Life Cycle Assessment of Tomato Cultivated in an Innovative Soilless System
<p>Cultivation channel section in the agriponic system.</p> "> Figure 2
<p>Greenhouse and cultivation channels in the agriponic system.</p> "> Figure 3
<p>Operation of the greenhouse irrigation system.</p> "> Figure 4
<p>System boundary analyzed.</p> "> Figure 5
<p>GWP 100a trends.</p> "> Figure 6
<p>ODP trends.</p> "> Figure 7
<p>POCP trends.</p> "> Figure 8
<p>AP trends.</p> "> Figure 9
<p>EP trends.</p> "> Figure 10
<p>Trends of the various impact categories for the system phases.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation System
2.2. Greenhouse
2.3. Tomatoes
2.4. Irrigation System
2.5. Production Process Description
2.6. Life Cycle Assessment
3. Results
3.1. A Life Cycle Assessment of a Tomato Produced in Agriponic Greenhouse
3.1.1. Goal and Scope
3.1.2. Life Cycle Inventory Analysis
- -
- Water consumption;
- -
- Electricity consumption associated with pumps;
- -
- Fertilizer usage;
- -
- Irrigation period and duration;
- -
- Waste generation.
3.1.3. Impact Assessment Results
- Global warming potential (GWP 100a);
- Ozone layer depletion potential (ODP);
- Photochemical oxidation potential (POCP);
- Acidification potential (AP);
- Eutrophication potential (EP).
3.1.4. Interpretation
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Beach, R.H.; DeAngelo, B.J.; Rose, S.; Li, C.; Salas, W.; DelGrosso, S.J. Mitigation potential and costs for global agricultural greenhouse gas emissions. Agric. Econ. 2008, 38, 109–115. [Google Scholar] [CrossRef]
- UNESCO. World Water Assessment Programme. The United Nations World Water Development Report 2021: Valuing Water; United Nations: New York, NY, USA, 2021; Available online: https://www.unwater.org/publications/un-world-water-development-report-2021 (accessed on 31 July 2023).
- United Nations Convention to Combat Desertification. The Global Land Outlook, 2nd ed.; UNCCD: Bonn, Germany, 2022. [Google Scholar]
- FAO and ITPS. The Status of the World’s Soil Resources (Main Report); FAO and ITPS: Rome, Italy, 2015. [Google Scholar]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed]
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results; DESA/POP/2022/TR/NO. 3; United Nations: New York, NY, USA, 2022. [Google Scholar]
- ISO 14040; Environmental Management. Life Cycle Assessment. Principles and Framework, 2nd ed. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Perrin, A.; Basset-Mens, C.; Gabrielle, B. Life cycle assessment of vegetable products: A review focusing on cropping systems diversity and the estimation of field emissions. Int. J. Life Cycle Assess. 2014, 19, 1247–1263. [Google Scholar] [CrossRef]
- FAOSTAT. FAO Stat. Database. 2021. Available online: http://www.fao.org/faostat (accessed on 17 July 2023).
- Naseer, M.; Persson, T.; Hjelkrem, A.G.R.; Ruoff, P.; Verheul, M.J. Life cycle assessment of tomato production for different production strategies in Norway. J. Clean. Prod. 2022, 372, 133659. [Google Scholar] [CrossRef]
- Pineda, I.T.; Lee, Y.D.; Kim, Y.S.; Lee, S.M.; Park, K.S. Review of inventory data in life cycle assessment applied in production of fresh tomato in greenhouse. J. Clean. Prod. 2021, 282, 124395. [Google Scholar] [CrossRef]
- Solimene, S.; Coluccia, D.; Bernardo, A. Environmental Impact of Different Business Models: An LCA Study of Fresh Tomato Production in Italy. Sustainability 2023, 15, 10365. [Google Scholar] [CrossRef]
- Tamburini, E.; Pedrini, P.; Marchetti, M.G.; Fano, E.A.; Castaldelli, G. Life cycle based evaluation of environmental and economic impacts of agricultural productions in the Mediterranean area. Sustainability 2015, 7, 2915–2935. [Google Scholar] [CrossRef]
- Bosona, T.; Gebresenbet, G. Life cycle analysis of organic tomato production and supply in Sweden. J. Clean. Prod. 2018, 196, 635–643. [Google Scholar] [CrossRef]
- Canaj, K.; Mehmeti, A.; Cantore, V.; Todorović, M. LCA of tomato greenhouse production using spatially differentiated life cycle impact assessment indicators: An Albanian case study. Environ. Sci. Pollut. Res. 2020, 27, 6960–6970. [Google Scholar] [CrossRef] [PubMed]
- Payen, S.; Basset-Mens, C.; Perret, S. LCA of local and imported tomato: An energy and water trade-off. J. Clean. Prod. 2015, 87, 139–148. [Google Scholar] [CrossRef]
- Torrellas, M.; Antón, A.; López, J.C.; Baeza, E.J.; Parra, J.P.; Muñoz, P.; Montero, J.I. LCA of a tomato crop in a multi-tunnel greenhouse in Almeria. Int. J. Life Cycle Assess. 2012, 17, 863–875. [Google Scholar] [CrossRef]
- Russo, G.; Scarascia Mugnozza, G. LCA methodology applied to various typology of greenhouses. In Proceedings of the International Conference on Sustainable Greenhouse Systems—GREENSYS 2004, Leuven, Belgium, 12–16 September 2004; Volume 691, pp. 837–844. [Google Scholar]
- Anton, A.; Montero, J.I.; Munoz, P.; Castells, F. LCA and tomato production in Mediterranean greenhouses. Int. J. Agric. Resour. Gov. Ecol. 2005, 4, 102–112. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Gao, J.; Syed, T.N.; Chandio, F.A.; Buttar, N.A. Modern plant cultivation technologies in agriculture under controlled environment: A review on aeroponics. J. Plant Interact. 2018, 13, 338–352. [Google Scholar] [CrossRef]
- Kumari, R.; Kumar, R. Aeroponics: A review on modern agriculture technology. Indian Farmer 2019, 6, 286–292. [Google Scholar]
- AlShrouf, A. Hydroponics, aeroponic and aquaponic as compared with conventional farming. Am. Sci. Res. J. Eng. Technol. Sci. 2017, 27, 247–255. [Google Scholar]
- Cellura, M.; Longo, S.; Mistretta, M. Life Cycle Assessment (LCA) of protected crops: An Italian case study. J. Clean. Prod. 2012, 28, 56–62. [Google Scholar] [CrossRef]
- Irabien, A.; Darton, R.C. Energy–water–food nexus in the Spanish greenhouse tomato production. Clean Technol. Environ. Policy 2016, 18, 1307–1316. [Google Scholar] [CrossRef]
- Nordenström, E.; Guest, G.; Fröling, M. LCA of Local Bio-chp Fuelled Greeenhouses Versus Mediterranean Open Fiel Tomatoes for Consumption in Northern Scandinavia. In Proceedings of the Linnaeus ECO-TECH ’10, Kalmar, Sweden, 22–24 November 2010; pp. 475–484. [Google Scholar]
- Elings, A.; Kempkes, F.L.K.; Kaarsemaker, R.C.; Ruijs, M.N.A.; Van de Braak, N.J.; Dueck, T.A. The energy balance and energy-saving measures in greenhouse tomato cultivation. In Proceedings of the International Conference on Sustainable Greenhouse Systems—Greensys 2004, Leuven, Belgium, 12–16 September 2004; Volume 691, pp. 67–74. [Google Scholar]
- Ghasemi, F.; Vílchez, V.F.; Asadi, I. The Life Cycle Assessment on Environmental Impacts of Greenhouse Crops: A Theoretical Review. J. Environ. Treat. Technol. 2022, 10, 35–46. [Google Scholar]
- Tuomisto, H.L.; Hodge, I.D.; Riordan, P.; Macdonald, D.W. Does organic farming reduce environmental impacts?—A meta-analysis of European research. J. Environ. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef] [PubMed]
Phase System | Input | Quantity | Output | Quantity |
---|---|---|---|---|
Plant transplanting phase | Tomato plants | 1760 | Polystyrene seed pots | 166.8 kg |
Polypropylene wires | 5.2 kg | Polypropylene | 5.2 kg | |
Clips (PET) | 2.6 kg | PET | 2.6 kg | |
Plant growth | Water | 66.8 m3 | Bags of fertilizers in PE Fertilizer bottles and plant protection | 2.8 kg 12.86 kg |
Nitric Acid | 28 kg | |||
Monopotassium phosphate | 5.2 kg | |||
Nitro 34 | 1.3 kg | |||
Chelated iron | 0.42 kg | |||
Microelement mix | 0.77 kg | |||
Potassium sulphate | 9.85 kg | |||
Magnesium sulphate | 5.23 kg | |||
Magnesium nitrate | 5.23 kg | |||
Electricity | 457.226 kWh | |||
Vermitec | 0.014 kg | |||
Intrepid | 0.55 kg | |||
Costar | 0.252 kg | |||
Oikos | 0.083 kg | |||
Oberon | 0.021 kg | |||
Armicab | 0.180 kg | |||
Ridomil | 0.215 kg | |||
Cidely Top | 0.015 kg | |||
Sprintene | 0.049 kg | |||
Algalive | 0.070 kg | |||
Agrialgae | 0.102 kg | |||
Zolfo Pro | 0.098 kg | |||
20-20-20 Plantafol | 0.070 kg | |||
Dentamet | 0.012 kg | |||
Laser | 0.007 kg | |||
Epik | 0.031 kg | |||
Labin CU | 0.015 kg | |||
Flipper | 0.138 kg | |||
Harvesting | Tomato fruits | 1 ton | ||
Greenhouse climate management | Shading net | 1600 m2 | ||
Diesel | 42 kg | |||
Crop disposal | Clips (PET) | 2.6 kg | ||
Polypropylene wires | 5.2 kg |
Product | Active Principal Ingredients | Notes |
---|---|---|
Vermitec | Abamectine | Acaricide |
Intrepid | Pure methoxyfenozide | Insecticide |
1,2-benzisothiazolin-3-one | ||
Costar | Bacillus thuringiensis | Biological insecticide |
Oikos | Azadirachtin A | Insecticide |
Oberon | Spiromesiphene | Insecticide |
Armicab | Potassium bicarbonate | Fungicide |
Ridomil | Metalaxyl-M Copper metal (from oxychloride) | Fungicide |
Cidely Top | Pure diphenoconazole Pure cyflufenamid | Fungicide |
Sprintene | Flavonic glucosides Oxycoumarins Group B vitamins Anthocyanins Nicotinic acid Micro-nutrients in chelated form (Fe, Zn, Mn, Co) Boron (B) | Biostimulant/Organic fertilizer |
Algalive | Organic nitrogen (N) Organic carbon of biological origin Organic substance with a molecular weight <50 kDa | Biostimulant/Organic fertilizer |
Agrialgae | Free L-amino acids Total nitrogen Organic nitrogen Nitric nitrogen P2O5 K2O | Biostimulant/Organic fertilizer |
Zolfo Pro | Nitrogen (N) total Soluble organic nitrogen (N) Sulphur (S) total Organic carbon of biological origin | Mineral fertilizer |
20-20-20 Plantaflo | Total nitrogen Total phosphoric anhydride (P2O5) Water-soluble potassium oxide (K2O) Water-soluble boron (B) Water-soluble copper (Cu) chelated with EDTA Water-soluble iron (Fe) chelated with EDTA Manganese (Mn) chelated with water-soluble EDTA Zinc (Zn) chelated with water-soluble EDTA | Mineral fertilizer |
Dentament | Water-soluble copper (Cu) Zinc (Zn) soluble in water | Mineral fertilizer |
Laser | Pure spinosad (QUALCOVA active) | Mineral fertilizer |
Epik | Pure acetamiprid | Biological insecticide |
Labin CU | Water-soluble copper | Organic fungicide |
Flipper | Potassium salts of fatty acids (C14–C20) | Biological insecticide |
Product | Active Principal Ingredients |
---|---|
Monopotassium phosphate | Phosphoric anhydride (P2O5) |
Phosphorus | |
Potassium oxide (K2O) Potassium | |
Nitro 34 | Total nitrogen (N) |
Nitrogen (N) nitric Nitrogen (N) ammonia | |
Chelated Iron | Water soluble iron (Fe) |
Iron (Fe) chelated with EDTA |
Impact Category | Unit | Total | Transplanting Plants | Plant Growth | Harvesting | Greenhouse Climate Management | Crop Disposal |
---|---|---|---|---|---|---|---|
Global warming potential (GWP 100a) | Kg CO2 eq | 562.29 | 10.45 | 402.02 | 0.34 | 144.46 | 5.02 |
Ozone layer depletion (ODP) | Kg CFC-11 eq | 0.00058 | 1.93 × 10−6 | 0.00056 | 3.66 × 10−8 | 2.54 × 10−5 | 4.67 × 10−9 |
Photochemical oxidation (POCP) | Kg C2H4 eq | 0.096 | 0.001 | 0.078 | 5.37 × 10−5 | 0.017 | 1.81 × 10−6 |
Acidification potential (AP) | Kg SO2 eq | 2.73 | 0.04 | 1.67 | 0.002 | 1.02 | 6.047 × 10−5 |
Eutrophication potential (EP) | Kg PO4---eq | 0.66 | 0.007 | 0.43 | 0.001 | 0.23 | 1.15 × 10−5 |
Impact Category | Total | Transplanting Plants in Aeroponics | Plant Growth | Harvesting | Greenhouse Climate Management | Crop Disposal |
---|---|---|---|---|---|---|
Global warming potential (GWP 100a) | 1.119 × 10−10 | 2.080 × 10−12 | 8.0003 × 10−11 | 6.762 × 10−14 | 2.875 × 10−11 | 9.986 × 10−13 |
Ozone layer depletion (ODP) | 6.549 × 10−12 | 2.156 × 10−14 | 6.242 × 10−12 | 4.0099 × 10−16 | 2.847 × 10−13 | 5.231 × 10−17 |
Photochemical oxidation (POCP) | 1.132 × 10−11 | 1.213 × 10−13 | 9.252 × 10−12 | 6.334 × 10−15 | 1.945 × 10−12 | 2.134 × 10−16 |
Acidification potential (AP) | 9.695 × 10−11 | 1.290 × 10−12 | 5.933 × 10−11 | 6.684 × 10−14 | 3.626 × 10−11 | 2.147 × 10−15 |
Eutrophication potential (EP) | 5.027 × 10−11 | 5.438 × 10−13 | 3.259 × 10−11 | 8.097 × 10−14 | 1.706 × 10−11 | 8.704 × 10−16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedalà, M.C.; Traverso, M.; Prestigiacomo, S.; Covais, A.; Gugliuzza, G. Life Cycle Assessment of Tomato Cultivated in an Innovative Soilless System. Sustainability 2023, 15, 15669. https://doi.org/10.3390/su152115669
Pedalà MC, Traverso M, Prestigiacomo S, Covais A, Gugliuzza G. Life Cycle Assessment of Tomato Cultivated in an Innovative Soilless System. Sustainability. 2023; 15(21):15669. https://doi.org/10.3390/su152115669
Chicago/Turabian StylePedalà, Maria Concetta, Marzia Traverso, Simona Prestigiacomo, Antonio Covais, and Giovanni Gugliuzza. 2023. "Life Cycle Assessment of Tomato Cultivated in an Innovative Soilless System" Sustainability 15, no. 21: 15669. https://doi.org/10.3390/su152115669
APA StylePedalà, M. C., Traverso, M., Prestigiacomo, S., Covais, A., & Gugliuzza, G. (2023). Life Cycle Assessment of Tomato Cultivated in an Innovative Soilless System. Sustainability, 15(21), 15669. https://doi.org/10.3390/su152115669