A Systematic Review of Factors Influencing Signage Salience in Indoor Environments
<p>The flowchart of the search strategy.</p> "> Figure 2
<p>Co-occurrence matrix.</p> "> Figure 3
<p>Comparison of Floor Plan Factors.</p> "> Figure 4
<p>The impact of the presence of colours in the surrounding environment on pedestrians’ ability to acquire spatial cognition.</p> "> Figure 5
<p>Comparison of Signage Space Layout.</p> ">
Abstract
:1. Introduction
- What are the theories related to human wayfinding in indoor environments?
- Which factors in indoor environments influence the saliency of signage?
- What are the research methods employed to study the visual saliency of signage?
2. Materials and Methods
2.1. PICO Methods
2.2. Framework of Analysis
3. Results
3.1. Factors Influencing Signage Saliency
3.1.1. Floor Plan Factors
3.1.2. Environmental Factors
- Colour
- 2.
- Lighting
- 3.
- The spatial arrangement of signage
- 4.
- Other factors
3.2. Visual Saliency Techniques and Methods
3.2.1. Virtual Reality Technology
3.2.2. Eye-Tracking Technology
3.2.3. Visual Saliency Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hölscher, C.; Büchner, S.J.; Meilinger, T.; Strube, G. Adaptivity of Wayfinding Strategies in a Multi-Building Ensemble: The Effects of Spatial Structure, Task Requirements, and Metric Information. J. Environ. Psychol. 2009, 29, 208–219. [Google Scholar] [CrossRef]
- Jamshidi, S.; Pati, D. A Narrative Review of Theories of Wayfinding Within the Interior Environment. HERD: Health Environ. Res. Des. J. 2021, 14, 290–303. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Chang, W.-C.; Chang, W.-T. Gender Differences in Relation to Wayfinding Strategies, Navigational Support Design, and Wayfinding Task Difficulty. J. Environ. Psychol. 2009, 29, 220–226. [Google Scholar] [CrossRef]
- D’Orazio, M.; Bernardini, G.; Tacconi, S.; Arteconi, V.; Quagliarini, E. Fire Safety in Italian-Style Historical Theatres: How Photoluminescent Wayfinding Can Improve Occupants’ Evacuation with No Architecture Modifications. J. Cult. Herit. 2016, 19, 492–501. [Google Scholar] [CrossRef]
- Kuliga, S.F.; Nelligan, B.; Dalton, R.C.; Marchette, S.; Shelton, A.L.; Carlson, L.; Hölscher, C. Exploring Individual Differences and Building Complexity in Wayfinding: The Case of the Seattle Central Library. Environ. Behav. 2019, 51, 622–665. [Google Scholar] [CrossRef]
- De Cock, L.; Ooms, K.; Van de Weghe, N.; Vanhaeren, N.; Pauwels, P.; De Maeyer, P. Identifying What Constitutes Complexity Perception of Decision Points during Indoor Route Guidance. Int. J. Geogr. Inf. Sci. 2021, 35, 1232–1250. [Google Scholar] [CrossRef]
- De Leeuw, D.; De Maeyer, P.; De Cock, L. A Gamification-Based Approach on Indoor Wayfinding Research. ISPRS Int. J. Geo-Inf. 2020, 9, 423. [Google Scholar] [CrossRef]
- Chen, Z.; Zou, H.; Jiang, H.; Zhu, Q.; Soh, Y.C.; Xie, L. Fusion of WiFi, Smartphone Sensors and Landmarks Using the Kalman Filter for Indoor Localization. Sensors 2015, 15, 715–732. [Google Scholar] [CrossRef]
- Basiri, A.; Amirian, P.; Winstanley, A.; Marsh, S.; Moore, T.; Gales, G. Seamless Pedestrian Positioning and Navigation Using Landmarks. J. Navig. 2016, 69, 24–40. [Google Scholar] [CrossRef]
- Albrecht, R.; von Stülpnagel, R. Taking the Right (or Left?) Turn: Effects of Landmark Salience on the Retrieval of Route Directions. Spat. Cogn. Comput. 2021, 21, 290–319. [Google Scholar] [CrossRef]
- Spencer, J.P.; Simmering, V.R.; Schutte, A.R.; Schöner, G. What Does Theoretical Neuroscience Have to Offer the Study of Behavioral Development? Insights from a Dynamic Field Theory of Spatial Cognition. In The Emerging Spatial Mind; Plumert, J.M., Spencer, J.P., Eds.; Oxford University Press: Oxford, UK, 2007; ISBN 978-0-19-518922-3. [Google Scholar]
- Lyu, H.; Yu, Z.; Meng, L. A Computational Method for Indoor Landmark Extraction. In Progress in Location-Based Services 2014; Gartner, G., Huang, H., Eds.; Lecture Notes in Geoinformation and Cartography; Springer International Publishing: Cham, Switzerland, 2015; pp. 45–59. ISBN 978-3-319-11879-6. [Google Scholar]
- Dong, W.; Qin, T.; Liao, H.; Liu, Y.; Liu, J. Comparing the Roles of Landmark Visual Salience and Semantic Salience in Visual Guidance during Indoor Wayfinding. Cartogr. Geogr. Inf. Sci. 2020, 47, 229–243. [Google Scholar] [CrossRef]
- Ai, X.; Wu, Z.; Guo, T.; Zhong, J.; Hu, N.; Fu, C. The Effect of Visual Attention on Stereoscopic Lighting of Museum Ceramic Exhibits: A Virtual Environment Mixed with Eye-Tracking. Informatica 2021, 45. [Google Scholar] [CrossRef]
- Stentiford, F. Bottom-Up Visual Attention for Still Images: A Global View. In From Human Attention to Computational Attention; Springer: New York, NY, USA, 2016; pp. 123–140. [Google Scholar]
- Ahmed, S.; Muhammad, I.B.; Isa, A.A.; Sani, M.A. Influence of Spatial Layout on Wayfinding Behaviour in Hospital Environment in Nigeria. J. Art Archit. Built Environ. (JAABE) 2020, 3, 26–44. [Google Scholar] [CrossRef]
- Brunyé, T.T.; Gardony, A.L.; Holmes, A.; Taylor, H.A. Spatial Decision Dynamics during Wayfinding: Intersections Prompt the Decision-Making Process. Cogn. Res. 2018, 3, 13. [Google Scholar] [CrossRef]
- Gibson, D. The Wayfinding Handbook: Information Design for Public Places; Princeton Architectural Press: New York, NY, USA, 2009; ISBN 978-1-56898-769-9. [Google Scholar]
- Jansen, P.; Wiedenbauer, G. Wayfinding Performance in and the Spatial Knowledge of a Color-Coded Building for Adults and Children. Spat. Cogn. Comput. 2004, 4, 337–358. [Google Scholar] [CrossRef]
- Oviedo-Trespalacios, O.; Truelove, V.; Watson, B.; Hinton, J.A. The Impact of Road Advertising Signs on Driver Behaviour and Implications for Road Safety: A Critical Systematic Review. Transp. Res. Part A Policy Pract. 2019, 122, 85–98. [Google Scholar] [CrossRef]
- Mills, G.D. Ann A Common System of Passenger Safety Signage. In Rail Human Factors; Routledge: London, UK, 2005; ISBN 978-1-315-08920-1. [Google Scholar]
- Jamshidi, S.; Ensafi, M.; Pati, D. Wayfinding in Interior Environments: An Integrative Review. Front. Psychol. 2020, 11, 549628. [Google Scholar] [CrossRef]
- Motamedi, A.; Wang, Z.; Yabuki, N.; Fukuda, T.; Michikawa, T. Signage Visibility Analysis and Optimization System Using BIM-Enabled Virtual Reality (VR) Environments. Adv. Eng. Inform. 2017, 32, 248–262. [Google Scholar] [CrossRef]
- Paynter, R.A. Evidence-based Research in the Applied Social Sciences. Ref. Serv. Rev. 2009, 37, 435–450. [Google Scholar] [CrossRef]
- Gurevitch, J.; Koricheva, J.; Nakagawa, S.; Stewart, G. Meta-Analysis and the Science of Research Synthesis. Nature 2018, 555, 175–182. [Google Scholar] [CrossRef]
- Bosch, S.J.; Gharaveis, A. Flying Solo: A Review of the Literature on Wayfinding for Older Adults Experiencing Visual or Cognitive Decline. Appl. Ergon. 2017, 58, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, B.; Zlatanova, S.; van Oosterom, P. Indoor Navigation Supported by the Industry Foundation Classes (IFC): A Survey. Autom. Constr. 2021, 121, 103436. [Google Scholar] [CrossRef]
- McArthur, J.J.; Powell, C. Health and Wellness in Commercial Buildings: Systematic Review of Sustainable Building Rating Systems and Alignment with Contemporary Research. Build. Environ. 2020, 171, 106635. [Google Scholar] [CrossRef]
- Lin, J.; Cao, L.; Li, N. How the Completeness of Spatial Knowledge Influences the Evacuation Behavior of Passengers in Metro Stations: A VR-Based Experimental Study. Autom. Constr. 2020, 113, 103136. [Google Scholar] [CrossRef]
- Ghamari, H.; Sharifi, A. Mapping the Evolutions and Trends of Literature on Wayfinding in Indoor Environments. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 585–606. [Google Scholar] [CrossRef]
- Yang, Y.; Merrill, E.C. Wayfinding in Children: A Descriptive Literature Review of Research Methods. J. Genet. Psychol. 2022, 183, 580–608. [Google Scholar] [CrossRef]
- Deng, L.; Romainoor, N.H. A Bibliometric Analysis of Published Literature on Healthcare Facilities’ Wayfinding Research from 1974 to 2020. Heliyon 2022, 8, e10723. [Google Scholar] [CrossRef]
- Bullough, J. Factors Affecting Sign Visibility, Conspicuity, and Legibility: Review and Annotated Bibliography. Interdiscip. J. Signage Wayfinding 2017, 1, 2–25. [Google Scholar] [CrossRef]
- Askarizad, R.; He, J.; Khotbehsara, E.M. The Legibility Efficacy of Historical Neighborhoods in Creating a Cognitive Map for Citizens. Sustainability 2022, 14, 9010. [Google Scholar] [CrossRef]
- Davis, R.; Calkins, M.; Cai, H. The Assessment of Long-Term Care Environments for Wayfinding Design. HERD Health Environ. Res. Des. J. 2023, 19375867231180904. [Google Scholar] [CrossRef]
- Khozaei, F.; Hassan, S.; Abdul Nasir, M.; Taheri, M. The Development of Residential Spatial Configuration for Visual Privacy in Iranian Dwellings, a Space Syntax Approach. Int. J. Build. Pathol. Adapt. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Pouyan, A.E.; Ghanbaran, A.; Shakibamanesh, A. Impact of Circulation Complexity on Hospital Wayfinding Behavior (Case Study: Milad 1000-Bed Hospital, Tehran, Iran). J. Build. Eng. 2021, 44, 102931. [Google Scholar] [CrossRef]
- Natapov, A.; Parush, A.; Laufer, L.; Fisher-Gewirtzman, D. Architectural Features and Indoor Evacuation Wayfinding: The Starting Point Matters. Saf. Sci. 2022, 145, 105483. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, T.; Ding, N.; Chraibi, M.; Fan, W.-C. Follow People or Signs? A Novel Way-Finding Method Based on Experiments and Simulation. Phys. A Stat. Mech. Its Appl. 2021, 573, 125926. [Google Scholar] [CrossRef]
- Lee, E.; Daugherty, J.; Selga, J.; Schmidt, U. Enhancing Patients’ Wayfinding and Visitation Experience Improves Quality of Care. J. PeriAnesthesia Nurs. 2020, 35, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.; Walford, N.; Hockey, A.; Foreman, N.; Lewis, M. Older People and Outdoor Environments: Pedestrian Anxieties and Barriers in the Use of Familiar and Unfamiliar Spaces. Geoforum 2013, 47, 113–124. [Google Scholar] [CrossRef]
- Wang, W.L.; Lo, S.M.; Liu, S.B. A Cognitive Pedestrian Behavior Model for Exploratory Navigation: Visibility Graph Based Heuristics Approach. Simul. Model. Pract. Theory 2017, 77, 350–366. [Google Scholar] [CrossRef]
- Smart, S.; Szafir, D.A. Measuring the Separability of Shape, Size, and Color in Scatterplots. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; Association for Computing Machinery: New York, NY, USA; pp. 1–14. [Google Scholar]
- Min, Y.H.; Ha, M. Contribution of Colour-Zoning Differentiation to Multidimensional Spatial Knowledge Acquisition in Symmetrical Hospital Wards. Indoor Built Environ. 2021, 30, 787–800. [Google Scholar] [CrossRef]
- Lasauskaite, R.; Reisinger, M. Optimal Luminance of Internally Illuminated Wayfinding Signs. Light. Res. Technol. 2017, 49, 521–533. [Google Scholar] [CrossRef]
- Thistle, J.J. The Effect of Symbol Background Color on the Speed of Locating Targets by Adults Without Disabilities: Implications for Augmentative and Alternative Communication Display Design. Perspect. ASHA Spec. Interest Groups 2019, 4, 1482–1488. [Google Scholar] [CrossRef]
- Ullman, B.R.; Ullman, G.L.; Dudek, C.L.; Ramirez, E.A. Legibility Distances of Smaller Letters in Changeable Message Signs with Light-Emitting Diodes. Transp. Res. Rec. 2005, 1918, 56–62. [Google Scholar] [CrossRef]
- Fletcher, K.; Sutherland, S.; Nugent, K.; Grech, M. Identification of Text and Symbols on a Liquid Crystal Display Part III: The Effect of Ambient Light, Colour and Size; Defence Science and Technology Organisation, Department of Defence, Australian Government, 2009. Available online: https://apps.dtic.mil/sti/citations/ADA497715 (accessed on 7 September 2023).
- Vilar, E.; Rebelo, F.; Noriega, P.; Duarte, E.; Mayhorn, C.B. Effects of Competing Environmental Variables and Signage on Route-Choices in Simulated Everyday and Emergency Wayfinding Situations. Ergonomics 2014, 57, 511–524. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Green, P.A. Legibility Index for Examining Common Viewing Situations: A New Definition Using Solid Angle. Leukos 2009, 5, 279–295. [Google Scholar] [CrossRef]
- Garvey, P. Urban Wayfinding Signs: Evaluating Exceptions to FHWA’s Standard Alphabets. Transp. Res. Rec. 2007, 2030, 10–14. [Google Scholar] [CrossRef]
- Zhu, L.; Švedová, H.; Shen, J.; Stachoň, Z.; Shi, J.; Snopková, D.; Li, X. An Instance-Based Scoring System for Indoor Landmark Salience Evaluation. Geografie 2019, 124, 103–131. [Google Scholar] [CrossRef]
- Zhu, R.; Lin, J.; Becerik-Gerber, B.; Li, N. Human-Building-Emergency Interactions and Their Impact on Emergency Response Performance: A Review of the State of the Art. Saf. Sci. 2020, 127, 104691. [Google Scholar] [CrossRef]
- Dalirnaghadeh, D.; Yilmazer, S. The Effect of Sound Environment on Spatial Knowledge Acquisition in a Virtual Outpatient Polyclinic. Appl. Ergon. 2022, 100, 103672. [Google Scholar] [CrossRef]
- Xu, R.; Su, X.; Xia, H. Understanding and Evaluating Visual Guidance Quality inside Passenger Terminals—A Cognitive and Quantified Approach. J. Asian Archit. Build. Eng. 2019, 18, 362–379. [Google Scholar] [CrossRef]
- Lin, J.; Li, N.; Rao, L.-L.; Lovreglio, R. Individual Wayfinding Decisions under Stress in Indoor Emergency Situations: A Theoretical Framework and Meta-Analysis. Saf. Sci. 2023, 160, 106063. [Google Scholar] [CrossRef]
- Xu, R.; Xia, H.; Tian, M. Wayfinding Design in Transportation Architecture—Are Saliency Models or Designer Visual Attention a Good Predictor of Passenger Visual Attention? Front. Archit. Res. 2020, 9, 726–738. [Google Scholar] [CrossRef]
- Wong, L.T.; Lo, K.C. Experimental Study on Visibility of Exit Signs in Buildings. Build. Environ. 2007, 42, 1836–1842. [Google Scholar] [CrossRef]
- Xi, D.; Fan, Q.; Yao, X.A.; Jiang, W.; Duan, D. A Visual Salience Model for Wayfinding in 3D Virtual Urban Environments. Appl. Geogr. 2016, 75, 176–187. [Google Scholar] [CrossRef]
- Vorländer, M.; Schröder, D.; Pelzer, S.; Wefers, F. Virtual Reality for Architectural Acoustics. J. Build. Perform. Simul. 2015, 8, 15–25. [Google Scholar] [CrossRef]
- Wang, B.; Li, H.; Rezgui, Y.; Bradley, A.; Ong, H.N. BIM Based Virtual Environment for Fire Emergency Evacuation. Sci. World J. 2014, 2014, e589016. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Auffrey, C. Advanced Digital Tools for Updating Overcrowded Rail Stations: Using Eye Tracking, Virtual Reality, and Crowd Simulation to Support Design Decision-Making. Urban Rail Transit 2018, 4, 249–256. [Google Scholar] [CrossRef]
- Shi, Y.; Kang, J.; Xia, P.; Tyagi, O.; Mehta, R.K.; Du, J. Spatial Knowledge and Firefighters’ Wayfinding Performance: A Virtual Reality Search and Rescue Experiment. Saf. Sci. 2021, 139, 105231. [Google Scholar] [CrossRef]
- Chu, Z.; Wang, J.; Jiang, X.; Liu, C.; Li, L. MIND-VR: A Utility Approach of Human-Computer Interaction in Virtual Space Based on Autonomous Consciousness. In Proceedings of the 2022 International Conference on Virtual Reality, Human-Computer Interaction and Artificial Intelligence (VRHCIAI), Changsha, China, 28–30 October 2022; pp. 134–138. [Google Scholar]
- Dubey, R.K.; Khoo, W.P.; Morad, M.G.; Hölscher, C.; Kapadia, M. AUTOSIGN: A Multi-Criteria Optimization Approach to Computer Aided Design of Signage Layouts in Complex Buildings. Comput. Graph. 2020, 88, 13–23. [Google Scholar] [CrossRef]
- Mele, M.L.; Federici, S. Gaze and Eye-Tracking Solutions for Psychological Research. Cogn. Process. 2012, 13 (Suppl. 1), S261–S265. [Google Scholar] [CrossRef]
- Ghamari, H.; Pati, D. Examining Eye-Fixations during Wayfinding in Unfamiliar Indoor Environments. Int. J. Des. Objects 2018, 12, 15–33. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, T.; Ding, N.; Chraibi, M.; Fan, W.-C. Follow the Evacuation Signs or Surrounding People during Building Evacuation, an Experimental Study. Phys. A Stat. Mech. Its Appl. 2020, 560, 125156. [Google Scholar] [CrossRef]
- Barati, N.; Zadegan, S.A.H.; Kasravi, R. The Role of Survey Details for Wayfinding Problem in Complex Pedestrian Underground Interchange with Poor Architectural Configuration. Tunn. Undergr. Space Technol. 2021, 108, 103718. [Google Scholar] [CrossRef]
- Jeelani, I.; Albert, A.; Han, K.; Azevedo, R. Are Visual Search Patterns Predictive of Hazard Recognition Performance? Empirical Investigation Using Eye-Tracking Technology. J. Constr. Eng. Manag. 2018, 145, 04018115. [Google Scholar] [CrossRef]
- Schneider, A.; Vollenwyder, B.; Mühlethaler, C.; Thurau, J.; Krueger, E.; Miller, D.B.; Elfering, A. Mobile Eye Tracking Applied as a Tool for Customer Experience Research in a Crowded Train Station. J. Eye Mov. Res. 2023, 16, 1–17. [Google Scholar] [CrossRef]
- Tang, S.; Wang, J.; Liu, W.; Tian, Y.; Ma, Z.; He, G.; Yang, H. A Study of the Cognitive Process of Pedestrian Avoidance Behavior Based on Synchronous EEG and Eye Movement Detection. Heliyon 2023, 9, e13788. [Google Scholar] [CrossRef] [PubMed]
- Marchesotti, L.; Cifarelli, C.; Csurka, G. A Framework for Visual Saliency Detection with Applications to Image Thumbnailing. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 November 2009; pp. 2232–2239. [Google Scholar]
- Zhu, Y.; Li, N. Virtual and Augmented Reality Technologies for Emergency Management in the Built Environments: A State-of-the-Art Review. J. Saf. Sci. Resil. 2021, 2, 1–10. [Google Scholar] [CrossRef]
- Bianconi, F.; Filippucci, M.; Felicini, N. Immersive Wayfinding: Virtual Reconstruction and Eey-Tracking for Orientation Studies inside Complex Architecture. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2-W9, 143–150. [Google Scholar] [CrossRef]
- Hollander, J.B.; Sussman, A.; Lowitt, P.; Angus, N.; Situ, M.; Magnuson, A. Insights into Wayfinding: Urban Design Exploration through the Use of Algorithmic Eye-Tracking Software. J. Urban Des. 2023, 28, 274–295. [Google Scholar] [CrossRef]
- Psarras, S.; Fatah gen. Schieck, A.; Zarkali, A.; Hanna, S. Visual Saliency in Navigation: Modelling Navigational Behaviour Using Saliency and Depth Analysis. In Proceedings of the 12th International Space Syntax Symposium, Beijing, China, 8–13 July 2019. [Google Scholar]
P | Problem | Indoor environment; Visual saliency of wayfinding signage |
I | Intervention(s) | Floor plan; Environmental characteristics; Techniques and methods |
C | Comparison of Intervention(s) | NA |
O | The Outcome to Measure or Achieve | Wayfinding; Saliency of signage |
Research Methods. | Advantages | Disadvantages | Wayfinding Behaviour | Visual Behaviour | References |
---|---|---|---|---|---|
Virtual reality technology | It can interact with the environment; the simulated environment can change rapidly. | The research object space is challenging to construct, and the research effect is better in a natural environment. | × | × | [62,74] |
Eye-tracking technology | It can accurately measure the eye movement data. | Obtaining sufficient subject samples for the experiment is challenging, as conducting it within the research subject domain is hindered by safety concerns and other factors. | × | [75,76] | |
Visual saliency methods | It can be verified without requiring a sample of experimental subjects. | There are many types of saliency models, and the applicability of different saliency models to simulate scenes needs to be verified. | × | [63,77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Guo, H.; Yin, M.; Zhou, X.; Zhang, X.; Ji, Q. A Systematic Review of Factors Influencing Signage Salience in Indoor Environments. Sustainability 2023, 15, 13658. https://doi.org/10.3390/su151813658
Li C, Guo H, Yin M, Zhou X, Zhang X, Ji Q. A Systematic Review of Factors Influencing Signage Salience in Indoor Environments. Sustainability. 2023; 15(18):13658. https://doi.org/10.3390/su151813658
Chicago/Turabian StyleLi, Chuancheng, Haixu Guo, Mengya Yin, Xilin Zhou, Xinshuang Zhang, and Qunfeng Ji. 2023. "A Systematic Review of Factors Influencing Signage Salience in Indoor Environments" Sustainability 15, no. 18: 13658. https://doi.org/10.3390/su151813658
APA StyleLi, C., Guo, H., Yin, M., Zhou, X., Zhang, X., & Ji, Q. (2023). A Systematic Review of Factors Influencing Signage Salience in Indoor Environments. Sustainability, 15(18), 13658. https://doi.org/10.3390/su151813658