area (million hectare) | 79.9 | 13,442 | 0.59 | 33rd |
Land area (million hectare) | 52.8 | 13,009 | 0.4 | 28th |
Arable Land (million hectare) | 22.63 | 1411 | 1.6 | 7th |
2. Total population | 200.96 | 6750 | 2.9 | 5th |
Agriculture | 94.45 | 2617 | 3 | 8th |
3. Economically active population (million) | ||||
Total | 110 | 3718 | 1.74 | 9th |
Agriculture | 51.7 | 1295 | 4 | 7th |
4. Crop production (million tons) | ||||
(A): total cereal | 42.7 | 1297 | 3.2 | 11th |
Wheat | 26.3 | 761 | 3.8 | 8th |
Rice | 10.8 | 509 | 2.12 | 10th |
Chickpea | 0.3 | 16 | 1.9 | 3rd |
Total pulses | 3.48 | 61 | 5.7 | 9th |
(B): oilseeds | ||||
Groundnuts (in shell) | 0.84 | 38 | 8.8 | 7th |
Rapeseed | 4.7 | 58 | 8.10 | 3rd |
Total oilseed crops | 4.26 | 69 | 6.17 | 7th |
5. Vegetables and fruits (million tons) | ||||
(A): vegetables excluding okra and okra | 5.4 | 916 | 0.12 | 11th |
(B): okra | 0.12 | 314 | 0.038 | 7th |
(C): mangoes | 2.3 | 160 | 1.43 | 5th |
(D): onions (dry) | 2.1 | 67 | 3.1 | 6th |
(E): citrus | 2.2 | 34 | 6.5 | 13th |
(F): apricot | 0.12 | 22 | 0.5 | 5th |
6. Commercial crops (million tons) | ||||
(A): sugarcane | 67.17 | 1743 | 3.85 | 5th |
(B): jute and jute-like fibers | 1.67 | 32 | 5.18 | 9th |
(C): cotton | 4.29 | 22.5 | 19.06 | 5th |
(D): tobacco leaves | 0.16 | 6.88 | 2.3 | 9th |
7. Livestock (million heads) | ||||
(A): cattles | 47.8 | 1347 | 3.5 | 8th |
(B): buffalos | 40 | 1810 | 2.1 | 6th |
(C): camels | 1.1 | 24.73 | 4.44 | 9th |
(D): sheep | 30.9 | 1078 | 2.8 | 7th |
(E): goats | 76.1 | 862 | 8.8 | 4th |
(F): chicken | 1321 | 18,398 | 7.18 | 10th |
8. Animal products | ||||
(A): total milk (000 MT) | 48,185 | 693,707 | 6.9 | 4th |
(B): total eggs (000 MT) | 1800 | 65,586 | 2.7 | 10th |
(C): total meat | 4478 | 279,953 | 1.6 | 7th |
9. Implements (numbers) | ||||
Agricultural tractors-in-use | 1399 | 29,320 | 4.7 | 13th |
Recognize that risks can be reduced with a variety of tools in the toolbox. | Having different ways of responding to the same or different kinds of disruptions confers resilience. Apparently redundant elements or processes can in fact be response diversity, enabling the system to perform the same function in different ways with different responses to different kinds of disruptions. |
Acknowledge that the useful set of tools is context dependent. | Responses differ in terms of their spatial, temporal, and functional scales, and they include substitutable, complementary, and compensatory options. |
Account for the social benefits of having a toolbox with a variety of tools, which are otherwise ignored in private exchange. | Economic efficiency—getting more for less through market exchange—can ignore the social benefits of maintaining different tools. The cost of creating or maintaining response diversity leads to its erosion through efficiency drives, thereby increasing the potential costs of a lack of response diversity. |
Account for multiple scales when choosing which tools to use. | There are trade-offs between response diversity at multiple scales in space and time. For example, increasing different sources and kinds of supplies at a large scale can lead to a decline in the variety of local-scale sources; if individual banks (local scale) use similar risk-management models, homogeneity in responses is cultivated within the sector as a whole (global scale). |
Recognize that tools are interdependent. | Different responses to different disruptions may intersect with or influence a reorganization process in different phases and in different (complementary or contradictory) ways. |
Be flexible in which tool is the best over time. | Optimizing response strategies to the current pattern of disruption can be detrimental if the pattern of disruption changes. Two examples are ignoring climate change and not considering multiple potential disruptions in supply chains. |
Account for how a tool can create moral hazard (unintended behavioural responses). | Support to maintain function in risky environments can lead to increasingly risky behaviour or unequal, disproportionate costs, and loss of response diversity. A classic example is insurance in agriculture. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adnan, M.; Xiao, B.; Bibi, S.; Xiao, P.; Zhao, P.; Wang, H.; Ali, M.U.; An, X. Known and Unknown Environmental Impacts Related to Climate Changes in Pakistan: An Under-Recognized Risk to Local Communities. Sustainability 2024, 16, 6108. https://doi.org/10.3390/su16146108
Adnan M, Xiao B, Bibi S, Xiao P, Zhao P, Wang H, Ali MU, An X. Known and Unknown Environmental Impacts Related to Climate Changes in Pakistan: An Under-Recognized Risk to Local Communities. Sustainability. 2024; 16(14):6108. https://doi.org/10.3390/su16146108
Chicago/Turabian StyleAdnan, Muhammad, Baohua Xiao, Shaheen Bibi, Peiwen Xiao, Peng Zhao, Haiyan Wang, Muhammad Ubaid Ali, and Xianjin An. 2024. "Known and Unknown Environmental Impacts Related to Climate Changes in Pakistan: An Under-Recognized Risk to Local Communities" Sustainability 16, no. 14: 6108. https://doi.org/10.3390/su16146108
APA StyleAdnan, M., Xiao, B., Bibi, S., Xiao, P., Zhao, P., Wang, H., Ali, M. U., & An, X. (2024). Known and Unknown Environmental Impacts Related to Climate Changes in Pakistan: An Under-Recognized Risk to Local Communities. Sustainability, 16(14), 6108. https://doi.org/10.3390/su16146108