Potential of Organic Amendments for Heavy Metal Contamination in Soil–Coriander System: Environmental Fate and Associated Ecological Risk
<p>The map of study area.</p> "> Figure 2
<p>Dendrogram constructed from totally 8 metals based on the four treatments. It is generated with a hierarchical cluster analysis with Average Linkage (Between Groups).</p> "> Figure 2 Cont.
<p>Dendrogram constructed from totally 8 metals based on the four treatments. It is generated with a hierarchical cluster analysis with Average Linkage (Between Groups).</p> "> Figure 3
<p>Principal component analysis (PCA) shows the effect of four organic fertilizers (T0, T1, T2, T3) amendments on correlation among different heavy metals in coriander via PCA (PC 1 and PC 2). Treatments (T0, T1, T2, T3) represent, control, poultry letter, sugarcane press mud, and farmyard manure.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Area
2.2. Pot Experiment, Sowing, and Treatment Application
2.3. Sample Collection and Preparation
2.4. Spectroscopic Analysis
2.5. Quality Assurance
2.6. Soil-to-Plant Transfer Factors
2.6.1. Bioconcentration Factor (BCF)
2.6.2. Daily Intake of Metals (DIM)
2.7. Environmental Pollution Indices
2.7.1. Pollution Load Index (PLI)
2.7.2. Health Risk Index (HRI)
2.8. Statistical Data Analysis
3. Results and Discussion
3.1. Element Concentrations in Soil
3.2. Heavy Metal Concentrations in Coriander
3.3. Soil-to-Plant Transfer Factors and Environmental Pollution Indices
3.4. Cluster Analysis
3.5. Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussain, M.I.; Muscolo, A.; Farooq, M.; Ahmad, W. Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments. Agric. Water Manag. 2019, 221, 462–476. [Google Scholar] [CrossRef]
- Hussain, M.I.; Farooq, M.; Muscolo, A.; Rehman, A. Crop diversification and saline water irrigation as potential strategies to save freshwater resources and reclamation of marginal soils—A review. Environ. Sci. Pollut. Res. 2020, 27, 28695–28729. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sato, T.; Xing, B.; Tao, S. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total Environ. 2005, 350, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Chung, B.Y.; Song, C.H.; Park, J.Y.; Cho, J.Y. Heavy metals in brown rice (Oryza sativa L.) and soil after long-term irrigation of wastewater discharged from domestic sewage treatment plants. Pedosphere 2011, 21, 621–627. [Google Scholar] [CrossRef]
- Hussain, S.; Khaliq, A.; Noor, M.A.; Tanveer, M.; Hussain, H.A.; Hussain, S.; Shah, T.; Mehmood, T. Metal toxicity and nitrogen metabolism in plants: An overview. In Carbon and Nitrogen Cycling in Soil; Datta, R., Meena, R., Pathan, S., Ceccherini, M., Eds.; Springer: Singapore, 2020; pp. 221–248. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Hussain, M.I.; Ismail, S.; Khan, Q.M. Evaluating heavy metal accumulation and potential health risks in vegetables irrigated with treated wastewater. Chemosphere 2016, 161, 54–61. [Google Scholar] [CrossRef]
- Khan, Z.I.; Safdar, H.; Ahmad, K.; Wajid, K.; Bashir, H.; Ugulu, I.; Dogan, Y. Health risk assessment through determining bioaccumulation of iron in forages grown in soil irrigated with city effluent. Environ. Sci. Pollut. Res. 2019, 26, 14277–14286. [Google Scholar] [CrossRef]
- Khan, Z.I.; Safdar, H.; Ahmad, K.; Wajid, K.; Bashir, H.; Ugulu, I.; Dogan, Y. Copper bioaccumulation and translocation in forages grown in soil irrigated with sewage water. Pak. J. Bot. 2020, 52, 111–119. [Google Scholar] [CrossRef]
- Kapkiyai, A.P.; Reddy, K.R.; Maturi, K. Removal of nickel and phenanthrene from kaolin soil using different extractants. Environ. Eng. Sci. 1999, 21, 691–704. [Google Scholar]
- Bokhtiar, S.M.; Paul, G.C.; Rashid, M.A.; Rahman, A.B.M. Effect of press mud and organic nitrogen on soil fertility and yield of sugarcane grown in high Ganges river flood plain soils of Bangladesh. Indian Sugar 2001, 1, 235–240. [Google Scholar]
- Khan, M.J.; Khan, M.Q.; Zia, M.S. Sugar industry press mud as alternate organic fertilizer source. Intern. J. Environ. Waste Manag. 2012, 9, 41–55. [Google Scholar] [CrossRef]
- Kumar, S.; Meena, R.S.; Jinger, D.; Jatav, H.S.; Banjara, T. Use of pressmud compost for improving crop productivity and soil health. Int. J. Chem. Stud. 2017, 5, 384–389. [Google Scholar]
- Selim, M.M.; Imhoff, S. Introduction to the Integrated Nutrient Management Strategies and Their Contribution to Yield and Soil Properties. Hindawi Int. J. Agron. 2020, 9, 139–150. [Google Scholar] [CrossRef]
- Lü, H.; Mo, C.H.; Zhao, H.M.; Xiang, L.; Katsoyiannis, A.; Li, Y.W.; Cai, Q.Y.; Wong, M.H. Soil contamination and sources of phthalates and its health risk in China: A review. Environ. Res. 2018, 164, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, F.; Khan, I.; Ashraf, U.; Shahzad, T.; Hussain, S.; Shahid, M.; Abid, M.; Ullah, S. Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. J. Soil Sci. Plant Nutr. 2017, 17, 22–32. [Google Scholar] [CrossRef]
- Chirhah, T.; Dutta, M.; Kichu, R.; Ram, S. Effect of simulated soil erosion and added organic manures on soil properties. J. Soil Water Conserv. 2021, 20, 1–6. [Google Scholar] [CrossRef]
- Depel, G.; Polat, H.; Çaycı, G.; Demir, Z.; Koca, C. Effects of Composted poultry manure and rice husk+ poultry manure on potato tuber yield and physico-chemical properties of clay loam soil. Soil Sci. Plant Anal. 2021, 52, 2623–2643. [Google Scholar] [CrossRef]
- Hayat, E.S.; Andayani, S.; Hayati, R. Substitution of inorganic fertilizer with organic fertilizer based on poultry waste combined with rice husk biochar. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 824, p. 12038. [Google Scholar]
- McLaughlin, M.J.; Hamon, R.E.; McLaren, R.G.; Speir, T.W.; Rogers, S.L. Review: A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Soil Res. 2000, 38, 1037–1086. [Google Scholar] [CrossRef]
- Ghafoor, R.G.; Clucas, L.M.; Taylor, M.D.; Hendry, T. Leaching of macronutrients and metals from undisturbed soils treated with metal-spiked sewage sludge. 2. Leaching of metals. Aust. J. Soil Res. 1995, 42, 459–471. [Google Scholar]
- Zhang, M.K.; He, Z.L.; Calvert, D.V.; Stoffella, P.J. Leaching of minerals and heavy metals from muck-amended soil columns. Soil Sci. 2004, 169, 528–540. [Google Scholar] [CrossRef]
- Zhang, M.K.; He, Z.L.; Calvert, D.V.; Stoffella, P.J. Extractability and mobility of copper and zinc accumulated in sandy soils. Pedosphere 2006, 16, 43–49. [Google Scholar] [CrossRef]
- Ramadan, M.A.; Adam, S.M. The effects of chicken manure and mineral fertilizers on distribution of heavy metals in soil and tomato organs. Aust. J. Basic Appl. Sci. 2007, 1, 226–231. [Google Scholar]
- Malla, C.E.; Motto, H.L. Solubility of lead, zinc and copper added to yalalimineral soils. Environ. Pollut. 2007, 107, 153–158. [Google Scholar]
- Volpe, M.G.; La Cara, F.; Volpe, F.; De Mattia, A.; Serino, V.; Pettito, F.; Zavalloni, C.; Limone, F.; Pellecchia, R.; De Prisco, P.P.; et al. Heavy metal uptake in the enological food chain. Food Chem. 2009, 117, 553–560. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profiles, Toxic Substances Portal–Lead. Agency for Toxic Substances and Disease Registry, 2015. Available online: http://www.atsdr.cdc.gov/toxprofiles/tp.asp (accessed on 7 August 2017).
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar]
- Georgieva, R.; Delibaltova, V.; Chavdarov, P. Change in agronomic characteristics and essential oil composition of coriander after application of foliar fertilizers and biostimulators. Ind. Crops Prod. 2022, 181, 114819. [Google Scholar] [CrossRef]
- Amiripour, A.; Jahromi, M.G.; Soori, M.K.; mohammadi Torkashvand, A. Changes in essential oil composition and fatty acid profile of coriander (Coriandrum sativum L.) leaves under salinity and foliar-applied silicon. Ind. Crops Prod. 2021, 168, 113599. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No.1181/2006: Setting Maximum Levels for Certain Contaminants in Food Stuffs. 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1881&from=EN (accessed on 22 July 2022).
- El-Ansary, M.; El-Leboudy, A. Levels of cadmium and lead in raw cow and buffalo’s milk samples collected from local markets of El-Behera governorate. Alex. J. Veteri. Sci. 2015, 47, 129–133. [Google Scholar]
- Liu, W.; Mehmood, N.; Saeed, H.; Arshad, M.; Khan, Z.I.; Muqaddas, H. Quantitative analysis of lead in cows and buffaloes for health assessment. Environ. Sci. Pollut. Res. 2020, 27, 8621–8627. [Google Scholar] [CrossRef]
- Armbruster, D.A.; Tillman, M.D.; Hubbs, L.M. Limit of detection (LQD)/limit of quantitation (LOQ): Comparison of the empirical and the statistical methods exemplified with GC–MS assays of abused drugs. Clin. Chem. 1994, 40, 1233–1238. [Google Scholar] [CrossRef]
- Ugulu, I.; Khan, Z.I.; Rehman, S.; Ahmad, K.; Munir, M.; Bashir, H. Effect of wastewater irrigation on trace metal accumulation in spinach (Spinacia oleracea L.) and human health risk. Pak. J. Anal. Environ. Chem. 2020, 21, 92–101. [Google Scholar] [CrossRef]
- Liu, W.H.; Zhao, J.Z.; Ouyang, Z.Y.; Söderlund, L.; Liu, G.H. Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environ. Int. 2005, 31, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Sajjad, K.; Farooq, R.; Shahbaz, S.; Khan, M.A.; Sadique, M. Health risk assessment of heavy metals for population via consumption of vegetables. World Appl. Sci. J. 2009, 6, 1602–1606. [Google Scholar]
- Stephens, S.R.; Alloway, B.J.; Carter, J.E.; Parker, A. Towards the characterization of heavy metals in dredged canal sediments and an appreciation of availability: Two examples from the UK. Environ. Pollut. 2001, 113, 395–401. [Google Scholar] [CrossRef]
- Hussain, M.I.; Qureshi, A.S. Health risks of heavy metal exposure and microbial contamination through consumption of vegetables irrigated with treated wastewater at Dubai, UAE. Environ. Sci. Pollut. Res. 2020, 27, 11213–11226. [Google Scholar] [CrossRef]
- FAO; WHO; Codex Alimentarius Commission. Food Additive and Contaminants. Joint FAO/WHO Food Standards Programme; ALINORM 01/12A; FAO: Geneva, Switzerland; WHO: Geneva, Switzerland, 2001; pp. 1–289. [Google Scholar]
- US EPA Method 1613; Revision B, Tetra-through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS. 40 CFR 136 (FR 48405); U.S. Environmental Protection Agency Office of Water Engineering and Analysis Division: Washington, DC, USA, 1997.
- USEPA. Sampling and Analytical Procedures for GLNPO’s Open Lake Water Quality Survey of the Great Lakes; EPA 905-R-03-002; U.S. Environmental Protection Agency, Great Lakes National Program Office: Chicago, IL, USA, 2003. [Google Scholar]
- Neina, D.; Trevisan, M. The Role of Soil pH in Plant Nutrition and Soil Remediation. Hindawi Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Alam, M.; Hussain, Z.; Khan, A.; Khan, M.A.; Rab, A.; Asif, M.; Shah, M.A.; Muhammad, A. The effects of organic amendments on heavy metals bioavailability in mine impacted soil and associated human health risk. Sci. Horti. 2020, 262, 109067. [Google Scholar] [CrossRef]
- Amadi, B.A.; Akaninwor, J.O.; Igwe, F.U.; Amad, E.I. Biochemical impact of sludge obtained from wastewater treatment plant on soil properties within Port Harcourt. J. Environ. Anal. Toxicol. 2018, 8, 1–5. [Google Scholar]
- Paradelo, R.; Eden, M.; Martínez, I.; Keller, T.; Houot, S. Soil physical properties of a Luvisol developed on loess after 15 years of amendment with compost. Soil Tillage Res. 2019, 191, 207–215. [Google Scholar] [CrossRef]
- Wajid, K.; Ahmad, K.; Khan, Z.I.; Nadeem, M.; Bashir, H.; Chen, F.; Ugulu, I. Effect of organic manure and mineral fertilizers on bioaccumulation and translocation of trace metals in maize. Bull. Environ. Contamin. Toxicol. 2020, 104, 649–657. [Google Scholar] [CrossRef]
- Jyothi, N.R. Heavy Metal Sources and Their Effects on Human Health. In Heavy Metals—Their Environmental Impacts and Mitigation; Nazal, M.K., Zhao, H., Eds.; IntechOpen: London, UK, 2020; Available online: https://www.intechopen.com/chapters/74650 (accessed on 2 April 2022).
- Funtua, M.A. Heavy metals contents in soils and some crops irrigated along the Bindare Stream Zaria-Kaduna State, Nigeria. Am. Chem. Sci. J. 2014, 4, 855–864. [Google Scholar] [CrossRef]
- Ismail, A.; Riaz, M.; Akhtar, S.; Ismail, T.; Amir, M.; Zafar-ul-Hye, M. Heavy metals in vegetables and respective soils irrigated by canal, municipal waste and tube well waters. Food Additiv. Contamin Part B 2014, 7, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, B.; Sarin, M.M. Atmospheric dry-deposition of mineral dust and anthropogenic trace metals to the Bay of Bengal. J. Mar. Syst. 2013, 126, 56–68. [Google Scholar] [CrossRef]
- Bao, Z.; Wu, W.; Liu, H.; Chen, H.; Yin, S. Impact of Long-Term Irrigation with Sewage on Heavy Metals in Soils, Crops, and Groundwater—A Case Study in Beijing. Pol. J. Environ. Stud. 2014, 23, 309–318. [Google Scholar]
- Ghoneim, A.M.; Al-Zahrani, S.; El-Maghraby, S.; Al-Farraj, A. Heavy metal distribution in Fagonia indica and Cenchrus ciliar was native vegetation plant species. J. Food Agric. Environ. 2014, 12, 320–324. [Google Scholar]
- Guillén, M.T.; Delgado, J.; Albanese, S.; Nieto, J.M.; Lima, A.; De Vivo, B. Heavy metals fractionation and multivariate statistical techniques to evaluate the environmental risk in soils of Huelva Township (SW Iberian Peninsula). J. Geochem. Explor. 2012, 119, 32–43. [Google Scholar] [CrossRef]
- USEPA. Guidelines For Carcinogen Risk Assessment. EPA/630/P-03?001F; US Environmental Protection Agency Risk Assessment Forum: Washington, DC, USA, 2005. [Google Scholar]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Meeresunters 1980, 33, 566–575. [Google Scholar] [CrossRef]
- Hooda, P.; McNulty, D.; Alloway, B.; Aitken, M. Plant availability of heavy metals in soils previously amended with heavy applications of sewage sludge. J. Sci. Food Agric. 1997, 73, 446–454. [Google Scholar] [CrossRef]
- Jorfi, S.; Maleki, R.; Jaafarzadeh, N.; Ahmadi, M. Pollution load index for heavy metals in Mian-Ab plain soil, Khuzestan, Iran. Data Brief 2017, 15, 584–590. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Biswas, M.M.H.; Mottalib, M.A.; Alam, M.N.; Khan, M. Translocation of heavy metals from industry into vegetables and crops through water and soil of Mokesh Beel in Bangladesh and their impact on human body. IOSR J. Environ. Sci. Toxicol. Food Technol. 2019, 3, 59–71. [Google Scholar]
- Ogoko, E.C.; Emeziem, D. Pollution load index and enrichment of heavy metals in soil within the vicinity of osogbo power station. J. Chem. Soc. Niger. 2019, 44, 653–660. [Google Scholar]
- Muñoz, S.S.; Valdez, E.V.; Castillo, J.A.M.; Badillo, F.B.S.; Carrillo, H.R.V.; Salas-Luevano, M.A. Accumulation of As and Pb in Vegetables Grown in Agricultural Soils Contaminated by Historical Mining in Zacatecas, Mexico. Environ. Earth Sci. 2021, 81, 374. [Google Scholar] [CrossRef]
- Dong, H.; Lu, G.; Yan, Z.; Liu, J.; Yang, H.; Zhang, P.; Jiang, R.; Bao, X.; Nkoom, M. Distribution, sources and human risk of perfluoroalkyl acids (PFAAs) in a receiving riverine environment of the Nanjing urban area, East China. J. Hazard. Mat. 2020, 381, 120911. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K.; Agrawal, M.; Marshall, F.M. Heavy metals contamination in vegetables grown in wastewater irrigated areas of Varanasi, India. Bull. Environ. Contamin. Toxicol. 2006, 77, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.; Guo, H.; Wang, Y.; Zhang, F.; Nie, K.; Dang, J.; Liang, Z.; Dong, S.; Zeren, Y.; Zhou, B.; et al. Hazardous volatile organic compounds in ambient air of China. Chemosphere 2020, 246, 125731. [Google Scholar] [CrossRef] [PubMed]
- Škrbić, B.D.; Buljovčić, M.; Jovanović, G.; Antić, I. Seasonal, spatial variations and risk assessment of heavy elements in street dust from Novi Sad, Serbia. Chemosphere 2018, 205, 452–462. [Google Scholar] [CrossRef]
- Li, L.; Lyu, X.; Hou, C.; Takenaka, N.; Nguyen, H.Q.; Ong, C.T.; Cubeñas-Potts, C.; Hu, M.; Lei, E.P.; Bosco, G.; et al. Widespread Rearrangement of 3D Chromatin Organization Underlies Polycomb-Mediated Stress-Induced Silencing. Mol. Cell. 2015, 58, 216–231. [Google Scholar] [CrossRef]
- Dragović, S.; Mihailović, N.; Gajić, B. Heavy metals in soils: Distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources. Chemosphere 2008, 72, 491–495. [Google Scholar] [CrossRef]
- Suhr, N.; Widdowson, M.; Kamber, B.S. The role of pedogenesis and natural fertiliser as vectors for essential metal content in agricultural topsoils, Central India. SN Appl. Sci. 2021, 3, 40. [Google Scholar] [CrossRef]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef]
- Tian, K.; Huang, B.; Xing, Z.; Hu, W. Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China. Ecolog. Indic. 2017, 72, 510–520. [Google Scholar] [CrossRef]
- Dach, J.; Starmans, D. Heavy metals balance in Polish and Dutch agronomy: Actual state and previsions for the future. Agric. Ecosyst. Environ. 2005, 107, 309–316. [Google Scholar] [CrossRef]
Metals in Soil (mg/kg) | Treatments | Maximum Permissible Limits | |||
---|---|---|---|---|---|
Control | Poultry Letter | Sugarcane Press Mud | Farmyard Manure | ||
Cd | 0.448 ± 0.003 | 0.332 ± 0.068 | 0.457 ± 0.004 | 0.394 ± 0.010 | 3 |
Co | 0.537 ± 0.026 | 0.455 ± 0.093 | 0.562 ± 0.005 | 0.488 ± 0.005 | 50 |
Cr | 0.135 ± 0.014 | 0.146 ± 0.004 | 0.779 ± 0.006 | 0.1896 ± 0.004 | 50 |
Cu | 1.222 ± 0.006 | 1.310 ± 0.041 | 1.251 ± 0.006 | 1.254 ± 0.005 | 100 |
Pb | 0.1791 ± 0.015 | 0.1266 ± 0.020 | 0.1083 ± 0.010 | 0.1416 ± 0.01 | 100 |
Fe | 1.868 ± 0.007 | 5.682 ± 1.500 | 5.682 ± 0.100 | 0.7196 ± 0.01 | 21,000 |
Mn | 0.537 ± 0.006 | 0.023 ± 0.004 | 0.0829 ± 0.030 | 0.0529 ± 0.020 | 2000 |
Zn | 4.535 ± 0.057 | 17.633 ± 1.120 | 12.692 ± 0.020 | 10.713 ± 2.700 | 300 |
Metals in C. sativum | |||||
Cd | 0.422 ± 0.004 | 0.435 ± 0.003 | 0.430 ± 0.008 | 0.401 ± 0.001 | 0.1–0.2 |
Co | 1.849 ± 0.075 | 2.405 ± 0.200 | 1.941 ± 0.100 | 3.523 ± 0.595 | 0.01 |
Cr | 0.160 ± 0.021 | 0.1662 ± 0.021 | 0.153 ± 0.001 | 0.169 ± 0.001 | 2.3 |
Cu | 1.328 ± 0.022 | 1.335 ± 0.010 | 1.326 ± 0.005 | 1.405 ± 0.001 | 20 |
Pb | 0.0512 ± 0.003 | 0.0637 ± 0.010 | 0.0954 ± 0.002 | 0.092 ± 0.001 | 0.3 |
Fe | 1.481 ± 0.030 | 2.2913 ± 0.040 | 1.3257 ± 0.080 | 2.515 ± 0.002 | 425.5 |
Mn | 0.3237 ± 0.010 | 0.1829 ± 0.004 | 0.2808 ± 0.001 | 0.1020 ± 0.006 | 500 |
Zn | 2.0166 ± 0.010 | 8.603 ± 0.130 | 3.6750 ± 0.712 | 8.7045 ± 0.645 | 100 |
Metal | Soil | Plant |
---|---|---|
Cd | 0.442 ns | 0.001 ** |
Co | 0.448 ns | 3.543 *** |
Cr | 0.432 ns | 0.002 * |
Cu | 1.542 ** | 0.009 *** |
Pb | 23.49 ns | 0.003 ** |
Fe | 0.519 ns | 0.075 * |
Mn | 0.324 * | 0.059 * |
Zn | 1.118 ns | 48.635 *** |
Metals | Treatments | |||
---|---|---|---|---|
Control | Poultry Letter | Sugarcane Press Mud | Farmyard Manure | |
Cd | 0.0985 | 0.101 | 0.100 | 0.173 |
Co | 2.2756 | 5.901 | 3.143 | 8.489 |
Cr | 0.4740 | 0.507 | 0.467 | 0.489 |
Cu | 1.6708 | 1.345 | 1.566 | 1.489 |
Pb | 0.1563 | 0.392 | 0.208 | 0.136 |
Fe | 0.3785 | 0.171 | 0.290 | 0.705 |
Mn | 1.1458 | 0.746 | 1.191 | 0.292 |
Zn | 0.1241 | 0.639 | 0.207 | 0.752 |
Metals | Treatments | |||
---|---|---|---|---|
Control | Poultry Letter | Sugarcane Press Mud | Farmyard Manure | |
Cd | 2.8724 | 2.89 | 2.8768 | 1.552 |
Co | 0.0892 | 0.0447 | 0.0678 | 0.045 |
Cr | 0.225 | 0.2183 | 0.2183 | 0.23 |
Cu | 0.1194 | 0.1182 | 0.2530 | 0.425 |
Pb | 0.0057 | 0.0028 | 0.0080 | 0.011 |
Fe | 0.4800 | 0.6432 | 0.5604 | 0.437 |
Mn | 0.0060 | 0.0052 | 0.0050 | 0.007 |
Zn | 0.3675 | 0.3043 | 0.4000 | 0.261 |
Metals | Treatments | Control | Poultry Letter | Sugarcane Press Mud | Farmyard Manure |
---|---|---|---|---|---|
Cd | DIM | 0.0024 | 0.0025 | 0.0024 | 0.0023 |
HRI | 2.4265 | 2.5012 | 2.4725 | 2.3057 | |
Co | DIM | 0.0106 | 0.0138 | 0.0111 | 0.0202 |
HRI | 0.2472 | 0.3215 | 0.2595 | 0.4710 | |
Cr | DIM | 0.0009 | 0.0009 | 0.00088 | 0.0138 |
HRI | 0.0006 | 0.0006 | 0.0005 | 0.0092 | |
Cu | DIM | 0.0096 | 0.0076 | 0.0191 | 0.0138 |
HRI | 0.2407 | 0.1919 | 0.4781 | 0.3457 | |
Pb | DIM | 0.0002 | 0.0003 | 0.0005 | 0.0005 |
HRI | 0.0841 | 0.1046 | 0.1567 | 0.1511 | |
Fe | DIM | 0.0085 | 0.0131 | 0.0076 | 0.0144 |
HRI | 0.0121 | 0.0188 | 0.0108 | 0.0206 | |
Mn | DIM | 0.0018 | 0.0010 | 0.0016 | 0.0005 |
HRI | 0.0453 | 0.0256 | 0.0393 | 0.0143 | |
Zn | DIM | 0.0115 | 0.0494 | 0.0211 | 0.0500 |
HRI | 0.0313 | 0.1336 | 0.0571 | 0.1352 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, M.I.; Khan, Z.I.; Akhter, P.; Al-Hemaid, F.M.; Al-Hashimi, A.; Elshikh, M.S.; Ahmad, K.; Yang, H.-H. Potential of Organic Amendments for Heavy Metal Contamination in Soil–Coriander System: Environmental Fate and Associated Ecological Risk. Sustainability 2022, 14, 11374. https://doi.org/10.3390/su141811374
Hussain MI, Khan ZI, Akhter P, Al-Hemaid FM, Al-Hashimi A, Elshikh MS, Ahmad K, Yang H-H. Potential of Organic Amendments for Heavy Metal Contamination in Soil–Coriander System: Environmental Fate and Associated Ecological Risk. Sustainability. 2022; 14(18):11374. https://doi.org/10.3390/su141811374
Chicago/Turabian StyleHussain, Muhammad Iftikhar, Zafar Iqbal Khan, Pervaiz Akhter, Fahad M. Al-Hemaid, Abdulrahman Al-Hashimi, Mohamed Soliman Elshikh, Kafeel Ahmad, and Hsi-Hsien Yang. 2022. "Potential of Organic Amendments for Heavy Metal Contamination in Soil–Coriander System: Environmental Fate and Associated Ecological Risk" Sustainability 14, no. 18: 11374. https://doi.org/10.3390/su141811374
APA StyleHussain, M. I., Khan, Z. I., Akhter, P., Al-Hemaid, F. M., Al-Hashimi, A., Elshikh, M. S., Ahmad, K., & Yang, H. -H. (2022). Potential of Organic Amendments for Heavy Metal Contamination in Soil–Coriander System: Environmental Fate and Associated Ecological Risk. Sustainability, 14(18), 11374. https://doi.org/10.3390/su141811374