Detection of Nut–Bolt Loss in Steel Bridges Using Deep Learning Techniques
<p>Relationship between AI, ML, and DL techniques.</p> "> Figure 2
<p>Typical view of a steel truss bridge.</p> "> Figure 3
<p>Plan views of nuts and bolts (n&b), and nut holes (h).</p> "> Figure 4
<p>Inclined views of nuts and bolts (n&b).</p> "> Figure 5
<p>Architecture of the proposed CNN system.</p> "> Figure 6
<p>Architecture of the proposed LSTM system.</p> "> Figure 7
<p>Architecture of the proposed YOLOv4 system.</p> "> Figure 8
<p>The CNN training loss vs. epoch graph.</p> "> Figure 9
<p>The CNN training accuracy vs. epochs graph.</p> "> Figure 10
<p>The confusion matrix for the CNN algorithm.</p> "> Figure 11
<p>Training loss vs. epochs for LSTM.</p> "> Figure 12
<p>LSTM training accuracy vs. epochs graph.</p> "> Figure 13
<p>Confusion matrix for LSTM.</p> "> Figure 14
<p>Loss vs. iterations for the YOLOv4 detection results during training.</p> "> Figure 15
<p>First test for object detection and classification using the YOLOv4 technique.</p> "> Figure 16
<p>Second test of detection and classification results of the proposed model based on the second image.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Description
2.2. Model Description
2.2.1. Convolutional Neural Network (CNN)
2.2.2. Long- and Short-Term Memory (LSTM)
2.2.3. You Only Look Once (YOLOv4)
2.3. Model Development
2.4. Model Evaluation
2.5. Test of Hypothesis
3. Results and Discussion
3.1. Results of the CNN
3.2. Results of the LSTM
3.3. Results of the YOLOv4 Technique
3.4. Results of Analysis of Variance (ANOVA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Badkar, M. Look at All the Major Chinese Bridges That Have Collapsed In The Recent Years. 2012. Available online: https://www.businessinsider.com/china-bridge-collapses-2012-8?r=US&IR=T (accessed on 6 August 2022).
- Aitken, P. 11 of the Biggest Structural Failures in History. 2019. Available online: https://africa.businessinsider.com/strategy/11-of-the-biggest-structural-failures-in-history/4l9qrf7 (accessed on 6 August 2022).
- Bridge Masters. 9 Common Reasons for Bridge Failures. 2017. Available online: https://bridgemastersinc.com/9-common-reasons-for-bridge-failures/ (accessed on 6 August 2022).
- Zhou, M.; Yang, D.; Hassanein, M.F.; Zhang, J.; An, L. Failure analysis of high-strength bolts in steel truss bridges. Proc. Inst. Civ. Eng.-Civ. Eng. 2017, 170, 175–179. [Google Scholar] [CrossRef]
- Dravid, S.; Yadav, J.; Kurre, S.K. Comparison of loosening Behavior of Bolted Joints using Plain and Spring Washers with full-threaded and Plain Shank Bolts. Mech. Based Des. Struct. Mach. 2021. [Google Scholar] [CrossRef]
- Novelo, X.E.A.; Chu, H.-Y. Application of vibration analysis using time-frequency analysis to detect and predict mechanical failure during the nut manufacturing process. Adv. Mech. Eng. 2022, 14. [Google Scholar] [CrossRef]
- Federal Highway Administration (FHWA). National Bridge Inspection Standards; Federal Register; FHWA: Washington, DC, USA, 2004; Volume 69.
- Bull, L.; Worden, K.; Manson, G.; Dervilis, N. Active learning for semi-supervised structural health Monitoring. J. Sound Vib. 2018, 437, 373–388. [Google Scholar] [CrossRef]
- Singh, P.; Ahmad, U.F.; Yadav, S. Structural Health Monitoring and Damage Detection through Machine Learning approaches. Sustain. Energy Syst. Innov. Perspect. 2020, 220, 01096. [Google Scholar] [CrossRef]
- Rogers, T.J.; Worden, K.; Fuentes, R.; Dervilis, N.; Tygesen, U.T.; Cross, E.J. A Semi-Supervised Bayesian Non-Parametric Approach to Damage Detection. In Proceedings of the 9th European Workshop on Structural Health Monitoring, Manchester, UK, 10–13 July 2018. [Google Scholar]
- Bull, L.A.; Gardner, P.; Rogers, T.J.; Cross, E.J.; Dervilis, N.; Worden, K. New Modes of Inference for Probabilistic SHM. In European Workshop on Structural Health Monitoring. EWSHM 2020. Lecture Notes in Civil Engineering; Rizzo, P., Milazzo, A., Eds.; Springer: Cham, Switzerland, 2021; Volume 128. [Google Scholar] [CrossRef]
- Alzubi, J.; Nayyar, A.; Kumar, A. Machine learning from theory to algorithms: An overview. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2018; Volume 1142, p. 012012. [Google Scholar]
- Pramanik, T. Computer Vision Based Recognition of Nut and Bolt System. Int. J. Sci. Prog. Res. 2014, 4, 1. [Google Scholar]
- Cha, Y.; Kisung, Y.; Choi, W. Vision-based detection of loosened bolts using the Hough transform and support vector machines. Autom. Constr. 2016, 71, 181–188. [Google Scholar] [CrossRef]
- Dhenge, A.; Keskar, P.; Kuhikar, A.; Kawadkar, P.; Chaudhary, T.; Palasmode, P. Computer Vision Based Object Sorting & Fault Detection Using Ann. Int. J. Eng. Res. Electron. Commun. Eng. 2015, 2, 1–4. [Google Scholar]
- Zhou, J.; Huo, L. Computer Vision-Based Detection for Delayed Fracture of Bolts in Steel Bridges. J. Sens. 2021, 2021, 8325398. [Google Scholar] [CrossRef]
- Alshboul, O.; Shehadeh, A.; Almasabha, G.; Almuflih, A.S. Extreme Gradient Boosting-Based Machine Learning Approach for Green Building Cost Prediction. Sustainability 2022, 14, 6651. [Google Scholar] [CrossRef]
- Bui-Ngoc, D.; Nguyen-Tran, H.; Nguyen-Ngoc, L.; Tran-Ngoc, H.; Bui-Tien, T.; Tran-Viet, H. Damage detection in structural health monitoring using hybrid convolution neural network and recurrent neural network. Frat. Integrità Strutt. 2022, 59, 461–470. [Google Scholar]
- Amjoud, A.B.; Amrouch, M. Convolutional Neural Networks Backbones for Object Detection. In Image and Signal Processing. ICISP 2020. Lecture Notes in Computer Science; El Moataz, A., Mammass, D., Mansouri, A., Nouboud, F., Eds.; Springer: Cham, Switzerland, 2020; Volume 12119, pp. 282–289. [Google Scholar] [CrossRef]
- Svendsen, B.T.; Frøseth, G.T.; Øiseth, O.; Rønnquist, A. A data-based structural health monitoring approach for damage detection in steel bridges using experimental data. J. Civ. Struct. Health Monit. 2022, 12, 101–115. [Google Scholar] [CrossRef]
- Flah, M.; Nunez, I.; Chaabene, W.B.; Nehdi, M.L. Machine learning algorithms in civil structural health monitoring: A systematic review. Arch. Comput. Methods Eng. 2020, 28, 2621–2643. [Google Scholar] [CrossRef]
- Brown, S. Machine Learning Explained. 2022. Available online: https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained (accessed on 6 August 2022).
- Pedamkar, P. Types of Machine Learning. 2020. Available online: https://www.educba.com/types-of-machine-learning/ (accessed on 6 August 2022).
- Bull, L.A.; Worden, K.; Dervilis, N. Towards semi-supervised and probabilistic classification in structural health monitoring. Mech. Syst. Signal Process. 2020, 140, 106653. [Google Scholar] [CrossRef]
- Li, Y.-F.; Zhou, Z.-H. Towards making unlabelled data never hurt. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 175–188. [Google Scholar]
- Kumar, P.R.; Manash, E.B.K. Deep learning: A branch of machine learning, Internatinal conference on computer vision and machine learning. IOP Conf. Ser. J. Phys. 2019, 1228, 012045. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Azimi, M.; Pekcan, G. Structural health monitoring using extremely compresses data through deep learning. Comput.-Aided Civ. Infrastrcrue Eng. 2019, 35, 597–614. [Google Scholar] [CrossRef]
- Nath, N.D.; Behzadan, A.H. Deep Convolutional Networks for Construction Object Detection Under Different Visual Conditions. Front. Built Environ. 2020, 6, 97. [Google Scholar] [CrossRef]
- Dong, A.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 295–307. [Google Scholar] [CrossRef]
- Azimi, M.; Eslamlou, A.D.; Pekcan, G. Data-Driven Structural Health Monitoring and Damage Detection through Deep Learning: State-of-the-Art Review. Sens. Struct. Health Monit. Seism. Prot. 2020, 20, 2778. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Li, H. Machine learning paradigm for structural health monitoring. Struct. Health Monit. 2020, 20, 1353–1372. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, E.; Shin, M.; Sim, S. Crack and Non-crack Classification from Concrete Surface Images Using Machine Learning. Struct. Health Monit. 2018, 18, 725–738. [Google Scholar] [CrossRef]
- Khodabandehlou, H.; Pekcan, G.; Fadali, M.S. Vibration-based structural condition assessment using convolution neural networks. Struct. Control Health Monit. 2018, 26, e2308. [Google Scholar] [CrossRef]
- Won, J.; Park, J.W.; Jang, S.; Jin, K.; Kim, Y. Automated Structural Damage Identification Using Data Normalization and 1-Dimensional Convolutional Neural Network. Appl. Sci. 2021, 11, 2610. [Google Scholar] [CrossRef]
- Duan, Y.; Chen, Q.; Zhang, H.; Yun, C.B.; Wu, S.; Zhu, Q. CNN-based damage identification method of tied-arch Bridge using spatial-spectral information. Smart Struct. Syst. Int. J. 2019, 23, 507–520. [Google Scholar]
- Tang, Z.; Chen, Z.; Bao, Y.; Li, H. Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring. Struct. Control. Health Monit. 2019, 26, e2296. [Google Scholar] [CrossRef]
- Park, J.; Kim, T.; Kim, J. Image-based bolt-loosening detection technique of bolt joint in steel bridges. In Proceedings of the 6th International Conference on Advances in Experimental Structural Engineering (6AESE), Champaign, IL, USA, 1–2 August 2015. [Google Scholar]
- Cha, Y.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Buyukozturk, O. Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types. Comput.-Aided Civ. Infrastruct. Eng. 2017, 33, 731–747. [Google Scholar] [CrossRef]
- He, H. Automatic Assembly of Bolts and Nuts Based on Machine Vision Recognition. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 2113, p. 012033. [Google Scholar]
- Zhang, Y.; Sun, X.; Loh, K.J.; Su, W.; Xue, Z.; Zhao, X. Autonomous bolt loosening detection using deep learning. Struct. Health Monit. 2020, 19, 105–122. [Google Scholar] [CrossRef]
- Dervilis, N.; Papatheou, E.; Antoniadou, I.; Cross, E.J.; Worden, K. On the usage of active learning for SHM. In Proceedings of the ISMA2016, Leuven, Belgium, 19–21 September 2016. [Google Scholar]
- Kim, B.; Cho, S. Automated vision-based detection of cracks on concrete surfaces using a deep learning technique. Sensors 2018, 18, 3452. [Google Scholar] [CrossRef]
- Cha, Y.; Choi, W. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Bergs, T.; Holst, C.; Gupta, P.; Augspurger, T. Digital image processing with deep learning for automated cutting tool wear detection. Procedia Manuf. 2020, 48, 947–958. [Google Scholar] [CrossRef]
- Sen, D.; Aghazadeh, A.; Mousavi, A.; Nagarajaiah, S.; Baraniuk, R.; Dabak, A. Data-driven semi-supervised and supervised learning algorithms for health monitoring of pipes. Mech. Syst. Signal Process. 2019, 131, 524–537. [Google Scholar] [CrossRef]
- Qiao, W.; Liu, B.Q.; Wu, X.; Li, G. Computer Vision-Based Bridge Damage Detection Using Deep Convolutional Networks with Expectation Maximum Attention Module. Sensors 2021, 21, 824. [Google Scholar] [CrossRef]
- Yu, W.; Nishio, M. Multilevel structural Components detection and segmentation towards computer vision-based inspection. Sensors 2022, 22, 3502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chang, C.; Jamshidi, M. Bridge damage detection using single-stage detector and field inspection images. arXiv 2018, arXiv:1812.10590. [Google Scholar]
- Heiman, G.W. Basic Statistics for Behavioural Sciences, 6th ed.; Cengage Learning: Belmont, NS, Canada, 2011. [Google Scholar]
- Li, B.; Wang, K.C.P.; Zhang, A.; Yang, E.; Wang, G. Automatic Classification of Pavement Crack using deep convolutional neural network. Int. J. Pavement Eng. 2018, 21, 457–463. [Google Scholar] [CrossRef]
- Quqa, S.; Martakis, P.; Movsessian, A.; Pai, S.; Reuland, Y.; Chatzi, E. Two-step approach for fatigue crack detection in steel bridges using convolutional neural networks. J. Civ. Struct. Health Monit. 2022, 12, 127–140. [Google Scholar] [CrossRef]
- Ghiasi, A.; Moghaddam, M.K.; Ng, C.T.; Sheikh, A.H.; Shi, J.Q. Damage classification of in-service steel railway bridges using a novel vibration-based convolutional neural network. Eng. Struct. 2022, 264, 114474. [Google Scholar] [CrossRef]
Object | b&n: | b&n: | b&n: | b&n: | b&n: | b&n: | b&n: | h: | h: | h: |
---|---|---|---|---|---|---|---|---|---|---|
Accuracy | 96% | 89% | 99% | 97% | 100% | 98% | 99% | 99% | 45% | 53% |
Object | b&n: | b&n: | b&n: | b&n: | b&n: | b&n: | b&n: | h: | h: |
---|---|---|---|---|---|---|---|---|---|
Accuracy | 97% | 96% | 95% | 95% | 95% | 95% | 97% | 99% | 91% |
Object | b&n: | b&n: | b&n: | b&n: | b&n: | b&n: | b&n: | b&n: | b&n: | b&n: | b&n: | b&n: |
Accuracy | 99% | 99% | 98% | 97% | 94% | 93% | 90% | 90% | 90% | 89% | 89% | 89% |
Object | b&n: | b&n: | b&n: | b&n: | b&n: | h: | b&n: | b&n: | b&n: | h: | b&n: | b&n: |
Accuracy | 88% | 75% | 73% | 65% | 63% | 39% | 61% | 61% | 60% | 26% | 54% | 54% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.-J.; Adamu, K.; Yan, K.; Xu, X.-L.; Shao, P.; Li, X.-H.; Bashir, H.M. Detection of Nut–Bolt Loss in Steel Bridges Using Deep Learning Techniques. Sustainability 2022, 14, 10837. https://doi.org/10.3390/su141710837
Li Z-J, Adamu K, Yan K, Xu X-L, Shao P, Li X-H, Bashir HM. Detection of Nut–Bolt Loss in Steel Bridges Using Deep Learning Techniques. Sustainability. 2022; 14(17):10837. https://doi.org/10.3390/su141710837
Chicago/Turabian StyleLi, Zhi-Jun, Kabiru Adamu, Kai Yan, Xiu-Li Xu, Peng Shao, Xue-Hong Li, and Hafsat Muhammad Bashir. 2022. "Detection of Nut–Bolt Loss in Steel Bridges Using Deep Learning Techniques" Sustainability 14, no. 17: 10837. https://doi.org/10.3390/su141710837
APA StyleLi, Z. -J., Adamu, K., Yan, K., Xu, X. -L., Shao, P., Li, X. -H., & Bashir, H. M. (2022). Detection of Nut–Bolt Loss in Steel Bridges Using Deep Learning Techniques. Sustainability, 14(17), 10837. https://doi.org/10.3390/su141710837