Sustainable Catalysts from Industrial FeO Waste for Pyrolysis and Oxidation of Hospital Polypropylene in Cartagena
<p>Processing diagram.</p> "> Figure 2
<p>TGA (<b>A</b>) and dTGA (<b>B</b>) for PP with different amounts of iron oxide.</p> "> Figure 3
<p>(<b>a</b>) Trend graph for alkanes as a function of the amount of FeO; (<b>b</b>) trend graph for alkenes as a function of the amount of FeO; (<b>c</b>) trend graph for alkynes as a function of the amount of FeO; (<b>d</b>) trend graph for alcohols as a function of the amount of FeO; (<b>e</b>) trend graph for ketones as a function of the amount of FeO; (<b>f</b>) trend graph for acids as a function of the amount of FeO.</p> "> Figure 3 Cont.
<p>(<b>a</b>) Trend graph for alkanes as a function of the amount of FeO; (<b>b</b>) trend graph for alkenes as a function of the amount of FeO; (<b>c</b>) trend graph for alkynes as a function of the amount of FeO; (<b>d</b>) trend graph for alcohols as a function of the amount of FeO; (<b>e</b>) trend graph for ketones as a function of the amount of FeO; (<b>f</b>) trend graph for acids as a function of the amount of FeO.</p> "> Figure 4
<p>(<b>a</b>) Boxplot for alkanes; (<b>b</b>) boxplot for alkenes; (<b>c</b>) boxplot for ketones; (<b>d</b>) boxplot for alcohols; (<b>e</b>) boxplot for acids; (<b>f</b>) boxplot for alkynes.</p> "> Figure 4 Cont.
<p>(<b>a</b>) Boxplot for alkanes; (<b>b</b>) boxplot for alkenes; (<b>c</b>) boxplot for ketones; (<b>d</b>) boxplot for alcohols; (<b>e</b>) boxplot for acids; (<b>f</b>) boxplot for alkynes.</p> "> Figure 5
<p>Trends by families in an oxidative atmosphere.</p> "> Figure 6
<p>(<b>a</b>) Trend graph for alkanes in N<sub>2</sub> and O<sub>2</sub> atmospheres; (<b>b</b>) trend graph for alkenes in N<sub>2</sub> and O<sub>2</sub> atmospheres; (<b>c</b>) trend graph for alkynes in N<sub>2</sub> and O<sub>2</sub> atmospheres; (<b>d</b>) trend graph for alcohols in N<sub>2</sub> and O<sub>2</sub> atmospheres; (<b>e</b>) trend graph for ketones in N<sub>2</sub> and O<sub>2</sub> atmospheres; (<b>f</b>) trend graph for acids in N<sub>2</sub> and O<sub>2</sub> atmospheres.</p> "> Figure 7
<p>Diagram of products obtained by HPW pyrolysis.</p> "> Figure 8
<p>Thermal degradation of PP without a catalyst (FeO).</p> "> Figure 9
<p>Thermal degradation of PP with catalyst (FeO).</p> "> Figure 10
<p>Thermal degradation of PP with catalyst (FeO) and traces of air (O<sub>2</sub>).</p> "> Figure 11
<p>Pyrolysis, cracking, and deactivation of polypropylene under the influence of the FeO catalyst.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Classification of Medical Waste and Optimal Treatment Options
2.2. Pyrolysis of Medical Waste: Process and Considerations
2.3. Sampling of PP Hospital Waste (HPW)
2.4. Humidity
2.5. XRF (X-ray Fluorescence)
2.6. MFI (Melt Flow Rate)
2.7. TGA (Thermal Gravimetric Analysis)
2.8. Analysis of Variance (ANOVA) and Error
3. Results and Discussion
3.1. Elemental, Proximal, and Final Analysis
3.2. TGA (Thermal Gravimetric Analysis)
Temperature
3.3. Pyrolysis
3.3.1. Alkanes
Alkenes
Alkynes
Alcohols
Ketones
Acids
3.3.2. Thermal Oxidation
3.4. Possible Reaction Mechanism
3.5. Catalyst Presence
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajmohan, K.V.S.; Ramya, C.; Viswanathan, M.R.; Varjani, S. Plastic pollutants: Effective waste management for pollution control and abatement. Curr. Opin. Environ. Sci. Health 2019, 12, 72–84. [Google Scholar] [CrossRef]
- Windfeld, E.S.; Brooks, M.S.L. Medical waste management—A review. J. Environ. Manag. 2015, 163, 98–108. [Google Scholar] [CrossRef]
- PlasticsEurope. Plastics-the Facts 2016 An Analysis of European Plastics Production, Demand and Waste Data; PlasticsEurope: Brussels, Belgium, 2016. [Google Scholar]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Zheng, J.; Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Chang. 2019, 9, 374–378. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- MacKenzie, D. COVID-19 goes global. New Sci. 2020, 245, 7. [Google Scholar] [CrossRef]
- Babaji, P.; Singh, A.; Lau, H.; Lamba, G.; Somasundaram, P. Deletion of short arm of chromosome 18, Del(18p) syndrome. J. Indian Soc. Pedod. Prev. Dent. 2014, 32, 68–70. [Google Scholar] [CrossRef]
- Selvaraj, D.; Raja, J.; Prasath, S. Interdisciplinary approach for bilateral maxillary canine: First premolar transposition with complex problems in an adult patient. J. Pharm. Bioallied Sci. 2013, 5 (Suppl. 2), S190–S194. [Google Scholar] [CrossRef]
- Liu, H.C.; You, J.X.; Lu, C.; Chen, Y.Z. Evaluating health-care waste treatment technologies using a hybrid multi-criteria decision making model. Renew. Sustain. Energy Rev. 2015, 41, 932–942. [Google Scholar] [CrossRef]
- Yu, H.; Sun, X.; Solvang, W.D.; Zhao, X. Reverse Logistics Network Design for Effective Management of Medical Waste in Epidemic Outbreaks: Insights from the Coronavirus Disease 2019 (COVID-19) Outbreak in Wuhan (China). Int. J. Environ. Res. Public Health 2020, 17, 1770. [Google Scholar] [CrossRef]
- Kumar, N.M.; Mohammed, M.A.; Abdulkareem, K.H.; Damasevicius, R.; Mostafa, S.A.; Maashi, M.S.; Chopra, S.S. Artificial intelligence-based solution for sorting COVID related medical waste streams and supporting data-driven decisions for smart circular economy practice. Process Saf. Environ. Prot. 2021, 152, 482–494. [Google Scholar] [CrossRef]
- Ilyas, S.; Srivastava, R.R.; Kim, H. Disinfection technology and strategies for COVID-19 hospital and bio-medical waste management. Sci. Total Environ. 2020, 749, 141652. [Google Scholar] [CrossRef]
- Dharmaraj, S.; Ashokkumar, V.; Pandiyan, R.; Munawaroh, H.S.H.; Chew, K.W.; Chen, W.-H.; Ngamcharussrivichai, C. Pyrolysis: An effective technique for degradation of COVID-19 medical wastes. Chemosphere 2021, 275, 130092. [Google Scholar] [CrossRef]
- Cities Wonder Whether Recycling Counts as Essential During the Virus—Bloomberg. Available online: https://www.bloomberg.com/news/articles/2020-03-27/cities-wonder-whether-recycling-counts-as-essential-during-the-virus (accessed on 30 May 2024).
- Ramadhani, B.; Kivevele, T.; Kihedu, J.H.; Jande, Y.A.C. Catalytic tar conversion and the prospective use of iron-based catalyst in the future development of biomass gasification: A review. Biomass Convers. Biorefin. 2020, 12, 1369–1392. [Google Scholar] [CrossRef]
- Yao, D.; Wang, C.H. Pyrolysis and in-line catalytic decomposition of polypropylene to carbon nanomaterials and hydrogen over Fe- and Ni-based catalysts. Appl. Energy 2020, 265, 114819. [Google Scholar] [CrossRef]
- Jin, L.; Si, H.; Zhang, J.; Lin, P.; Hu, Z.; Qiu, B.; Hu, H. Preparation of activated carbon supported Fe–Al2O3 catalyst and its application for hydrogen production by catalytic methane decomposition. Int. J. Hydrogen Energy 2013, 38, 10373–10380. [Google Scholar] [CrossRef]
- Xu, L.; Lin, X.; Xi, Y.; Lu, X.; Wang, C.; Liu, C. Alumina-supported Fe catalyst prepared by vapor deposition and its catalytic performance for oxidative dehydrogenation of ethane. Mater. Res. Bull. 2014, 59, 254–260. [Google Scholar] [CrossRef]
- Yao, D.; Li, H.; Dai, Y.; Wang, C.H. Impact of temperature on the activity of Fe-Ni catalysts for pyrolysis and decomposition processing of plastic waste. Chem. Eng. J. 2021, 408, 127268. [Google Scholar] [CrossRef]
- Kumagai, S.; Hosaka, T.; Kameda, T.; Yoshioka, T. Removal of toxic HCN and recovery of H2-rich syngas via catalytic reforming of product gas from gasification of polyimide over Ni/Mg/Al catalysts. J. Anal. Appl. Pyrolysis 2017, 123, 330–339. [Google Scholar] [CrossRef]
- Rodríguez, E.; Gutiérrez, A.; Palos, R.; Vela, F.J.; Arandes, J.M.; Bilbao, J. Fuel production by cracking of polyolefins pyrolysis waxes under fluid catalytic cracking (FCC) operating conditions. Waste Manag. 2019, 93, 162–172. [Google Scholar] [CrossRef]
- Veses, A.; Sanahuja-Parejo, O.; Callén, M.S.; Murillo, R.; García, T. A combined two-stage process of pyrolysis and catalytic cracking of municipal solid waste for the production of syngas and solid refuse-derived fuels. Waste Manag. 2020, 101, 171–179. [Google Scholar] [CrossRef]
- Williams, P.T. Hydrogen and Carbon Nanotubes from Pyrolysis-Catalysis of Waste Plastics: A Review. Waste Biomass Valorization 2021, 12, 1–28. [Google Scholar] [CrossRef]
- Cai, N.; Xia, S.; Li, X.; Xiao, H.; Chen, X.; Chen, Y.; Bartocci, P.; Chen, H.; Williams, P.T.; Yang, H. High-value products from ex-situ catalytic pyrolysis of polypropylene waste using iron-based catalysts: The influence of support materials. Waste Manag. 2021, 136, 47–56. [Google Scholar] [CrossRef]
- Alptekin, F.M.; Celiktas, M.S. Review on Catalytic Biomass Gasification for Hydrogen Production as a Sustainable Energy Form and Social, Technological, Economic, Environmental, and Political Analysis of Catalysts. ACS Omega 2022, 7, 24918–24941. [Google Scholar] [CrossRef]
- Hao, T.; Huang, Y.; Li, F.; Wu, Y.; Fang, L. Facet-dependent Fe(II) redox chemistry on iron oxide for organic pollutant transformation and mechanisms. Water Res. 2022, 219, 118587. [Google Scholar] [CrossRef]
- Hu, J.; Poelman, H.; Marin, G.B.; Detavernier, C.; Kawi, S.; Galvita, V.V. FeO controls the sintering of iron-based oxygen carriers in chemical looping CO2conversion. J. CO2 Util. 2020, 40, 101216. [Google Scholar] [CrossRef]
- Lu, Z.H.; Xu, Q. Intermediates of CO oxidation on iron oxides: An experimental and theoretical study. J. Chem. Phys. 2011, 134, 34305. [Google Scholar] [CrossRef]
- Hernández-Fernández, J.; Castro-Suarez, J.R.; Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708. [Google Scholar] [CrossRef]
- Cai, N.; Xia, S.; Li, X.; Sun, L.; Bartocci, P.; Fantozzi, F.; Zhang, H.; Chen, H.; Williams, P.T.; Yang, H. Influence of the ratio of Fe/Al2O3 on waste polypropylene pyrolysis for high value-added products. J. Clean. Prod. 2021, 315, 128240. [Google Scholar] [CrossRef]
- Zheng, Y.; Cheng, Y.; Wang, Y.; Bao, F.; Zhou, L.; Wei, X.; Zhang, Y.; Zheng, Q. Quasicubic alpha-Fe2O3 nanoparticles with excellent catalytic performance. J. Phys. Chem. B 2006, 110, 3093–3097. [Google Scholar] [CrossRef]
- Acomb, J.C.; Wu, C.; Williams, P.T. Effect of growth temperature and feedstock:catalyst ratio on the production of carbon nanotubes and hydrogen from the pyrolysis of waste plastics. J. Anal. Appl. Pyrolysis 2015, 113, 231–238. [Google Scholar] [CrossRef]
- Wu, C.; Nahil, M.A.; Miskolczi, N.; Huang, J.; Williams, P.T. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes. Environ. Sci. Technol. 2014, 48, 819–826. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.; Chen, W.; Yang, H.; Chen, H. Catalytic pyrolysis of cotton stalk to produce aromatic hydrocarbons over Fe modified CaO catalysts and ZSM-5. J. Anal. Appl. Pyrolysis 2022, 166, 105635. [Google Scholar] [CrossRef]
- Cho, D.W.; Chon, C.-M.; Yim, G.-J.; Ryu, J.; Jo, H.; Kim, S.-J.; Jang, J.-Y.; Song, H. Adsorption of potentially harmful elements by metal-biochar prepared via Co-pyrolysis of coffee grounds and Nano Fe(III) oxides. Chemosphere 2023, 319, 136536. [Google Scholar] [CrossRef]
- Deng, J.; Deng, X.; Yuan, S.; Ma, D.; Liu, J.; Xie, X.; He, R.; Yang, T. Effect of precipitating agents for the preparation of Fe-based catalysts on coal pyrolysis: Effect of Ba and Mg additives. Fuel 2022, 320, 124000. [Google Scholar] [CrossRef]
- Ge, L.; Zhao, C.; Zuo, M.; Du, Y.; Tang, J.; Chu, H.; Wang, Y.; Xu, C. Effects of Fe addition on pyrolysis characteristics of lignin, cellulose and hemicellulose. J. Energy Inst. 2023, 107, 101177. [Google Scholar] [CrossRef]
- Dong, Y.; Tian, B.; Guo, F.; Du, S.; Zhan, Y.; Zhou, H.; Qian, L. Application of low-cost Fe-based catalysts in the microwave-assisted pyrolysis of macroalgae and lignocellulosic biomass for the upgradation of bio-oil. Fuel 2021, 300, 120944. [Google Scholar] [CrossRef]
- He, R.; Liu, H.; Lu, Q.; Zhao, Y.; Wang, X.; Xie, X.; Deng, X.; Yuan, S. Effects of Si and Al elements in coal on Fe-catalyzed brown coal pyrolysis. Fuel 2022, 315, 123170. [Google Scholar] [CrossRef]
- Yao, D.; Wu, C.; Yang, H.; Zhang, Y.; Nahil, M.A.; Chen, Y.; Williams, P.T.; Chen, H. Co-production of hydrogen and carbon nanotubes from catalytic pyrolysis of waste plastics on Ni-Fe bimetallic catalyst. Energy Convers. Manag. 2017, 148, 692–700. [Google Scholar] [CrossRef]
- Aboul-Enein, A.A.; Awadallah, A.E. Production of nanostructured carbon materials using Fe–Mo/MgO catalysts via mild catalytic pyrolysis of polyethylene waste. Chem. Eng. J. 2018, 354, 802–816. [Google Scholar] [CrossRef]
- Tezel, E.; Figen, H.E.; Baykara, S.Z. Hydrogen production by methane decomposition using bimetallic Ni–Fe catalysts. Int. J. Hydrogen Energy 2019, 44, 9930–9940. [Google Scholar] [CrossRef]
- Kwon, G.; Cho, D.W.; Kwon, E.E.; Rinklebe, J.; Wang, H.; Song, H. Beneficial use of Fe-impregnated bentonite as a catalyst for pyrolysis of grass cut into syngas, bio-oil and biochar. Chem. Eng. J. 2022, 448, 137502. [Google Scholar] [CrossRef]
- Liu, R.; Li, C.; Zheng, J.; Liao, L.; Zhang, Y. Effect of Fe impregnation on CO2-assisted pyrolysis of hazelnut shell. Fuel 2022, 324, 124514. [Google Scholar] [CrossRef]
- Tafjord, J.; Regli, S.K.; Dugulan, A.I.; Rønning, M.; Rytter, E.; Holmen, A.; Myrstad, R.; Yang, J. Influence of temperature during pyrolysis of Fe-alginate: Unraveling the pathway towards highly active Fe/C catalysts. Appl. Catal. A Gen. 2022, 644, 118834. [Google Scholar] [CrossRef]
- Yuwen, C.; Liu, B.; Rong, Q.; Hou, K.; Zhang, L.; Guo, S. Mechanism of microwave-assisted iron-based catalyst pyrolysis of discarded COVID-19 masks. Waste Manag. 2023, 155, 77–86. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, B.; Luo, P.; Huang, K.; Zhou, Y. Simultaneous Achievement of High-Yield Hydrogen and High-Performance Microwave Absorption Materials from Microwave Catalytic Deconstruction of Plastic Waste. Processes 2022, 10, 782. [Google Scholar] [CrossRef]
- Jie, X.; Li, W.; Slocombe, D.; Gao, Y.; Banerjee, I.; Gonzalez-Cortes, S.; Yao, B.; AlMegren, H.; Alshihri, S.; Dilworth, J.; et al. Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons. Nat. Catal. 2020, 3, 902–912. [Google Scholar] [CrossRef]
- Álvarez, M.L.; Gascó, G.; Palacios, T.; Paz-Ferreiro, J.; Méndez, A. Fe oxides-biochar composites produced by hydrothermal carbonization and pyrolysis of biomass waste. J. Anal. Appl. Pyrolysis 2020, 151, 104893. [Google Scholar] [CrossRef]
- Das, P.; Tiwari, P. The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel. Waste Manag. 2018, 79, 615–624. [Google Scholar] [CrossRef]
- Sobko, A.A. Generalized van der Waals-Berthelot equation of state. Dokl. Phys. 2008, 53, 416. [Google Scholar] [CrossRef]
- Sapuan, S.M.; Jamal, T.; Abdan, K. Slow Pyrolysis of Disinfected COVID-19 Non-Woven Polypropylene (PP) Waste. 2021. Available online: https://www.researchgate.net/publication/351710043 (accessed on 31 May 2024).
- Marcilla, A.; García-Quesada, J.C.; Sánchez, S.; Ruiz, R. Study of the catalytic pyrolysis behaviour of polyethylene–polypropylene mixtures. J. Anal. Appl. Pyrolysis 2005, 74, 387–392. [Google Scholar] [CrossRef]
- Jung, S.H.; Cho, M.H.; Kang, B.S.; Kim, J.S. Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Process. Technol. 2010, 91, 277–284. [Google Scholar] [CrossRef]
- Panda, A.K.; Singh, R.K.; Mishra, D.K. Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products—A world prospective. Renew. Sustain. Energy Rev. 2010, 14, 233–248. [Google Scholar] [CrossRef]
- Ahmad, I.; Khan, M.I.; Khan, H.; Ishaq, M.; Tariq, R.; Gul, K.; Ahmad, W. Pyrolysis Study of Polypropylene and Polyethylene Into Premium Oil Products. Int. J. Green Energy 2015, 12, 663–671. [Google Scholar] [CrossRef]
- Aguado, J.; Serrano, D.P.; Escola, J.M.; Garagorri, E.; Fernández, J.A. Catalytic conversion of polyolefins into fuels over zeolite beta. Polym. Degrad. Stab. 2000, 69, 11–16. [Google Scholar] [CrossRef]
- Li, M.; Endo, R.; Akoshima, M.; Susa, M. Temperature Dependence of Thermal Diffusivity and Conductivity of FeO Scale Produced on Iron by Thermal Oxidation. ISIJ Int. 2017, 57, 2097–2106. [Google Scholar] [CrossRef]
- Nakatani, H.; Shibata, H.; Miyazaki, K.; Yonezawa, T.; Takeda, H.; Azuma, Y.; Watanabe, S. Studies on heterogeneous degradation of polypropylene/talc composite: Effect of iron impurity on the degradation behavior. J. Appl. Polym. Sci. 2010, 115, 167–173. [Google Scholar] [CrossRef]
- Mowery, D.M.; Assink, R.A.; Derzon, D.K.; Klamo, S.B.; Clough, R.L.; Bernstein, R. Solid-state 13C NMR investigation of the oxidative degradation of selectively labeled polypropylene by thermal aging and γ-irradiation. Macromolecules 2005, 38, 5035–5046. [Google Scholar] [CrossRef]
- Carlsson, D.J.; Wiles, D.M. The Photooxidative Degradation of Polypropylene. Part I. Photooxidation and Photoinitiation Processes. J. Macromol. Sci. Part C Polym. Rev. 1976, 14, 65–106. [Google Scholar] [CrossRef]
- Bahri-Laleh, N.; Correa, A.; Mehdipour-Ataei, S.; Arabi, H.; Haghighi, M.N.; Zohuri, G.; Cavallo, L. Moving up and down the titanium oxidation state in Ziegler-Natta catalysis. Macromolecules 2011, 44, 778–783. [Google Scholar] [CrossRef]
- Lee, H.W.; Park, Y.K. Catalytic Pyrolysis of Polyethylene and Polypropylene over Desilicated Beta and Al-MSU-F. Catalysts 2018, 8, 501. [Google Scholar] [CrossRef]
- Papuga, S.; Djurdjevic, M.; Ciccioli, A.; Ciprioti, S.V. Catalytic Pyrolysis of Plastic Waste and Molecular Symmetry Effects: A Review. Symmetry 2023, 15, 38. [Google Scholar] [CrossRef]
- Clough, R.L. Isotopic exchange in gamma-irradiated mixtures of C24H5 and C24D5: Evidence of free radical migration in the solid state. J. Chem. Phys. 1987, 87, 1588–1595. [Google Scholar] [CrossRef]
- Commereuc, S.; Vaillant, D.; Philippart, J.L.; Lacoste, J.; Lemaire, J.; Carlsson, D.J. Photo and thermal decomposition of iPP hydroperoxides. Polym. Degrad. Stab. 1997, 57, 175–182. [Google Scholar] [CrossRef]
- Suriapparao, D.V.; Gautam, R.; Jeeru, L.R. Analysis of pyrolysis index and reaction mechanism in microwave-assisted ex-situ catalytic co-pyrolysis of agro-residual and plastic wastes. Bioresour. Technol. 2022, 357, 127357. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Z.; Wang, W.; Ji, G.; Zhao, M.; Li, A. Kinetics, Product Evolution, and Mechanism for the Pyrolysis of Typical Plastic Waste. ACS Sustain. Chem. Eng. 2022, 10, 91–103. [Google Scholar] [CrossRef]
- Hernández-Fernández, J.; Vivas-Reyes, R.; Toloza, C.A.T. Experimental Study of the Impact of Trace Amounts of Acetylene and Methylacetylene on the Synthesis, Mechanical and Thermal Properties of Polypropylene. Int. J. Mol. Sci. 2022, 23, 12148. [Google Scholar] [CrossRef]
- Hernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Development and validation of a methodology for quantifying partsper-billion levels of arsine and phosphine in nitrogen, hydrogen and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry. J. Chromatogr. A 2021, 1637, 461833. [Google Scholar] [CrossRef] [PubMed]
- Pavon, C.; Aldas, M.; Hernández-Fernández, J.; López-Martínez, J. Comparative characterization of gum rosins for their use as sustainable additives in polymeric matrices. J. Appl. Polym. Sci. 2021, 139, 51734. [Google Scholar] [CrossRef]
- Hernandez-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808. [Google Scholar] [CrossRef]
- Chacon, H.; Cano, H.; Fernández, J.H.; Guerra, Y.; Puello-Polo, E.; Ríos-Rojas, J.F.; Ruiz, Y. Effect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strength. Polymers 2022, 14, 1753. [Google Scholar] [CrossRef]
- Hernández-Fernández, J.; González-Cuello, R.; Ortega-Toro, R. Parts per million of propanol and arsine as responsible for the poisoning of the propylene polymerization reaction. Polymers 2023, 15, 3619. [Google Scholar] [CrossRef]
- Hernández-Fernández, J.; Ortega-Toro, R.; Castro-Suarez, J.R. Theoretical–experimental study of the action of trace amounts of formaldehyde, propionaldehyde, and butyraldehyde as inhibitors of the ziegler–natta catalyst and the synthesis of an ethylene–propylene copolymer. Polymers 2023, 15, 1098. [Google Scholar] [CrossRef]
- Hernandez-Fernandez, J.; Cano, H.; Guerra, Y. Detection of Bisphenol A and Four Analogues in Atmospheric Emissions in Pet-rochemical Complexes Producing Polypropylene in South America. Molecules 2022, 27, 4832. [Google Scholar] [CrossRef]
Experimental Conditions of Thermogravimetric Analysis | |
---|---|
Temperature | Flow |
40–900 °C. 10 °C/min | 20 mL/min N2 |
Experimental conditions of Chromatography | |
Agilent 7820A-5975 (Agilent Technologies, Santa Clara, CA, USA) | He Carrier: 1 mL/min |
Column #1: HP-5MS (5% Phenyl Methyl Silox, 30 m × 0.25 mm I.D. × 0.25 μm), Column #2: HP- MOLESIEVE (30 m length, 0.53 mm I.D) | Oven temperature: 40 °C × 4 min, then heated to 250 °C a 10 °C/min, and 250 °C × 5 min. The split ratio is 10:1. S source and MS quad are 230 and 150 °C. |
Experimental conditions of thermogravimetric analysis | |
Temperature | Flow |
40–900 °C. 10 °C/min | 20 mL/min N2 |
Experimental conditions of Chromatography | |
Agilent 7820A-5975 | He Carrier: 1 mL/min |
Column #1: HP-5MS (5% Phenyl Methyl Silox, 30 m × 0.25 mm I.D. × 0.25 μm), Column #2: HP- MOLESIEVE (30 m length, 0.53 mm I.D) | Oven temperature: 40 °C × 4 min, then heated to 250 °C a 10 °C/min, and 250 °C × 5 min. The split ratio is 10:1. S source and MS quad are 230 and 150 °C. |
HPW Samples | HPW (kg) | Washing | FeO (mg) |
---|---|---|---|
HW-PP-0 | 1 | steam water | 1.5 |
HW-PP-1 | 1 | steam water | 20 |
HW-PP-2 | 1 | steam water | 150 |
HW-PP-3 | 1 | steam water | 200 |
HW-PP-4 | 1 | steam water | 400 |
Feed | HW-PP-0 | HW-PP-1 | HW-PP-2 | HW-PP-3 | HW-PP-4 |
---|---|---|---|---|---|
Proximate analysis (as received) | |||||
Moisture, wt% | 0.15 | 0.27 | 0.33 | 0.32 | 0.39 |
Volatile matter, wt% | 99.7 | 99.53 | 99.51 | 99.43 | 99.32 |
Fixed carbon, wt% | 0.11 | 0.13 | 0.13 | 0.18 | 0.09 |
Ash, wt% | 0.04 | 0.07 | 0.03 | 0.07 | 0.2 |
Ultimate analysis (as received, wt%) | |||||
C, wt% | 84.15 | 84.73 | 84.25 | 84.99 | 83.87 |
H, wt% | 14.4 | 13.9 | 14.07 | 13.43 | 14.56 |
N, wt% | 0.07 | 0.05 | 0.09 | 0.07 | 0.05 |
S, wt% | 0.32 | 0.39 | 0.41 | 0.47 | 0.41 |
O, wt% | 1.06 | 0.95 | 1.18 | 1.04 | 1.11 |
Ti, mg kg−1 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 |
Al, mg kg−1 | 5.23 | 6.23 | 7.33 | 8.21 | 7.13 |
Cl, mg kg−1 | 12.6 | 11.42 | 11.21 | 12.11 | 12.93 |
Fe, mg kg−1 | 1.16 | 15.55 | 116.59 | 155.46 | 310.92 |
ANOVA of Proximal Analysis | |||||
---|---|---|---|---|---|
Factor | N | Average | Grouping | SC Adjusted Error | MC Adjusted Error |
Moisture, wt% | 5 | 0.292 | A | 0.055 | 0.004637 |
Fixed carbon, wt% | 5 | 0.128 | B | ||
Ash, wt% | 5 | 0.082 | B | ||
ANOVA for Alkanes | |||||
Isopentane, % mol | 5 | 8.12 | A | 154.4 | 5.513 |
Ethane, % mol | 5 | 7.24 | A B | ||
Methane, % mol | 5 | 3.34 | B C | ||
Propane, % mol | 5 | 2.54 | B C | ||
N-Butane, % mol | 5 | 1.26 | C | ||
Cyclopropane, % mol | 5 | 0.324 | C | ||
Isobutane, % mol | 5 | 0.3 | C | ||
ANOVA for Alkenes | |||||
Propylene % mol | 5 | 46.16 | A | 526.6 | 16.45 |
1,3-Butadiene, % mol | 5 | 3.98 | B | ||
Ethylene, % mol | 5 | 1.44 | B | ||
1-Pentene, % mole | 5 | 0.94 | B | ||
1-Butene, % mol | 5 | 0.8 | B | ||
Propadiene, % mol | 5 | 0.54 | B | ||
Cis-2-Butene, % mol | 5 | 0.48 | B | ||
Trans-2-Butene, % mol | 5 | 0.44 | B | ||
ANOVA for Alkynes | |||||
Methyl acetylene, % mol | 5 | 0.746 | A | 2.086 | 0.261 |
Acetylene, % mol | 5 | 0.58 | A | ||
ANOVA for Alcohols | |||||
Methanol, % mol | 5 | 3.98 | A | 75.50 | 2.696 |
N-Propanol, % mol | 5 | 2.08 | A | ||
N-Butyl Alcohol, % mol | 5 | 1.64 | A | ||
Alcohol Isopropyl, % mol | 5 | 1.602 | A | ||
3-Methyl-2-Pentanol, % mol | 5 | 1.324 | A | ||
Ethanol, % mol | 5 | 1.28 | A | ||
1,2-Isobutenediol, % mol | 5 | 1.24 | A | ||
ANOVA for Ketones | |||||
2-Pentanone, % mol | 5 | 1.284 | A | 20.16 | 1.266 |
2,4-Pentadione, % mol | 5 | 1.064 | A | ||
1-Hydroxy-2-Propanone, % mol | 5 | 0.922 | A | ||
Acetone, % mol | 5 | 0.702 | A | ||
ANOVA for Acids | |||||
Formic Acid, % mol | 5 | 1.864 | A | 23.34 | 2.918 |
Acetic Acid, % mol | 5 | 1.8 | A |
Composts (Pyrolysis) | Samples | ||||
---|---|---|---|---|---|
HW-PP-0 | HW-PP-1 | HW-PP-2 | HW-PP-3 | HW-PP-4 | |
Alkanes | |||||
Methane, % mol | 5 | 4 | 4.1 | 2.5 | 1.1 |
Ethane, % mol | 12.1 | 10.2 | 8.7 | 3.6 | 1.6 |
Propane, % mol | 2.4 | 3.1 | 3.6 | 2.1 | 1.5 |
Cyclopropane, % mol | 0.05 | 1.2 | 0.2 | 0.1 | 0.07 |
Isobutane, % mol | 0.7 | 0.5 | 0.1 | 0.1 | 0.1 |
N-Butane, % mol | 1.9 | 1.3 | 1.1 | 1.5 | 0.5 |
Isopentane, % mol | 13.5 | 10.5 | 7.3 | 5.3 | 4 |
Total Amount | 35.65 | 30.8 | 25.1 | 15.2 | 8.87 |
Alkenes | |||||
Ethylene, % mol | 1.9 | 1 | 1.4 | 1.5 | 1.4 |
Propylene % mol | 58.3 | 53.5 | 48.7 | 40.2 | 30.1 |
Propadiene, % mol | 0.5 | 0.1 | 0.2 | 0.7 | 1.2 |
Trans-2-Butene, % mol | 0.3 | 0.1 | 0.2 | 0.5 | 1.1 |
1-Butene, % mol | 1.2 | 0.4 | 0.7 | 0.7 | 1 |
Cis-2-Butene, % mol | 0.3 | 0.4 | 0.7 | 0.3 | 0.7 |
1,3-Butadiene, % mol | 0.5 | 2.6 | 5.4 | 5.5 | 5.9 |
1-Pentene, % mole | 0.7 | 0.8 | 0.5 | 1.8 | 0.9 |
Total Amount | 63.7 | 58.9 | 57.8 | 51.2 | 42.3 |
Alkynes | |||||
Acetylene, % mol | 0.1 | 0.3 | 0.8 | 0.3 | 1.4 |
Methyl acetylene, % mol | 0.2 | 0.7 | 0.5 | 0.8 | 1.53 |
Total Amount | 0.3 | 1 | 1.3 | 1.1 | 2.93 |
Alcohols | |||||
Methanol, % mol | 0.01 | 3.1 | 4.2 | 5.38 | 7.2 |
Ethanol, % mol | 0.1 | 0.6 | 0.8 | 1.6 | 3.3 |
Alcohol Isopropyl, % mol | 0.01 | 0.6 | 1.1 | 2.4 | 3.9 |
N-Propanol, % mol | 0 | 1 | 1.5 | 3.1 | 4.8 |
N-Butyl Alcohol, % mol | 0 | 0.8 | 1.4 | 2.7 | 3.3 |
1,2-Isobutenediol, % mol | 0 | 0.7 | 0.8 | 1.8 | 2.9 |
3-Methyl-2-Pentanol, % mol | 0 | 0.9 | 1.4 | 1.62 | 2.7 |
Total Amount | 0.12 | 7.7 | 11.2 | 18.6 | 28.1 |
Ketone | |||||
Acetone, % mole | 0.01 | 0.1 | 0.4 | 1.2 | 1.8 |
1-Hydroxy-2-Propanone, % mol | 0.01 | 0.1 | 0.3 | 1.7 | 2.5 |
2,4-Pentadione, % mol | 0.01 | 0.11 | 0.4 | 2.1 | 2.7 |
2-Pentanone, % mol | 0.01 | 0.11 | 1.1 | 2.4 | 2.8 |
Total Amount | 0.04 | 0.42 | 2.2 | 7.4 | 9.8 |
Acids | |||||
Formic Acid, % mol | 0.1 | 0.72 | 1.2 | 3.1 | 4.2 |
Acetic Acid, % mol | 0.1 | 0.5 | 1.2 | 3.4 | 3.8 |
Total Amount | 0.2 | 1.22 | 2.4 | 6.5 | 8 |
Total | 100.01 | 100.04 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez-Fernandez, J.; Sanchez, J.C.; Martinez, J.L. Sustainable Catalysts from Industrial FeO Waste for Pyrolysis and Oxidation of Hospital Polypropylene in Cartagena. Sustainability 2024, 16, 5934. https://doi.org/10.3390/su16145934
Hernandez-Fernandez J, Sanchez JC, Martinez JL. Sustainable Catalysts from Industrial FeO Waste for Pyrolysis and Oxidation of Hospital Polypropylene in Cartagena. Sustainability. 2024; 16(14):5934. https://doi.org/10.3390/su16145934
Chicago/Turabian StyleHernandez-Fernandez, Joaquín, Juan Carrascal Sanchez, and Juan Lopez Martinez. 2024. "Sustainable Catalysts from Industrial FeO Waste for Pyrolysis and Oxidation of Hospital Polypropylene in Cartagena" Sustainability 16, no. 14: 5934. https://doi.org/10.3390/su16145934
APA StyleHernandez-Fernandez, J., Sanchez, J. C., & Martinez, J. L. (2024). Sustainable Catalysts from Industrial FeO Waste for Pyrolysis and Oxidation of Hospital Polypropylene in Cartagena. Sustainability, 16(14), 5934. https://doi.org/10.3390/su16145934