Ensemble Learning Based Sustainable Approach to Carbonate Reservoirs Permeability Prediction
<p>Proposed Methodology.</p> "> Figure 2
<p>RMSE of the RF algorithm.</p> "> Figure 3
<p>Correlation Coefficient of the RF Algorithm.</p> "> Figure 4
<p>Correlation Coefficient of the Gradient Boost Algorithm.</p> "> Figure 5
<p>RMSE of the Gradient Boost Algorithm.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Artificial Neural Network (ANN)
2.2. Support Vector Machines (SVM)
2.3. Other Contemporary ML Models
3. Materials and Methods
3.1. Random Forest
3.2. Gradient Boost
3.3. Extreme Gradient Boost (XGB)
3.4. AdaBoost
3.5. Linear Regression
3.6. Support Vector Machine (SVM)
4. Proposed Approach
4.1. Dataset
4.2. Preprocessing
5. Experimental Setup
5.1. Evaluation Criteria
5.1.1. Root Mean-Squared Error (RMSE)
5.1.2. Mean Absolute Error (MAE)
5.1.3. Coefficient of Determination (R2)
6. Results and Discussion
- Training models using the whole dataset obtained from exploration fields.
- Training models after applying the pre-processing steps on the dataset.
- Results of testing are presented rather than training, which is more realistic because the test data is distinct.
6.1. Comparison with State-of-the-Art
6.2. Limitations of the Study
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Darcy, H. Les Fontaines Publiques de la Ville de Dijon: Exposition et Application des Principes à Suivre et des Formules à Employer Dans les Questions de Distribution d’eau; Victor Dalmont: Paris, France, 1856. [Google Scholar]
- Olatunji, S.; Selamat, A.; Raheem, A. Improved sensitivity based linear learning method for permeability prediction of carbonate reservoir using interval type-2 fuzzy logic system. Appl. Soft Comput. 2014, 14, 144–155. [Google Scholar] [CrossRef]
- Xu, P.; Zhou, H.; Liu, X.; Chen, L.; Xiong, C.; Lyu, F.; Zhou, J.; Liu, J. Permeability prediction using logging data in a heterogeneous carbonate reservoir: A new self-adaptive predictor. Geoenergy Sci. Eng. 2023, 224, 211635. [Google Scholar] [CrossRef]
- Sheykhinasab, A.; Mohseni, A.A.; Barahooie Bahari, A.; Naruei, E.; Davoodi, S.; Aghaz, A.; Mehrad, M. Prediction of permeability of highly heterogeneous hydrocarbon reservoir from conventional petrophysical logs using optimized data-driven algorithms. J. Pet. Explor. Prod. Technol. 2023, 13, 661–689. [Google Scholar] [CrossRef]
- Mahdaviara, M.; Rostami, A.; Keivanimehr, F.; Shahbazi, K. Accurate determination of permeability in carbonate reservoirs using Gaussian Process Regression. J. Pet. Sci. Eng. 2021, 196, 107807. [Google Scholar] [CrossRef]
- Ayan, C.; Hafez, H.; Hurst, S.; Kuchuk, F.; O’Callaghan, A.; Peffer, J.; Pop, J.; Zeybek, M. Characterizing Permeability with Formation Testers. Oilfield Rev. 2001, 13, 2–23. [Google Scholar]
- Choquette, P.W.; Pray, L.C. Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates1. AAPG Bull. 1970, 54, 207–250. [Google Scholar]
- Carbonate Sedimentology. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9781444314175 (accessed on 30 June 2023).
- Li, S.; Liu, M.; Hanaor, D.; Gan, Y. Dynamics of Viscous Entrapped Saturated Zones in Partially Wetted Porous Media. Transp. Porous Media 2018, 125, 193–210. [Google Scholar] [CrossRef]
- Akande, K.; Owolabi, T.; Olatunji, S. Investigating the effect of correlation-based feature selection on the performance of support vector machines in reservoir characterization. J. Nat. Gas Sci. Eng. 2015, 22, 515–522. [Google Scholar] [CrossRef]
- Elkatatny, S.; Mahmoud, M.; Tariq, Z.; Abdulraheem, A. New insights into the prediction of heterogeneous carbonate reservoir permeability from well logs using artificial intelligence network. Neural Comput. Appl. 2018, 30, 2673–2683. [Google Scholar] [CrossRef]
- Akande, K.O.; Owolabi, T.O.; Olatunji, S.O. Investigating the effect of correlation-based feature selection on the performance of neural network in reservoir characterization. J. Nat. Gas Sci. Eng. 2015, 27, 98–108. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, Y.; Mohammadian, E.; Hadavimoghaddam, F.; Jafari, M.; Kheirollahi, M.; Rozhenko, A.; Liu, B. Modeling Permeability Using Advanced White-Box Machine Learning Technique: Application to a Heterogeneous Carbonate Reservoir. ACS Omega 2023, 8, 22922–22933. [Google Scholar] [CrossRef]
- Mohammadian, E.; Kheirollahi, M.; Liu, B.; Ostadhassan, M.; Sabet, M. A case study of petrophysical rock typing and permeability prediction using machine learning in a heterogenous carbonate reservoir in Iran. Sci. Rep. 2022, 12, 4505. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, T. Machine Learning; McGraw-Hill Education: New York, NY, USA, 1997; Volume 1. [Google Scholar]
- Baştanlar, Y.; Ozuysal, M. Introduction to machine learning. Methods Mol. Biol. 2014, 1107, 105–128. [Google Scholar] [PubMed]
- Abusurra, M.S.M. Using Artificial Neural Networks to Predict Formation Stresses for Marcellus Shale with Data from Drilling Operations. Master’s Thesis, West Virginia University, Morgantown, WV, USA, 2017; p. 5023. [Google Scholar] [CrossRef]
- Al Khalifah, H.; Glover, P.W.J.; Lorinczi, P. Permeability prediction and diagenesis in tight carbonates using machine learning techniques. Mar. Pet. Geol. 2020, 112, 104096. [Google Scholar] [CrossRef]
- Ahrimankosh, M.; Kasiri, N.; Mousavi, S. Improved Permeability Prediction of a Heterogeneous Carbonate Reservoir Using Artificial Neural Networks Based on the Flow Zone Index Approach. Pet. Sci. Technol. 2011, 29, 2494–2506. [Google Scholar] [CrossRef]
- Iturraran-Viveros, U.; Parra, J. Artificial Neural Networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well-log data. J. Appl. Geophys. 2014, 107, 45–54. [Google Scholar] [CrossRef]
- Mohebbi, A.; Kamalpour, R.; Keyvanloo, K.; Sarrafi, A. The Prediction of Permeability from Well Logging Data Based on Reservoir Zoning, Using Artificial Neural Networks in One of an Iranian Heterogeneous Oil Reservoir. Pet. Sci. Technol. 2012, 30, 1998–2007. [Google Scholar] [CrossRef]
- Gholami, R.; Shahraki, A.R.; Jamali Paghaleh, M. Prediction of Hydrocarbon Reservoirs Permeability Using Support Vector Machine. Math. Probl. Eng. 2012, 2012, 670723. [Google Scholar] [CrossRef]
- Al-Anazi, A.F.; Gates, I. Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study. Comput. Geosci. 2010, 36, 1494–1503. [Google Scholar] [CrossRef]
- Gu, Y.; Bao, Z.; Song, X.; Wei, M.; Zang, D.; Niu, B.; Lu, K. Permeability prediction for carbonate reservoir using a data-driven model comprising deep learning network, particle swarm optimization, and support vector regression: A case study of the LULA oilfield. Arab. J. Geosci. 2019, 12, 622. [Google Scholar] [CrossRef]
- Alotaibi, S.M.; Rahman, A.; Basheer, M.I.; Khan, M.A. Ensemble machine learning based identification of pediatric epilepsy. Comput. Mater. Contin. 2021, 68, 149–165. [Google Scholar]
- Ibrahim, N.M.; Alharbi, A.A.; Alzahrani, T.A.; Abdulkarim, A.M.; Alessa, I.A.; Hameed, A.M.; Albabtain, A.S.; Alqahtani, D.A.; Alsawwaf, M.K.; Almuqhim, A.A. Well Performance Classification and Prediction: Deep Learning and Machine Learning Long Term Regression Experiments on Oil, Gas, and Water Production. Sensors 2022, 22, 5326. [Google Scholar] [CrossRef] [PubMed]
- Tin Kam, H. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; Volume 271, pp. 278–282. [Google Scholar]
- Segal, M. Machine Learning Benchmarks and Random Forest Regression; Technical Report; Center for Bioinformatics & Molecular Biostatistics, University of California: San Francisco, CA, USA, 2003. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2009. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Statist. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Wakjira, T.G.; Ibrahim, M.; Ebead, U.; Alam, M.S. Explainable machine learning model and reliability analysis for flexural capacity prediction of RC beams strengthened in flexure with FRCM. Eng. Struct. 2022, 255, 113903. [Google Scholar] [CrossRef]
- Erofeev, A.; Orlov, D.; Ryzhov, A.; Koroteev, D. Prediction of Porosity and Permeability Alteration Based on Machine Learning Algorithms. Transp. Porous Media 2019, 128, 677–700. [Google Scholar] [CrossRef]
- Rahman, A.U.; Sultan, K.; Naseer, I.; Majeed, R.; Musleh, D.; Gollapalli, M.A.S.; Chabani, S.; Ibrahim, N.; Siddiqui, S.Y.; Khan, M.A. Supervised machine learning-based prediction of COVID-19. Comput. Mater. Contin. 2021, 69, 21–34. [Google Scholar]
- Wakjira, T.G.; Abushanab, A.; Ebead, U.; Alnahhal, W. FAI: Fast, accurate, and intelligent approach and prediction tool for flexural capacity of FRP-RC beams based on super-learner machine learning model. Mater. Today Commun. 2022, 33, 104461. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Rahman, A.; AlGhamdi, F.; AlDakheel, S.; Hakami, H.; AlJumah, A.; AlIbrahim, Z.; Youldash, M.; Alam Khan, M.A.; Basheer Ahmed, M.I. Joint Diagnosis of Pneumonia, COVID-19, and Tuberculosis from Chest X-ray Images: A Deep Learning Approach. Diagnostics 2023, 13, 2562. [Google Scholar] [CrossRef]
- Ahmed, M.I.B.; Alotaibi, R.B.; Al-Qahtani, R.A.; Al-Qahtani, R.S.; Al-Hetela, S.S.; Al-Matar, K.A.; Al-Saqer, N.K.; Rahman, A.; Saraireh, L.; Youldash, M.; et al. Deep Learning Approach to Recyclable Products Classification: Towards Sustainable Waste Management. Sustainability 2023, 15, 11138. [Google Scholar] [CrossRef]
- Sharma, R.; Mahanti, G.K.; Panda, G.; Rath, A.; Dash, S.; Mallik, S.; Hu, R. A Framework for Detecting Thyroid Cancer from Ultrasound and Histopathological Images Using Deep Learning, Meta-Heuristics, and MCDM Algorithms. J. Imaging 2023, 9, 173. [Google Scholar] [CrossRef]
- Gollapalli, M. Ensemble Machine Learning Model to Predict the Waterborne Syndrome. Algorithms 2022, 15, 93. [Google Scholar] [CrossRef]
- Musleh, D.A.; Al Metrik, M.A. Machine Learning and Bagging to Predict Midterm Electricity Consumption in Saudi Arabia. Appl. Syst. Innov. 2023, 6, 65. [Google Scholar] [CrossRef]
- Al Metrik, M.A.; Musleh, D.A. Machine learning empowered electricity consumption prediction. Comput. Mater. Contin. 2022, 72, 1427–1444. [Google Scholar] [CrossRef]
OWL-Code | Samples | Available Well-Log Data (Predictors) |
---|---|---|
OWL-A | 388 | MSFL, DT, NPHI, PHIT, RHOB, SWT, CALI, CT, DRHO, GR, RT |
OWL-B | 357 | CPERM, CPOR, MSFL, NPHI, PHIT, RHOB, SWT, CALI, CT, DRHO, GR, RT |
OWL-C | 478 | MSFL, DT, NPHI, PHIT, RHOB, SWT, CALI, CT, DRHO, GR, RT |
OWL-D | 388 | CPERM, CPOR, MSFL, DT, NPHI, PHIT, RHOB, SWT, CALI, CT, DRHO, GR, RT |
OWL-E | 41 | CPERM, CPOR, DT, NPHI, PHIT, RHOB, SWT, CALI, CT, DRHO, GR, RT |
Attribute | Description |
---|---|
Micro Spherically Focused Log (MSFL) | Gowell’s MSFL tool measures the flushed zone resistivity (Rxo) with a single axis. |
Neutron Porosity (NPHI) | By measuring the falloff of neutrons between the two detectors, the tool determines the size of the neutron cloud. |
Total Porosity (PHIT) | The total porosity of clean (clay-free) sand and Vd are expressions of the volume of clay dispersed within the pores of the sand. |
Water Saturation (SWT) | The fraction of formation water in the quiet zone unless otherwise stated. |
Sonic Travel Time (DT) | It provides information to support and calibrate seismic data and derives the porosity of a formation. |
Resistivity (RT) | It refers to the level of resistance to the flow of electric current a material exhibit. |
Bulk Density Correction (DRHO) | It is calculated from the difference between the short- and long-spaced density measurements and further indicates the quality of the bulk density data. |
Electrical Conductivity (CT) | It measures the ease at which an electric charge or heat can pass through a material. |
Log10_Core Permeability (CPERM) | A geometric mean regression goes through the center of a log10 Permeability cloud and therefore seeks the. |
Log10_Core Porosity (CPOR) | Most equations use it as a fraction, and in core analysis studies, it is expressed as a percentage. |
Caliper (CALI) | It has two curved, hinged legs and is used to measure both thickness and distance. |
Gamma-Ray (GR) | The radioactivity of rocks has been used to help derive lithologies. |
OWL | PERM | NPHI | PHIT | RHOB | SWT | CALI | CT | DRHO | GR | RT | MSFL | DT | CPERM | CPOR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OWL-A | ||||||||||||||
Mean | 0.739 | 0.126 | 0.143 | 2.459 | 0.33 | 6.14 | 0.059 | 0.017 | 11.04 | 23.91 | 1.759 | 65.736 | ||
Std | 1.183 | 0.062 | 0.078 | 0.141 | 0.344 | 0.019 | 0.028 | 0.033 | 3.747 | 22.495 | 0.282 | 9.948 | ||
Max | 3.436 | 0.24 | 0.287 | 2.745 | 1 | 6.311 | 0.168 | 0.329 | 22.983 | 165.335 | 2.775 | 83.833 | ||
Min | −1.609 | 0.01 | 0.011 | 2.205 | 0.041 | 6.134 | 0.006 | 0 | 3.488 | 5.962 | 1.237 | 50.009 | ||
OWL-B | ||||||||||||||
Mean | 47.136 | 0.137 | 0.153 | 2.437 | 0.170 | 8.411 | 0.050 | 0.057 | 14.793 | 1310.840 | 1.176 | 0.484 | 0.157 | |
Std | 102.531 | 0.052 | 0.068 | 0.142 | 0.178 | 0.104 | 0.030 | 0.028 | 3.978 | 3313.076 | 0.458 | 1.244 | 0.080 | |
Max | 642.043 | 0.261 | 0.291 | 2.668 | 1.000 | 8.489 | 0.112 | 0.130 | 31.035 | 10,000.000 | 2.437 | 2.985 | 0.310 | |
Min | 0.027 | 0.030 | 0.034 | 2.181 | 0.040 | 8.156 | 0.000 | 0.003 | 6.040 | 8.924 | 0.538 | −1.812 | 0.041 | |
OWL-C | ||||||||||||||
Mean | 41.944 | 0.139 | 0.141 | 2.471 | 0.502 | 6.076 | 0.205 | 0.041 | 15.930 | 51.905 | 1.249 | 64.813 | ||
Std | 115.915 | 0.061 | 0.067 | 0.124 | 0.259 | 0.063 | 0.193 | 0.020 | 4.070 | 444.918 | 0.298 | 8.915 | ||
Max | 1083.116 | 0.238 | 0.259 | 2.701 | 1.000 | 6.236 | 0.743 | 0.099 | 30.206 | 7507.557 | 1.851 | 81.129 | ||
Min | 0.020 | 0.017 | 0.015 | 2.254 | 0.040 | 6.002 | 0.000 | 0.003 | 9.726 | 1.345 | 0.450 | 49.280 | ||
OWL-D | ||||||||||||||
Mean | 46.123 | 0.127 | 0.137 | 2.472 | 0.269 | 6.268 | 0.055 | 0.014 | 16.864 | 26.373 | 1.955 | 65.063 | 0.637 | 0.139 |
Std | 118.094 | 0.057 | 0.069 | 0.126 | 0.259 | 0.160 | 0.031 | 0.011 | 5.157 | 22.120 | 0.477 | 8.248 | 1.172 | 0.067 |
Max | 862.523 | 0.273 | 0.299 | 2.730 | 1.000 | 7.093 | 0.179 | 0.097 | 35.821 | 146.104 | 4.028 | 82.680 | 3.207 | 0.292 |
Min | 0.012 | 0.021 | 0.018 | 2.186 | 0.044 | 6.188 | 0.007 | 0.000 | 8.721 | 5.601 | 1.132 | 51.216 | −1.699 | 0.003 |
OWL-E | ||||||||||||||
Mean | 46.270 | 0.136 | 0.139 | 2.488 | 0.573 | 6.390 | 0.174 | 0.035 | 16.404 | 22.815 | 62.754 | 0.183 | 0.116 | |
Std | 86.948 | 0.090 | 0.083 | 0.155 | 0.374 | 0.021 | 0.224 | 0.030 | 4.616 | 23.450 | 9.627 | 1.169 | 0.069 | |
Max | 457.649 | 0.431 | 0.276 | 2.731 | 1.000 | 6.460 | 0.762 | 0.187 | 28.698 | 79.007 | 79.753 | 2.825 | 0.240 | |
Min | 0.018 | 0.030 | 0.022 | 2.221 | 0.046 | 6.373 | 0.009 | 0.005 | 8.533 | 1.472 | 46.770 | −1.699 | 0.008 |
Algorithm | OWL-A | OWL-B | OWL-C | OWL-D | OWL-E |
---|---|---|---|---|---|
Support Vector Regression (SVR) | 1.1119 | 46.0179 | 80.6878 | 60.5097 | 85.3826 |
Random Forest (RF) | 0.759 | 5.0868 | 36.4215 | 6.468 | 28.2614 |
Gradient Boost (GB) | 0.398 | 2.563 | 29.177 | 3.465 | 6.931 |
Extreme Gradient Boost (XGB) | 0.7286 | 8.2129 | 31.811 | 8.2406 | 50.5381 |
AdaBoost | 0.8082 | 7.6522 | 40.3468 | 17.0342 | 18.9856 |
Linear Regression (LR) | 0.7635 | 34.0411 | 41.3958 | 41.8386 | 39.6621 |
Algorithm | OWLs | ||||
---|---|---|---|---|---|
A | B | C | D | E | |
ANN [12] | 1.201 | 4.162 | 0.082 | 15.824 | 21.904 |
GBR (proposed) | 0.398 | 2.563 | 29.177 | 3.465 | 6.931 |
RMSE reduced by: | 0.803 | 1.599 | −29.095 | 12.359 | 14.973 |
Algorithm | OWLs | ||||
---|---|---|---|---|---|
A | B | C | D | E | |
SVM [10] | 0.99 | 17.49 | 0.13 | 20.74 | 13.18 |
GBR (proposed) | 0.398 | 2.563 | 29.177 | 3.465 | 6.931 |
RMSE reduced by: | 0.592 | 14.927 | −29.047 | 17.275 | 6.249 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musleh, D.A.; Olatunji, S.O.; Almajed, A.A.; Alghamdi, A.S.; Alamoudi, B.K.; Almousa, F.S.; Aleid, R.A.; Alamoudi, S.K.; Jan, F.; Al-Mofeez, K.A.; et al. Ensemble Learning Based Sustainable Approach to Carbonate Reservoirs Permeability Prediction. Sustainability 2023, 15, 14403. https://doi.org/10.3390/su151914403
Musleh DA, Olatunji SO, Almajed AA, Alghamdi AS, Alamoudi BK, Almousa FS, Aleid RA, Alamoudi SK, Jan F, Al-Mofeez KA, et al. Ensemble Learning Based Sustainable Approach to Carbonate Reservoirs Permeability Prediction. Sustainability. 2023; 15(19):14403. https://doi.org/10.3390/su151914403
Chicago/Turabian StyleMusleh, Dhiaa A., Sunday O. Olatunji, Abdulmalek A. Almajed, Ayman S. Alghamdi, Bassam K. Alamoudi, Fahad S. Almousa, Rayan A. Aleid, Saeed K. Alamoudi, Farmanullah Jan, Khansa A. Al-Mofeez, and et al. 2023. "Ensemble Learning Based Sustainable Approach to Carbonate Reservoirs Permeability Prediction" Sustainability 15, no. 19: 14403. https://doi.org/10.3390/su151914403
APA StyleMusleh, D. A., Olatunji, S. O., Almajed, A. A., Alghamdi, A. S., Alamoudi, B. K., Almousa, F. S., Aleid, R. A., Alamoudi, S. K., Jan, F., Al-Mofeez, K. A., & Rahman, A. (2023). Ensemble Learning Based Sustainable Approach to Carbonate Reservoirs Permeability Prediction. Sustainability, 15(19), 14403. https://doi.org/10.3390/su151914403