GIS and AHP Based Groundwater Potential Zones Delineation in Chennai River Basin (CRB), India
<p>Location map of the study area.</p> "> Figure 2
<p>Flow chart showing the methodology adopted in the study.</p> "> Figure 3
<p>Slope Map.</p> "> Figure 4
<p>Aspect Map.</p> "> Figure 5
<p>Groundwater Level Map.</p> "> Figure 6
<p>Rainfall map.</p> "> Figure 7
<p>Geology of the study area.</p> "> Figure 8
<p>Drainage Map.</p> "> Figure 9
<p>Soil map.</p> "> Figure 10
<p>Land use map of Chennai Basin.</p> "> Figure 11
<p>Lineaments Map.</p> "> Figure 12
<p>Geomorphology map of the study area.</p> "> Figure 13
<p>Depth to bed rock.</p> "> Figure 14
<p>Spatial variation map of Groundwater potential in CRB.</p> ">
Abstract
:1. Introduction
2. Study Area Settings
3. Data and Methods
4. Results and Discussion
4.1. Thematic Layers and Features in the CRB
4.1.1. Mapping and Analysis of Slope
4.1.2. Mapping and Analysis of Aspect
4.1.3. Mapping and Analysis of Groundwater Level
4.1.4. Mapping and Analysis of Rainfall
4.1.5. Mapping and Analysis of Lithology
4.1.6. Mapping and Analysis of Drainage
4.1.7. Mapping and Analysis of Soils
4.1.8. Mapping and Analysis of Land Use
4.1.9. Mapping and Analysis of Lineaments
4.1.10. Mapping and Analysis of Geomorphology
4.1.11. Mapping and Analysis of Depth to Bed Rock
4.2. Normalized Weights for Thematic Maps
4.3. Groundwater Potential Zones
4.4. Cross Verification of the Groundwater Potential Zones with Bore Hole Data
- -
- Number of boreholes = 51
- -
- Number of boreholes that agreed with the result of the mapping = 40
- -
- Number of boreholes that disagreed with the result of the mapping = 11
- -
- Accuracy of the potential mapping = 40/51 ×100 = 78.43%
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Scanlon, J.; Cassar, A.; Nemes, N. Water as a Human Right; IUCN: Gland, Switzerland; Cambridge, UK, 2004. [Google Scholar]
- Salman, M.A. United Nations General Assembly Resolution: International Decade for Action, Water for Life, 2005–2015. Water Int. 2005, 30, 415–418. [Google Scholar] [CrossRef]
- Lu, S.; Lian, Z.; Sun, H.; Wu, X.; Bai, X.; Wang, C. Simulating Trans-Boundary Watershed Water Resources Conflict. Resour. Policy 2021, 73, 102139. [Google Scholar] [CrossRef]
- Nampak, H.; Pradhan, B.; Abd Manap, M. Application of Gis Based Data Driven Evidential Belief Function Model to Predict Groundwater Potential Zonation. J. Hydrol. 2014, 513, 283–300. [Google Scholar] [CrossRef]
- AQUASTAT. Aquastat; FAO: Rome, Italy, 2015. [Google Scholar]
- Jenifer, A.; Arul, C. Groundwater Management: A Policy Perspective. Int. Sci. Index 2012, 62, 303–310. [Google Scholar]
- Elango, L.; Manickam, S. Groundwater Quality of Madras Aquifer: A Study on Panjetti-Ponneri-Minjur Area. Indian Geogr. J. 1986, 61, 41–49. [Google Scholar]
- Sajil Kumar, P.J.; Elango, L.; James, E.J. Assessment of Hydrochemistry and Groundwater Quality in the Coastal Area of South Chennai, India. Arab. J. Geosci. 2014, 7, 2641–2653. [Google Scholar] [CrossRef]
- Nair, I.S.; Rajaveni, S.P.; Schneider, M.; Elango, L. Geochemical and Isotopic Signatures for the Identification of Seawater Intrusion in an Alluvial Aquifer. J. Earth Syst. Sci. 2015, 124, 1281–1291. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, B.R.; Healy, R.W.; Cook, P.G. Choosing Appropriate Techniques for Quantifying Groundwater Recharge. Hydrogeol. J. 2002, 10, 18–39. [Google Scholar] [CrossRef]
- Sajil Kumar, P.J.; Schneider, M.; Elango, L. The State-of-the-Art Estimation of Groundwater Recharge and Water Balance with a Special Emphasis on India: A Critical Review. Sustainability 2022, 14, 340. [Google Scholar] [CrossRef]
- Arulbalaji, P.; Padmalal, D.; Sreelash, K. Gis and Ahp Techniques Based Delineation of Groundwater Potential Zones: A Case Study from Southern Western Ghats. India Sci. Rep. 2019, 9, 2082. [Google Scholar] [CrossRef]
- Agarwal, R.; Garg, P.K. Remote Sensing and Gis Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique. Water Resour. Manag. 2016, 30, 243–260. [Google Scholar]
- Shekhar, S.; Pandey, A.C. Delineation of Groundwater Potential Zone in Hard Rock Terrain of India Using Remote Sensing, Geographical Information System (Gis) and Analytic Hierarchy Process (Ahp) Techniques. Geocarto Int. 2015, 30, 402–421. [Google Scholar] [CrossRef]
- Doke, A.B.; Rajendra, B.Z.; Hemlata, P.; Das, S. Geospatial Mapping of Groundwater Potential Zones Using Multi-Criteria Decision-Making Ahp Approach in a Hardrock Basaltic Terrain in India. Ecol. Indic. 2021, 127, 107685. [Google Scholar] [CrossRef]
- Lu, S.; Sun, H.; Sun, D.; Guo, M.; Bai, X. Assessment on Reservoir Flood Resources Utilization of Ankang Reservoir, China. Resour. Policy 2020, 68, 101745. [Google Scholar] [CrossRef]
- Hashemi, H.; Berndtsson, R.; Persson, M. Artificial Recharge by Floodwater Spreading Estimated by Water Balances and Groundwater Modelling in Arid Iran. Hydrol. Sci. J. 2015, 60, 336–350. [Google Scholar] [CrossRef]
- Elbeih, S.F. An Overview of Integrated Remote Sensing and Gis for Groundwater Mapping in Egypt. Ain Shams Eng. J. 2015, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Machiwal, D.; Jha, M.K.; Mal, B.C. Assessment of Groundwater Potential in a Semi-Arid Region of India Using Remote Sensing, Gis and Mcdm Techniques. Water Resour. Manag. 2011, 25, 1359–1386. [Google Scholar] [CrossRef]
- Berhanu, K.G.; Hatiye, S.D. Identification of Groundwater Potential Zones Using Proxy Data: Case Study of Megech Watershed, Ethiopia. J. Hydrol. Reg. Stud. 2020, 28, 100676. [Google Scholar] [CrossRef]
- Melese, T.; Belay, T. Groundwater Potential Zone Mapping Using Analytical Hierarchy Process and Gis in Muga Watershed, Abay Basin, Ethiopia. Glob. Chall. 2022, 6, 2100068. [Google Scholar] [CrossRef]
- Abrar, H.; Kura, A.L.; Dube, E.E.; Beyene, D.L. Ahp Based Analysis of Groundwater Potential in the Western Escarpment of the Ethiopian Rift Valley. Geol. Ecol. Landsc. 2021, 1–14. [Google Scholar] [CrossRef]
- NRSA. Land and Water Resources Survey of Drought Affected District-Kolar, Karnataka. Technical Report; National Remote Sensing Agency: Hyderabad, India, 1987. [Google Scholar]
- Arun Kumar, K.C.; Obi Reddy, G.P.; Masilamani, P.; Sandeep, P. Spatial Modelling for Identification of Groundwater Potential Zones in Semi-Arid Ecosystem of Southern India Using Sentinel-2 Data, Gis and Bivariate Statistical Models. Arab. J. Geosci. 2021, 14, 1362. [Google Scholar] [CrossRef]
- Nagarajan, M.; Singh, S. Assessment of groundwater potential zones using GIS technique. J. Indian Soc. Remote Sens. 2009, 37, 69–77. [Google Scholar] [CrossRef]
- Singh, A.K.; Panda, S.N.; Kumar, K.S. Artificial Groundwater Recharge Zones Mapping Using Remote Sensing and Gis: A Case Study in Indian Punjab. Environ. Earth Sci. 2013, 62, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Magesh, N.S.; Chandrasekar, N.; Soundranayagam, J.P. Delineation of Groundwater Potential Zones in Theni District, Tamil Nadu, Using Remote Sensing, Gis and Mif Techniques. Geosci. Front. 2012, 3, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Nag, S.K.; Ghosh, P. Delineation of Groundwater Potential Zone in Chhatna Block, Bankura District, West Bengal, India Using Remote Sensing and Gis Techniques. Environ. Earth Sci. 2013, 70, 2115–2127. [Google Scholar] [CrossRef]
- Murthy, K.S.R.; Amminedu, E.; Venkateswara Rao, V. Integration of Thematic Maps through Gis for Identification of Groundwater Potential Zones. J. Indian Soc. Remote Sens. 2003, 31, 197–210. [Google Scholar] [CrossRef]
- Prasad, R.K.; Mondal, N.C.; Banerjee, P.; Nandakumar, M.V.; Singh, V.S. Deciphering Potential Groundwater Zone in Hard Rock through the Application of Gis. Environ. Geol. 2008, 55, 467–475. [Google Scholar] [CrossRef]
- Krishan, G.; Rao, M.S.; Purushothaman, P.; Rawat, Y.S.; Kumar, C.P.; Gupta, S.; Bhatia, A.K.; Marwah, S.; Kaushik, Y.B.; Angurala, M.P. Groundwater Resources in Bist-Doab Region, Punjab, India-an Overview. NDC-WWC J. 2014, 3, 5–13. [Google Scholar]
- Saravanan, S.; Saranya, T.; Abijith, D.; Jacinth, J.J.; Singh, L. Delineation of Groundwater Potential Zones for Arkavathi Sub-Watershed, Karnataka, India Using Remote Sensing and Gis. Environ. Chall. 2021, 5, 100380. [Google Scholar] [CrossRef]
- Das, S. Delineation of Groundwater Potential Zone in Hard Rock Terrain in Gangajalghati Block, Bankura District, India Using Remote Sensing and Gis Techniques. Model. Earth Syst. Environ. 2017, 3, 1589–1599. [Google Scholar] [CrossRef] [Green Version]
- Siddi Raju, R.; Sudarsana Raju, G.; Rajasekhar, M. Identification of Groundwater Potential Zones in Mandavi River Basin, Andhra Pradesh, India Using Remote Sensing, Gis and Mif Techniques. HydroResearch 2019, 2, 1–11. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Saranya, T.; Saravanan, S. Groundwater Potential Zone Mapping Using Analytical Hierarchy Process (Ahp) and Gis for Kancheepuram District, Tamilnadu, India. Model. Earth Syst. Environ. 2020, 6, 1105–1122. [Google Scholar] [CrossRef]
- Kumar, A.; Krishna, A.P. Assessment of Groundwater Potential Zones in Coal Mining Impacted Hard-Rock Terrain of India by Integrating Geospatial and Analytic Hierarchy Process (Ahp) Approach. Geocarto Int. 2018, 33, 105–129. [Google Scholar] [CrossRef]
- Ramanathan, R. A Note on the Use of the Analytic Hierarchy Process for Environmental Impact Assessment. J. Environ. Manag. 2001, 63, 27–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tesfamariam, S.; Sadiq, R. Risk-Based Environmental Decision-Making Using Fuzzy Analytic Hierarchy Process (F-Ahp). Stoch. Environ. Res. Risk Assess. 2006, 21, 35–50. [Google Scholar] [CrossRef]
- Memarbashi, E.; Azadi, H.; Barati, A.A.; Mohajeri, F.; Van Passel, S.; Witlox, F. Land-Use Suitability in Northeast Iran: Application of Ahp-Gis Hybrid Model. ISPRS Int. J. Geo-Inf. 2017, 6, 396. [Google Scholar] [CrossRef] [Green Version]
- Contreras, F.; Hanaki, K.; Aramaki, T.; Connors, S. Application of Analytical Hierarchy Process to Analyze Stakeholders Preferences for Municipal Solid Waste Management Plans, Boston, USA. Resour. Conserv. Recycl. 2008, 52, 979–991. [Google Scholar] [CrossRef]
- Khoshand, A.; Kamalan, H.; Rezaei, H. Application of Analytical Hierarchy Process (Ahp) to Assess Options of Energy Recovery from Municipal Solid Waste: A Case Study in Tehran, Iran. J. Mater. Cycles Waste Manag. 2018, 20, 1689–1700. [Google Scholar] [CrossRef]
- Al-Djazouli, M.O.; Elmorabiti, K.; Rahimi, A.; Amellah, O.; Fadil, O.A.M. Delineating of Groundwater Potential Zones Based on Remote Sensing, Gis and Analytical Hierarchical Process: A Case of Waddai, Eastern Chad. GeoJournal 2021, 86, 1881–1894. [Google Scholar] [CrossRef]
- Allafta, H.; Opp, C.; Patra, S. Identification of Groundwater Potential Zones Using Remote Sensing and Gis Techniques: A Case Study of the Shatt Al-Arab Basin. Remote Sens. 2021, 13, 112. [Google Scholar] [CrossRef]
- Sutradhar, S.; Mondal, P.; Das, N. Delineation of Groundwater Potential Zones Using Mif and Ahp Models: A Micro-Level Study on Suri Sadar Sub-Division, Birbhum District, West Bengal, India. Groundw. Sustain. Dev. 2021, 12, 100547. [Google Scholar] [CrossRef]
- Forootan, E.; Seyedi, F. Gis-Based Multi-Criteria Decision Making and Entropy Approaches for Groundwater Potential Zones Delineation. Earth Sci. Inform. 2021, 14, 333–347. [Google Scholar] [CrossRef]
- Aslan, V.; Dilekoğlu, M.F. Groundwater Potential Mapping with Geographical Information Techniques for a Sustainable Environment in Haliliye Basin, Turkey. Int. J. Environ. Sci. Technol. 2021, 1–16. [Google Scholar] [CrossRef]
- Elango, L.; Ramachandran, S.; Chowdary, Y.S.N. Groundwater Quality in Coastal Regions of South Madras. Indian J. Environ. Health 1992, 34, 318–325. [Google Scholar]
- Sathish, S.; Elango, L.; Rajesh, R.; Sarma, V.S. Assessment of Seawater Mixing in a Coastal Aquifer by High Resolution Electrical Resistivity Tomography. Int. J. Environ. Sci. Technol. 2011, 8, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Elango, L.; Kannan, R.; Senthil Kumar, M. Major Ion Chemistry and Identification of Hydrogeochemical Processes of Groundwater in a Part of Kancheepuram District, Tamil Nadu, India. J. Environ. Geosci. 2003, 10, 157–166. [Google Scholar]
- Christy, R.M.; Elango, L. Percolation Pond as a Method of Managed Aquifer Recharge in a Coastal Saline Aquifer: A Case Study on the Criteria for Site Selection and Its Impacts. J. Earth Syst. Sci. 2017, 126, 1–16. [Google Scholar] [CrossRef]
- Nair, I.S.; Renganayaki, S.P.; Elango, L. Identification of Seawater Intrusion by Cl/Br Ratio and Mitigation through Managed Aquifer Recharge in Aquifers North of Chennai, India. J. Groundw. Res. 2013, 2, 19. [Google Scholar]
- Balakrishnan, T. District Groundwater Brochure Chennai District Tamil Nadu; Technical Report Series; CGWB: Chennai, India, 2008. [Google Scholar]
- Palanisami, K.; Ranganathan, C.R.; Vidhyavathi, A.; Rajkumar, M.; Ajjan, N. Performance of Agriculture in River Basins of Tamil Nadu in the Last Three Decades–A Total Factor Productivity Approach; Planning Commission, Government of India: New Delhi, India; Centre for Agricultural and Rural Development Studies, Tamil Nadu Agricultural University: Coimbatore, India, 2011; pp. 1–171. [Google Scholar]
- Das, N.; Mukhopadhyay, S. Application of Multi-Criteria Decision Making Technique for the Assessment of Groundwater Potential Zones: A Study on Birbhum District, West Bengal, India. Environ. Dev. Sustain. 2020, 22, 931–955. [Google Scholar] [CrossRef]
- Rahmati, O.; Samani, A.N.; Mahdavi, M.; Pourghasemi, H.R.; Zeinivand, H. Groundwater Potential Mapping at Kurdistan Region of Iran Using Analytic Hierarchy Process and Gis. Arab. J. Geosci. 2015, 8, 7059–7071. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making for Leaders; RWS Publications: Pittsburgh, PA, USA, 1992. [Google Scholar]
- Fashae, O.A.; Tijani, M.N.; Talabi, A.O.; Adedeji, O.I. Delineation of Groundwater Potential Zones in the Crystalline Basement Terrain of Sw-Nigeria: An Integrated Gis and Remote Sensing Approach. Appl. Water Sci. 2014, 4, 19–38. [Google Scholar] [CrossRef] [Green Version]
- Hadley, R.F. 16. Some Effects of Microclimate on Slope Morphology and Drainage Basin Development. In Short Papers in the Geologic and Hydrologic Sciences, Articles 1–146: Geological Survey Research 1961; United States Government Printing Office: Washington, DC, USA, 1961. [Google Scholar]
- Al-Saady, Y.I.; Al-Suhail, Q.A.; Al-Tawash, B.S.; Othman, A.A. Drainage Network Extraction and Morphometric Analysis Using Remote Sensing and Gis Mapping Techniques (Lesser Zab River Basin, Iraq and Iran). Environ. Earth Sci. 2016, 75, 1243. [Google Scholar] [CrossRef]
- Freeze, R.A.; Cherry, J. Groundwater; Prentice-Hall: Hoboken, NJ, USA, 1979. [Google Scholar]
- Poehls, D.J.; Smith, G.J. Encyclopedic Dictionary of Hydrogeology; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Muthu, K.; Sudalaimuthu, K. Integration of Remote Sensing, Gis, and Ahp in Demarcating Groundwater Potential Zones in Pattukottai Taluk, Tamilnadu, India. Arab. J. Geosci. 2021, 14, 1–18. [Google Scholar] [CrossRef]
- Arunbose, S.; Srinivas, Y.; Rajkumar, S.; Nair, N.C.; Kaliraj, S. Remote Sensing, Gis and Ahp Techniques Based Investigation of Groundwater Potential Zones in the Karumeniyar River Basin, Tamil Nadu, Southern India. Groundw. Sustain. Dev. 2021, 14, 100586. [Google Scholar] [CrossRef]
- Kaliraj, S.; Chandrasekar, N.; Magesh, N.S. Identification of Potential Groundwater Recharge Zones in Vaigai Upper Basin, Tamil Nadu, Using Gis-Based Analytical Hierarchical Process (Ahp) Technique. Arab. J. Geosci. 2014, 7, 1385–1401. [Google Scholar] [CrossRef]
- Agarwal, E.; Agarwal, R.; Garg, R.D.; Garg, P.K. Delineation of Groundwater Potential Zone: An Ahp/Anp Approach. J. Earth Syst. Sci. 2013, 122, 887–898. [Google Scholar] [CrossRef] [Green Version]
- Dar, T.; Rai, N.; Bhat, A. Delineation of Potential Groundwater Recharge Zones Using Analytical Hierarchy Process (Ahp). Geol. Ecol. Landsc. 2021, 5, 292–307. [Google Scholar] [CrossRef] [Green Version]
- Pinto, D.; Shrestha, S.; Babel, M.S.; Ninsawat, S. Delineation of Groundwater Potential Zones in the Comoro Watershed, Timor Leste Using Gis, Remote Sensing and Analytic Hierarchy Process (Ahp) Technique. Appl. Water Sci. 2017, 7, 503–519. [Google Scholar] [CrossRef] [Green Version]
No. | Map Layer | Phenomenon | Need |
---|---|---|---|
1 | Geomorphology (GM) | Physical processes on the earth’s surface that produce different landforms | A geomorphic unit is a composite unit that has specific characteristics |
2 | Geology (GEOL) | Different lithological formations | The aquifer characteristics of different geology is varied considerably |
3 | Lineament (including Fault & Shear zone) (Ln) | Planes/Zones of structural weakness in the rocks | Easy movement of water along weak planes |
4 | Rainfall (Rf) | Rainfall | Major source of water |
5 | Groundwater level (GWL) | Depth at which water occurs in the unconfined zone (top zone) below ground level | Accessible of water |
6 | Soil (Sl) | Soil | Result of physical surface processes and the lithology |
7 | Landuse (LU) | Purpose for which land has been put to use | Indicates the state of current use |
8 | Depth to Bed rock (DBR) | Massive rock below the soil and the weathered zone | Indication of the thickness of the unconfined aquifer |
9 | Slope (Sp) | Slope | Controls the movement of water (surface and ground) |
10 | Drainage (D) | Drainage | |
11 | Aspect (A) |
Less Important | Equally Important | More Important | ||||||
---|---|---|---|---|---|---|---|---|
Extremely | Very Strongly | Strongly | Moderetely | Equally | Moderately | Strongely | Very Strongly | Extremely |
1/9 | 1/7 | 1/5 | 1/3 | 1 | 3 | 5 | 7 | 9 |
Matrix Size | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 | 1.51 |
Thematic Layer | Sp | A | GWL | RF | GEO | D | Sl | LU | Ln | GM | DBR |
---|---|---|---|---|---|---|---|---|---|---|---|
Slope (Sp) | 1.00 | 0.33 | 0.33 | 0.50 | 0.50 | 0.33 | 0.33 | 0.20 | 0.25 | 0.25 | 0.25 |
Aspect (A) | 3.00 | 1.00 | 0.50 | 0.50 | 0.33 | 0.33 | 0.50 | 0.50 | 0.50 | 0.33 | 0.50 |
Ground Water level (GWL) | 3.00 | 2.00 | 1.00 | 0.25 | 0.25 | 0.25 | 0.25 | 0.33 | 0.25 | 0.25 | 0.50 |
Rainfall (RF) | 2.00 | 2.00 | 4.00 | 1.00 | 0.33 | 0.25 | 0.33 | 0.25 | 0.50 | 0.25 | 0.25 |
Geology (GEOL) | 2.00 | 3.00 | 4.00 | 3.00 | 1.00 | 0.50 | 0.33 | 0.33 | 0.50 | 0.33 | 0.25 |
Drainage(D) | 3.00 | 3.00 | 4.00 | 4.00 | 2.00 | 1.00 | 0.50 | 0.25 | 0.50 | 0.33 | 0.33 |
Soil (SL) | 3.00 | 2.00 | 4.00 | 3.00 | 3.00 | 2.00 | 1.00 | 0.50 | 0.33 | 0.50 | 0.33 |
Landuse (LU) | 5.00 | 2.00 | 3.00 | 4.00 | 3.00 | 4.00 | 2.00 | 1.00 | 0.33 | 0.50 | 0.33 |
Lineament (Ln) | 4.00 | 2.00 | 4.00 | 2.00 | 2.00 | 2.00 | 3.00 | 3.00 | 1.00 | 0.50 | 0.25 |
Geomorphology (GM) | 4.00 | 3.00 | 4.00 | 4.00 | 3.00 | 3.00 | 2.00 | 2.00 | 2.00 | 1.00 | 0.50 |
Depth to bed rock (DBR) | 4.00 | 2.00 | 2.00 | 4.00 | 4.00 | 3.00 | 3.00 | 3.00 | 4.00 | 2 | 1.00 |
SUM | 34.00 | 22.33 | 30.83 | 26.25 | 19.42 | 16.67 | 13.25 | 11.37 | 10.17 | 6.25 | 4.50 |
Sp | A | GWL | RF | GEO | D | Sl | LU | Ln | GM | DBR | Normalized Weight | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sp | 0.03 | 0.01 | 0.01 | 0.02 | 0.03 | 0.02 | 0.03 | 0.02 | 0.02 | 0.04 | 0.06 | 0.0257 |
A | 0.09 | 0.04 | 0.02 | 0.02 | 0.02 | 0.02 | 0.04 | 0.04 | 0.05 | 0.05 | 0.11 | 0.0455 |
GWL | 0.09 | 0.09 | 0.03 | 0.01 | 0.01 | 0.02 | 0.02 | 0.03 | 0.02 | 0.04 | 0.11 | 0.0429 |
Rf | 0.06 | 0.09 | 0.13 | 0.04 | 0.02 | 0.02 | 0.03 | 0.02 | 0.05 | 0.04 | 0.06 | 0.0491 |
GEOL | 0.06 | 0.13 | 0.13 | 0.11 | 0.05 | 0.03 | 0.03 | 0.03 | 0.05 | 0.05 | 0.06 | 0.0665 |
D | 0.09 | 0.13 | 0.13 | 0.15 | 0.10 | 0.06 | 0.04 | 0.02 | 0.05 | 0.05 | 0.07 | 0.0822 |
Sl | 0.09 | 0.09 | 0.13 | 0.11 | 0.15 | 0.12 | 0.08 | 0.04 | 0.03 | 0.08 | 0.07 | 0.0911 |
LU | 0.15 | 0.09 | 0.10 | 0.15 | 0.15 | 0.24 | 0.15 | 0.09 | 0.03 | 0.08 | 0.07 | 0.1188 |
Ln | 0.12 | 0.09 | 0.13 | 0.08 | 0.10 | 0.12 | 0.23 | 0.26 | 0.10 | 0.08 | 0.06 | 0.1237 |
GM | 0.12 | 0.13 | 0.13 | 0.15 | 0.15 | 0.18 | 0.15 | 0.18 | 0.20 | 0.16 | 0.11 | 0.1512 |
DBR | 0.12 | 0.09 | 0.06 | 0.15 | 0.21 | 0.18 | 0.23 | 0.26 | 0.39 | 0.32 | 0.22 | 0.2033 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.000 |
Factor | Class | Value | Normalized Weight of Features | Level of Suitable |
---|---|---|---|---|
Geomorphology | Chennai City | 2 | 0.0122 | Poor |
Pediment | 2 | 0.0122 | Poor | |
Buried Pediment Shallow | 2 | 0.0122 | Poor | |
Buried Pediment Moderate | 3 | 0.0183 | Moderate | |
Tank | 8 | 0.0488 | Very Good | |
Buried Pediment Deep | 6 | 0.0366 | Very Good | |
Structural hill | 2 | 0.0122 | Poor | |
Valley Fill | 8 | 0.0488 | Very Good | |
River | 9 | 0.0549 | Very Good | |
Flood Plain | 9 | 0.0549 | Very Good | |
Lateritic Gravel | 3 | 0.0183 | Moderate | |
Duricrust | 2 | 0.0122 | Poor | |
Marshy Land | 7 | 0.0427 | Very Good | |
Tertiary Upland | 5 | 0.0305 | Good | |
Sand Dune | 6 | 0.0366 | Good | |
Pediment Outcrop | 2 | 0.0122 | Poor | |
Settlement | 2 | 0.0122 | Poor | |
Swales | 2 | 0.0122 | Poor | |
Beach | 5 | 0.0305 | Good | |
Paleo Deltaic Plain | 7 | 0.0427 | Very Good | |
Quartz-Graval Tertiary | 4 | 0.0244 | Moderate | |
Upper Gondwana | 8 | 0.0488 | Very Good | |
Pulicate Lake | 7 | 0.0427 | Very Good | |
Alluvial Plain | 8 | 0.0488 | Very Good | |
Laterite Tertiary | 4 | 0.0244 | Moderate | |
Creek | 5 | 0.0305 | Good | |
B Canal | 7 | 0.0427 | Very Good | |
River Island | 7 | 0.0427 | Very Good | |
Lower Gondwana | 7 | 0.0427 | Very Good | |
Dyke | 2 | 0.0122 | Poor | |
Gullies | 2 | 0.0122 | Poor | |
Pedi Plain | 2 | 0.0122 | Poor | |
Old River Course | 9 | 0.0549 | Very Good | |
Geology | Biotite Hornblend Gnies | 4 | 0.0727 | Poor |
Quartz Gravel | 5 | 0.0909 | Moderate | |
Sandstone Conglomarate | 5 | 0.0909 | Moderate | |
Laterite | 7 | 0.1273 | Good | |
Shale Sandstone | 5 | 0.0909 | Moderate | |
Waterbodies | 4 | 0.0727 | Poor | |
Alluvium | 8 | 0.1455 | Very Good | |
Epidote Hornblend | 5 | 0.0909 | Moderate | |
Granite | 5 | 0.0909 | Moderate | |
Charnockite | 7 | 0.1273 | Good | |
Drainage | River | 8 | 0.4000 | Very Good |
Tank/Reservoir | 9 | 0.4500 | Very Good | |
Others | 3 | 0.1500 | Poor | |
Water Level | 0–6 | 2 | 0.1429 | Poor |
6–11 | 5 | 0.3571 | Moderate | |
6–21 | 7 | 0.5000 | Good | |
Soil | Sandyloam | 3 | 0.0667 | Moderate |
Loamysand | 3 | 0.0667 | Moderate | |
Habitation | 2 | 0.0444 | Poor | |
Waterbody | 8 | 0.1778 | Very Good | |
Sandyclayloam | 6 | 0.1333 | Good | |
Sandyclay | 6 | 0.1333 | Good | |
Clay | 3 | 0.0667 | Poor | |
Sand | 6 | 0.1333 | Good | |
Clayloam | 6 | 0.1333 | Good | |
Misce | 2 | 0.0444 | Poor | |
Rainfall | 770–930 | 1 | 0.1000 | Poor |
930–1090 | 2 | 0.2000 | Moderate | |
1090–1250 | 3 | 0.3000 | Good | |
1250–1410 | 4 | 0.4000 | Very Good | |
Landuse | Barren Land | 2 | 0.0211 | Poor |
Brickiln_industries | 2 | 0.0211 | Poor | |
Beach | 3 | 0.0316 | Moderate | |
HF Ind_IT | 4 | 0.0421 | Moderate | |
Airport | 2 | 0.0211 | Poor | |
Alkalinity Salinity | 2 | 0.0211 | Poor | |
Back Water | 2 | 0.0211 | Poor | |
casurina | 3 | 0.0316 | Moderate | |
City | 2 | 0.0211 | Poor | |
Estuary | 2 | 0.0211 | Poor | |
Groves | 4 | 0.0421 | Moderate | |
Crop Land | 5 | 0.0526 | Good | |
Juliflora | 4 | 0.0421 | Moderate | |
Marshy Land | 5 | 0.0526 | Good | |
Navey | 2 | 0.0211 | Poor | |
Plantation | 5 | 0.0526 | Good | |
Pulicat Lake | 5 | 0.0526 | Good | |
River | 8 | 0.0842 | Very Good | |
Salt Pan | 2 | 0.0211 | Poor | |
Sand | 8 | 0.0842 | Very Good | |
Shrub | 5 | 0.0526 | Good | |
Waste Land | 3 | 0.0316 | Moderate | |
Landwithscrub | 4 | 0.0421 | Moderate | |
Land without Scrub | 2 | 0.0211 | Poor | |
Hills with Shrub | 2 | 0.0211 | Poor | |
Dry Crop | 7 | 0.0737 | Good | |
Lineament | Buffer 500 | 6 | 0.4000 | Good |
Buffer 750 | 8 | 0.5333 | Very Good | |
Others | 1 | 0.0667 | Poor | |
Depth to Bed Rock | 11–45 | 5 | 0.2632 | Poor |
45–75 | 6 | 0.3158 | Moderate | |
75–829 | 8 | 0.4211 | Very Good | |
Aspects | Flat | 9 | 0.1957 | Very Good |
North 0–22.5 | 7 | 0.1522 | Very Good | |
Northeast 22.5–67.5 | 5 | 0.1087 | Good | |
East 67.5–112.5 | 6 | 0.1304 | Good | |
Southeast 112.5–157.5 | 8 | 0.1739 | Very Good | |
South 157.5–202.5 | 4 | 0.0870 | Moderate | |
Southwest 202.5–247.5 | 3 | 0.0652 | Moderate | |
West 247.5–292.5 | 2 | 0.0435 | Poor | |
Northwest 292.5–337.5 | 1 | 0.0217 | Poor | |
North 337.5–360 | 1 | 0.0217 | Poor | |
Slope | 0–2.42 | 7 | 0.4375 | Very Good |
2.42–7.58 | 4 | 0.2500 | Moderate | |
7.58–15.61 | 3 | 0.1875 | Moderate | |
15.61–38.81 | 2 | 0.1250 | Poor |
Groundwater Potential Class | Area (Km2) | % of Area |
---|---|---|
Very Poor | 930.91 | 15.36 |
Poor | 1379.25 | 22.76 |
Moderate | 1636.20 | 27.00 |
Good | 1369.08 | 22.59 |
Very Good | 743.89 | 12.28 |
Location Name | X | Y | Actual Specific Capacity | Interference on Actual Yield | Expected Yield from Map | Suitability Agreement |
---|---|---|---|---|---|---|
Velachery | 80.23 | 12.98 | 2.71 | Low | Low to moderate | Agree |
Ayyanavaram | 80.23 | 13.10 | 4 | Moderate | moderate | Agree |
Tandiarpet | 80.28 | 13.13 | 0.61 | Low | Very low to low | Agree |
Mandaiveli | 80.25 | 13.01 | 0.56 | low | Very low to low | Agree |
Besent Nagar | 80.27 | 13.00 | 12 | high | Moderate to high | Agree |
Arumbakkam | 80.21 | 13.07 | 3.47 | Moderate | Very low to low | disagree |
Redhills | 80.19 | 13.19 | 1 | low | Moderate | disagree |
Tirumalisai | 80.06 | 13.05 | 1.5 | low | Moderate | disagree |
Pallavaram | 80.15 | 12.97 | 2.11 | low | Low to moderate | Agree |
Pallikaranai | 80.20 | 12.94 | 3.11 | Moderate | Low to moderate | Agree |
Solinganallur | 80.23 | 12.90 | 4.66 | Moderate | Low to moderate | Agree |
Alathur | 80.18 | 12.69 | 2.28 | low | low to moderate | Agree |
Sembakkam | 80.13 | 12.71 | 2.9 | low | poor to moderate | agree |
Thaiyur | 80.20 | 12.78 | 1.5 | low | Low to moderate | Agree |
Ottivakkam | 80.12 | 12.70 | 2.5 | low | Low to moderate | Agree |
Melakottaiyur | 80.15 | 12.84 | 2.11 | low | Very low to low | Agree |
Madampakkam | 80.05 | 12.83 | 1.9 | low | Very low to low | Agree |
Ponmar | 80.17 | 12.84 | 4.1 | Moderate | moderate | Agree |
Padappai | 80.03 | 12.88 | 1.42 | low | Very low to low | Agree |
Sriperumbadur | 79.94 | 12.95 | 1.82 | low | Good to very good | disagree |
Purisai | 79.75 | 12.99 | 2.24 | low | moderate to high | disagree |
Kunrathur | 80.10 | 13.00 | 5.47 | Moderate | Moderate to high | Agree |
Thandalam | 80.00 | 13.10 | 3 | Moderate | Moderate to high | Agree |
Ambattur | 80.15 | 13.11 | 2.37 | low | low | Agree |
Arani | 80.09 | 13.33 | 3.3 | Moderate | Moderate | agree |
Avadi | 80.10 | 13.12 | 2.4 | low | Low to moderate | agree |
Ennore | 80.24 | 13.22 | 1.9 | low | Low to moderate | Agree |
Gummidipoondi | 80.13 | 13.40 | 1.12 | low | moderate | disagree |
Kaverirajapuram | 79.75 | 13.17 | 2 | low | Low to moderate | Agree |
Korattur | 80.01 | 13.08 | 4.5 | Moderate | Moderate to high | Agree |
Madhavaram | 80.23 | 13.15 | 3.16 | Moderate | Low to moderate | Agree |
Nabalur | 79.70 | 13.20 | 3.02 | Moderate | poor to moderate | Agree |
Nandiambakkam | 80.28 | 13.27 | 7.41 | high | poor to moderate | disagree |
Pallipattu | 79.44 | 13.34 | 2.8 | Low | Low to moderate | agree |
Pazhverkadu | 80.33 | 13.42 | 5.02 | Moderate | moderate to good | Agree |
Pondeswaram | 80.07 | 13.19 | 4.75 | high | moderate to good | agree |
Red Hills | 80.18 | 13.19 | 2.47 | Low | moderate to good | agree |
Thandarai | 80.06 | 13.11 | 2.4 | Low | Low to moderate | agree |
Thervoy | 79.92 | 13.37 | 3.01 | Moderate | Low to moderate | Agree |
Thirumullaivoyal | 80.13 | 13.13 | 2.26 | Low | Low to moderate | Agree |
Tiruthani(taluk) | 79.61 | 13.18 | 3.14 | Moderate | Low to moderate | agree |
Tiruvotriyur | 80.30 | 13.15 | 2.11 | Low | moderate | disagree |
Uthukkottai | 79.90 | 13.33 | 3 | Moderate | Low to moderate | Agree |
Veppampattu | 79.98 | 13.13 | 3.66 | Moderate | moderate to good | Agree |
Arakkonam | 79.67 | 13.08 | 4.3 | Moderate | Low to moderate | disagree |
RK Pet | 79.44 | 13.17 | 2.7 | Low | Low | Agree |
Panapakkam | 79.57 | 12.92 | 3.23 | Moderate | Low to moderate | Agree |
Sumaithangi | 79.44 | 12.90 | 4.34 | Moderate | moderate to good | Agree |
Kunnattur | 79.53 | 13.06 | 4.81 | Moderate | low | disagree |
Sholingur | 79.42 | 13.11 | 3.6 | Moderate | low | disagree |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajil Kumar, P.J.; Elango, L.; Schneider, M. GIS and AHP Based Groundwater Potential Zones Delineation in Chennai River Basin (CRB), India. Sustainability 2022, 14, 1830. https://doi.org/10.3390/su14031830
Sajil Kumar PJ, Elango L, Schneider M. GIS and AHP Based Groundwater Potential Zones Delineation in Chennai River Basin (CRB), India. Sustainability. 2022; 14(3):1830. https://doi.org/10.3390/su14031830
Chicago/Turabian StyleSajil Kumar, Pazhuparambil Jayarajan, Lakshmanan Elango, and Michael Schneider. 2022. "GIS and AHP Based Groundwater Potential Zones Delineation in Chennai River Basin (CRB), India" Sustainability 14, no. 3: 1830. https://doi.org/10.3390/su14031830