Evaluating the Spatio-Temporal Distribution of Irrigation Water Components for Water Resources Management Using Geo-Informatics Approach
<p>Lower Chenab canal command area.</p> "> Figure 2
<p>The methodological framework for the quantification of groundwater irrigation.</p> "> Figure 3
<p>Gross canal water distribution at the CCAs of the LCC system.</p> "> Figure 4
<p>Comparison of satellite-based ETa and ETa by the AA method based calibration (2011–2012 to 2012–2013) and validation (2013–2014 to 2014–2015) of SEBAL.</p> "> Figure 5
<p>Four years average SEBAL estimated ETa of the Rabi season.</p> "> Figure 6
<p>Four years average SEBAL estimated ETa of the Kharif season.</p> "> Figure 7
<p>Actual evapotranspiration at different CCAs of LCC.</p> "> Figure 8
<p>Four years average Rabi season satellite derived rainfall.</p> "> Figure 9
<p>Four years average Kharif season satellite derived rainfall.</p> "> Figure 10
<p>Effective annual rainfall at CCAs (2011–2012 to 2014–2015).</p> "> Figure 11
<p>Four years average Rabi season groundwater irrigation in the LCC.</p> "> Figure 12
<p>Four years average Kharif season groundwater irrigation in the LCC.</p> "> Figure 13
<p>Gross groundwater irrigation at different CCAs of the LCC system.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. SEBAL for the Estimation of Actual Evapotranspiration
2.3. Advection Aridity Approach
2.4. Satellite Derived Rainfall
2.5. Groundwater Irrigation
3. Results
3.1. Canal Water Availability
3.2. Calibration and Validation of SEBAL with Advection Aridity Method
3.3. Spatially Distributed ETa
3.4. Spatially Distributed Rainfall
3.5. Groundwater Irrigation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boelee, E.; Atapattu, S.; Amede, T. Ecosystems for Water and Food Security. 2011. Available online: http://www.iwmi.cgiar.org/Topics/Ecosystems/PPT/Ecosystems (accessed on 3 March 2021).
- Jurriëns, M.; Mollinga, P.P.; Wester, P. Scarcity by Design: Protective Irrigation in India and Pakistan; ILRI: Nairobi, Kenya, 1996; ISBN 9070754401. [Google Scholar]
- Bandaragoda, D.J.; Badruddin, M. Moving Towards Demand-Based Operations in Modernized Irrigation Systems in Pakistan; International Water Management Institute: Gujarat, India, 1992. [Google Scholar]
- Ullah, M.K.; Habib, Z.; Muhammad, S. Spatial Distribution of Reference and Potential Evapotranspiration Across the INDUS Basin Irrigation Systems; IWMI: Gujarat, India, 2001; Volume 24, ISBN 929090206X. [Google Scholar]
- Latif, M.; Ahmad, M.Z. Groundwater and soil salinity variations in a canal command area in Pakistan. Irrig. Drain. J. Int. Comm. Irrig. Drain. 2009, 58, 456–468. [Google Scholar] [CrossRef]
- Hussain, I.; Hussain, Z.; Sial, M.H.; Akram, W.; Farhan, M.F. Water balance, supply and demand and irrigation efficiency of Indus Basin. Pak. Econ. Soc. Rev. 2011, 49, 13–38. [Google Scholar]
- Navalawala, B.N. Water Scenario in India. Yojana Oct. 1995, 1, 5–11. [Google Scholar]
- Sarwar, A.; Eggers, H. Development of a conjunctive use model to evaluate alternative management options for surface and groundwater resources. Hydrogeol. J. 2006, 14, 1676–1687. [Google Scholar] [CrossRef]
- Qureshi, A.S.; McCornick, P.G.; Sarwar, A.; Sharma, B.R. Challenges and prospects of sustainable groundwater management in the Indus Basin, Pakistan. Water Resour. Manag. 2010, 24, 1551–1569. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Yang, Y.-C.; Savitsky, A.; Alford, D.; Brown, C.; Wescoat, J.; Debowicz, D.; Robinson, S. The Indus Basin of Pakistan: The Impacts of Climate Risks on Water and Agriculture; The World Bank: Washington, DC, USA, 2013; ISBN 0821398741. [Google Scholar]
- Laghari, A.N.; Vanham, D.; Rauch, W. The Indus basin in the framework of current and future water resources management. Hydrol. Earth Syst. Sci. 2012, 16, 1063. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.-D.; Turral, H.; Nazeer, A. Diagnosing irrigation performance and water productivity through satellite remote sensing and secondary data in a large irrigation system of Pakistan. Agric. Water Manag. 2009, 96, 551–564. [Google Scholar] [CrossRef]
- Kirby, M.; Mainuddin, M.; Khaliq, T.; Cheema, M.J.M. Agricultural production, water use and food availability in Pakistan: Historical trends, and projections to 2050. Agric. Water Manag. 2017, 179, 34–46. [Google Scholar] [CrossRef]
- Liaqat, U.W.; Choi, M.; Awan, U.K. Spatio-temporal distribution of actual evapotranspiration in the Indus Basin Irrigation System. Hydrol. Process. 2015, 29, 2613–2627. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Shah, T.; Akhtar, M. The Groundwater Economy of Pakistan; IWMI: Gujarat, India, 2003; Volume 64, ISBN 9290905301. [Google Scholar]
- Stisen, S.; Soltani, M.; Mendiguren, G.; Langkilde, H.; Garcia, M.; Koch, J. Spatial Patterns in Actual Evapotranspiration Climatologies for Europe. Remote Sens. 2021, 13, 2410. [Google Scholar]
- Hertzog, T.; Poussin, J.-C.; Tangara, B.; Kouriba, I.; Jamin, J.-Y. A role playing game to address future water management issues in a large irrigated system: Experience from Mali. Agric. Water Manag. 2014, 137, 1–14. [Google Scholar] [CrossRef]
- Ahmad, M.-D. Estimation of Net Groundwater Use in Irrigated River Basins Using Geo-Information Techniques: A Case Study in Rechna Doab, Pakistan; Wageningen University: Wageningen, The Netherlands, 2002; ISBN 9058087611. [Google Scholar]
- Singh, R.; Kroes, J.G.; van Dam, J.C.; Feddes, R.A. Distributed ecohydrological modelling to evaluate the performance of irrigation system in Sirsa district, India: I. Current water management and its productivity. J. Hydrol. 2006, 329, 692–713. [Google Scholar] [CrossRef]
- Cheema, M.J.M.; Bastiaanssen, W.G.M. Local calibration of remotely sensed rainfall from the TRMM satellite for different periods and spatial scales in the Indus Basin. Int. J. Remote Sens. 2012, 33, 2603–2627. [Google Scholar] [CrossRef]
- Usman, M.; Liedl, R.; Awan, U.K. Spatio-temporal estimation of consumptive water use for assessment of irrigation system performance and management of water resources in irrigated Indus Basin, Pakistan. J. Hydrol. 2015, 525, 26–41. [Google Scholar] [CrossRef]
- Liaqat, U.W.; Awan, U.K.; McCabe, M.F.; Choi, M. A geo-informatics approach for estimating water resources management components and their interrelationships. Agric. Water Manag. 2016, 178, 89–105. [Google Scholar] [CrossRef] [Green Version]
- Usman, M.; Mahmood, T.; Conrad, C.; Bodla, H.U. Remote Sensing and Modelling Based Framework for Valuing Irrigation System Efficiency and Steering Indicators of Consumptive Water Use in an Irrigated Region. Sustainability 2020, 12, 9535. [Google Scholar] [CrossRef]
- Awan, U.K.; Anwar, A.; Ahmad, W.; Hafeez, M. A methodology to estimate equity of canal water and groundwater use at different spatial and temporal scales: A geo-informatics approach. Environ. Earth Sci. 2016, 75, 409. [Google Scholar] [CrossRef]
- Waqas, M.M.; Awan, U.K.; Cheema, M.J.M.; Ahmad, I.; Ahmad, M.; Ali, S.; Shah, S.H.H.; Bakhsh, A.; Iqbal, M. Estimation of Canal Water Deficit Using Satellite Remote Sensing and GIS: A Case Study in Lower Chenab Canal System. J. Indian Soc. Remote Sens. 2019, 47, 1–10. [Google Scholar] [CrossRef]
- Awan, U.K.; Tischbein, B.; Martius, C. Combining hydrological modeling and GIS approaches to determine the spatial distribution of groundwater recharge in an arid irrigation scheme. Irrig. Sci. 2013, 31, 793–806. [Google Scholar] [CrossRef]
- Conrad, C.; Dech, S.W.; Hafeez, M.; Lamers, J.; Martius, C.; Strunz, G. Mapping and assessing water use in a Central Asian irrigation system by utilizing MODIS remote sensing products. Irrig. Drain. Syst. 2007, 21, 197–218. [Google Scholar] [CrossRef] [Green Version]
- Conrad, C.; Rahmann, M.; Machwitz, M.; Stulina, G.; Paeth, H.; Dech, S. Satellite based calculation of spatially distributed crop water requirements for cotton and wheat cultivation in Fergana Valley, Uzbekistan. Glob. Planet. Chang. 2013, 110, 88–98. [Google Scholar] [CrossRef]
- Hellegers, P.; Soppe, R.; Perry, C.J.; Bastiaanssen, W.G.M. Combining remote sensing and economic analysis to support decisions that affect water productivity. Irrig. Sci. 2009, 27, 243–251. [Google Scholar] [CrossRef]
- Hafeez, M.M.; Khan, S. Spatial mapping of actual crop water use in ground water dominant irrigation system. Aust. J. Agric. Res. 2007, 1, 1–50. [Google Scholar]
- Bastiaanssen, W.G.M.; Ahmad, M.; Chemin, Y. Satellite surveillance of evaporative depletion across the Indus Basin. Water Resour. Res. 2002, 38, 1–9. [Google Scholar] [CrossRef]
- Bandara, K.M.P.S. Assessing Irrigation Performance by Using Remote Sensing; Wageningen University: Wageningen, The Netherlands, 2006; ISBN 9085044065. [Google Scholar]
- Xu, C.-Y.; Singh, V.P. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions. J. Hydrol. 2005, 308, 105–121. [Google Scholar] [CrossRef]
- Liu, S.; Sun, R.; Sun, Z.; Li, X.; Liu, C. Evaluation of three complementary relationship approaches for evapotranspiration over the Yellow River basin. Hydrol. Process. Int. J. 2006, 20, 2347–2361. [Google Scholar] [CrossRef]
- Matin, M.A.; Bourque, C.P.-A. Assessing spatiotemporal variation in actual evapotranspiration for semi-arid watersheds in northwest China: Evaluation of two complementary-based methods. J. Hydrol. 2013, 486, 455–465. [Google Scholar] [CrossRef]
- Usman, M.; Liedl, R.; Kavousi, A. Estimation of distributed seasonal net recharge by modern satellite data in irrigated agricultural regions of Pakistan. Environ. Earth Sci. 2015, 74, 1463–1486. [Google Scholar] [CrossRef]
- Brutsaert, W.; Stricker, H. An advection-aridity approach to estimate actual regional evapotranspiration. Water Resour. Res. 1979, 15, 443–450. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar]
- Bouchet, R.J. Evapotranspiration reelle, evapotranspiration potentielle, et production agricole. Ann. Agron. 1963, 14, 743–824. [Google Scholar]
- Harmsen, E.W.; Mesa, S.E.G.; Cabassa, E.; Ramírez-Beltran, N.D.; Pol, S.C.; Kuligowski, R.J.; Vasquez, R. Satellite sub-pixel rainfall variability. Int. J. Syst. Appl. Eng. Dev. 2008, 2, 91–100. [Google Scholar]
- Ahmad, M.-D.; Magagula, T.F.; Love, D.; Kongo, V.; Mul, M.L.; Kinoti, J. Estimating actual evapotranspiration through remote sensing techniques to improve agricultural water management: A case study in the transboundary Olifants catchment in the Limpopo basin, South Africa. In Proceedings of the 6th WaterNet/WARFSA/GWP Annual Symposium, Ezulwini, Swaziland, 1–4 November 2005. [Google Scholar]
- Ahmad, M.; Bastiaanssen, W.G.M.; Feddes, R.A. Sustainable use of groundwater for irrigation: A numerical analysis of the subsoil water fluxes. Irrig. Drain. J. Int. Comm. Irrig. Drain. 2002, 51, 227–241. [Google Scholar] [CrossRef]
- Awan, U.K.; Ismaeel, A. A new technique to map groundwater recharge in irrigated areas using a SWAT model under changing climate. J. Hydrol. 2014, 519, 1368–1382. [Google Scholar] [CrossRef]
- Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.; Dolman, H.; Field, C. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 2002, 113, 223–243. [Google Scholar] [CrossRef] [Green Version]
- Hobbins, M.T.; Ramirez, J.A.; Brown, T.C. The complementary relationship in estimation of regional evapotranspiration: An enhanced advection-aridity model. Water Resour. Res. 2001, 37, 1389–1403. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, A.S.; Gill, M.A.; Sarwar, A. Sustainable groundwater management in Pakistan: Challenges and opportunities. Irrig. Drain. J. Int. Comm. Irrig. Drain. 2010, 59, 107–116. [Google Scholar] [CrossRef]
- Islam, M.N.; Uyeda, H. Vertical variations of rain intensity in different rainy periods in and around Bangladesh derived from TRMM observations. Int. J. Climatol. J. R. Meteorol. Soc. 2008, 28, 273–279. [Google Scholar] [CrossRef]
- Chokngamwong, R.; Chiu, L. TRMM and Thailand daily gauge rainfall comparison. In Proceedings of the Preprints, 20th Conference on Hydrology, Atlanta, GA, USA, 27 January–3 February 2006; American Meteorological Society: Boston, MA, USA, 2006; Volume 1. [Google Scholar]
- Zwart, S.J.; Bastiaanssen, W.G.M.; de Fraiture, C.; Molden, D.J. WATPRO: A remote sensing based model for mapping water productivity of wheat. Agric. Water Manag. 2010, 97, 1628–1636. [Google Scholar] [CrossRef]
- Zwart, S.J.; Bastiaanssen, W.G.M. SEBAL for detecting spatial variation of water productivity and scope for improvement in eight irrigated wheat systems. Agric. Water Manag. 2007, 89, 287–296. [Google Scholar] [CrossRef]
- Cheema, M.J.M.; Immerzeel, W.W.; Bastiaanssen, W.G.M. Spatial quantification of groundwater abstraction in the irrigated Indus basin. Groundwater 2014, 52, 25–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheema, M.J.M.; Bastiaanssen, W.G.M. Land use and land cover classification in the irrigated Indus Basin using growth phenology information from satellite data to support water management analysis. Agric. Water Manag. 2010, 97, 1541–1552. [Google Scholar] [CrossRef]
- Karimi, P.; Bastiaanssen, W.G.M.; Molden, D.; Cheema, M.J.M. Basin-wide water accounting based on remote sensing data: An application for the Indus Basin. Hydrol. Earth Syst. Sci. 2013, 17, 2473–2486. [Google Scholar] [CrossRef] [Green Version]
Product Name | Dataset Used | Spatial Resolution (m) | Sensor |
---|---|---|---|
MOD09Q1 | Land surface reflectance (band 1 and band 2) | 250 | TERRA |
MOD11A2 | Land surface temperature and emissivity | 1000 | TERRA |
MOD13A2 | NDVI | 1000 | TERRA |
Annual | Rabi Season | Kharif Season | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nov. | Dec. | Jun. | Feb. | Mar. | 1–15 Apr. | Total Rabi | 16–30 Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Total Kharif | Total Annual | |
2011–2012 | 27.3 | 26.2 | 13.7 | 0 | 24.4 | 11.4 | 103.1 | 11.5 | 19.1 | 26.9 | 39.6 | 40.1 | 35.4 | 29.2 | 201.9 | 305.8 |
2012–2013 | 23.8 | 25.0 | 12.5 | 8.5 | 28.9 | 14.7 | 113.5 | 14.3 | 31.8 | 36.7 | 39.6 | 40.2 | 35.5 | 29.3 | 227.3 | 340.8 |
2013–2014 | 29.50 | 26.25 | 12.47 | 15.27 | 25.87 | 13.21 | 122.57 | 13.26 | 30.83 | 37.20 | 40.02 | 41.04 | 17.06 | 34.82 | 214.23 | 336.8 |
2014–2015 | 29.57 | 29.44 | 9.10 | 8.15 | 21.09 | 12.99 | 110.34 | 15.37 | 36.11 | 33.15 | 39.41 | 40.93 | 37.32 | 30.67 | 232.96 | 343.3 |
Average | 27.55 | 26.73 | 11.94 | 7.96 | 25.08 | 13.10 | 112.38 | 13.59 | 29.46 | 33.50 | 39.67 | 40.56 | 31.32 | 30.99 | 219.12 | 331.7 |
Annual | Rabi Season | Kharif Season | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nov. | Dec. | Jun. | Feb. | Mar. | 1–15 Apr. | Total Rabi | 16–30 Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Total Kharif | Total Annual | |
2011–2012 | 9.8 | 9.4 | 4.9 | 0.0 | 8.8 | 4.1 | 37.1 | 4.1 | 6.9 | 9.7 | 14.3 | 14.4 | 12.8 | 10.5 | 72.7 | 110.1 |
2012–2013 | 8.6 | 9.0 | 4.5 | 3.0 | 10.4 | 5.3 | 40.9 | 5.1 | 11.4 | 13.2 | 14.3 | 14.5 | 12.8 | 10.5 | 81.8 | 122.7 |
2013–2014 | 10.6 | 9.5 | 4.5 | 5.5 | 9.3 | 4.7 | 44.1 | 4.7 | 11.1 | 13.3 | 14.4 | 14.7 | 6.1 | 12.5 | 77.1 | 110.1 |
2014–2015 | 10.6 | 10.5 | 3.2 | 2.9 | 7.5 | 4.6 | 39.7 | 5.5 | 12.9 | 11.9 | 14.1 | 14.7 | 13.4 | 11.0 | 83.8 | 123.5 |
Average | 9.9 | 9.6 | 4.3 | 2.9 | 9.0 | 4.7 | 40.5 | 4.9 | 10.6 | 12.1 | 14.3 | 14.6 | 11.3 | 11.2 | 78.9 | 119.4 |
Season | Mean | Standard Deviation | Goodness of Fitness of Measure | |||||
---|---|---|---|---|---|---|---|---|
SEBAL ETa | AA ETa | SEBAL ETa | AA ETa | R | NSE | PBIASE | RMSE | |
Kharif | 87.1 | 100.0 | 27.7 | 34.9 | 0.93 | 0.72 | −12.9 | 34.9 |
Rabi | 47.9 | 55.3 | 15.9 | 16.1 | 0.94 | 0.85 | −4.4 | 5.76 |
Annual | 69.0 | 77.0 | 30.1 | 42.4 | 0.97 | 0.83 | 10.4 | 17.0 |
Annual | Rabi Season | Kharif Season | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nov. | Dec. | Jun. | Feb. | Mar. | 1–15 Apr. | Total Rabi | 16–30 Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Total Kharif | Total Annual | |
2011–2012 | 41.2 | 34.4 | 28.2 | 41.6 | 71.4 | 41.4 | 258.2 | 38.3 | 108.8 | 106.6 | 104.3 | 108.4 | 84.3 | 61.2 | 611.9 | 870 |
2012–2013 | 32.8 | 38.2 | 32.2 | 51.0 | 85.1 | 46.3 | 285.6 | 38.7 | 101.4 | 109.4 | 107.5 | 111.6 | 83.4 | 51.5 | 603.5 | 889 |
2013–2014 | 40.4 | 41.2 | 42.4 | 58.4 | 81.2 | 49.6 | 313.2 | 35.1 | 107.6 | 105.4 | 108.6 | 112.4 | 86.7 | 59.2 | 615 | 928 |
2014–2015 | 42.6 | 36.2 | 42.5 | 38.4 | 83.4 | 46.2 | 289.3 | 36.6 | 104.5 | 108.4 | 121.2 | 110.1 | 84.6 | 54.4 | 619.8 | 902 |
Average | 39.2 | 37.5 | 36.3 | 47.3 | 80.3 | 45.8 | 286.5 | 37.2 | 105.5 | 107.5 | 110.4 | 110.6 | 84.7 | 56.5 | 612.5 | 899 |
Annual | Rabi Season | Kharif Season | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nov. | Dec. | Jun. | Feb. | Mar. | 1–15 Apr. | Total Rabi | 16–30 Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Total Kharif | Total Annual | |
2011–2012 | 0 | 0 | 3.8 | 8 | 1.5 | 7.5 | 20.8 | 2.7 | 0 | 23.6 | 45.4 | 38.5 | 163.7 | 11.5 | 285.4 | 306.2 |
2012–2013 | 0 | 17.2 | 1.5 | 55 | 1.3 | 12.7 | 87.7 | 8.9 | 4.6 | 67.5 | 4.7 | 114.9 | 3.3 | 0 | 203 | 290.7 |
2013–2014 | 0.5 | 0 | 0 | 14.3 | 41.7 | 10.3 | 66.8 | 18 | 41.2 | 7.1 | 57.5 | 4.8 | 140.2 | 3.6 | 272.4 | 339.2 |
2014–2015 | 10 | 0 | 12.2 | 20.5 | 67.9 | 32.8 | 143.4 | 0 | 17 | 11.6 | 128 | 48.4 | 75.2 | 14.5 | 294.7 | 438.1 |
Average | 2.63 | 4.3 | 4.38 | 24.5 | 28.1 | 15.8 | 79.7 | 7.4 | 15.7 | 27.5 | 58.9 | 51.7 | 95.6 | 7.4 | 264.2 | 343.5 |
Annual | Rabi Season | Kharif Season | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nov. | Dec. | Jun. | Feb. | Mar. | 1–15 Apr. | Total Rabi | 16–30 Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Total Kharif | Total Annual | |
2011–2012 | 0 | 0 | 3.1 | 6.4 | 1.2 | 6 | 16.7 | 2.2 | 0 | 18.9 | 36.3 | 30.8 | 130.9 | 9.2 | 228.3 | 244.9 |
2012–2013 | 0 | 13.8 | 1.2 | 44 | 1.04 | 10.5 | 70.2 | 7.1 | 3.7 | 54 | 3.8 | 91.9 | 2.6 | 0 | 163.1 | 232.6 |
2013–2014 | 0.4 | 0 | 0 | 11.4 | 33.4 | 8.2 | 53.4 | 14.4 | 33 | 5.7 | 46 | 3.8 | 112.6 | 2.9 | 217.9 | 271.4 |
2014–2015 | 8 | 0 | 9.8 | 16.4 | 54.3 | 26.2 | 114.7 | 0 | 13.6 | 9.3 | 102.4 | 38.7 | 60.2 | 11.6 | 235.8 | 350.5 |
Average | 2.1 | 3.5 | 3.5 | 19.6 | 22.5 | 12.7 | 63.9 | 5.9 | 12.6 | 21.9 | 47.2 | 41.3 | 76.6 | 5.9 | 211.4 | 274.8 |
Annual | Rabi Season | Kharif Season | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nov. | Dec. | Jun. | Feb. | Mar. | 1–15 Apr. | Total Rabi | 16–30 Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Total Kharif | Total Annual | |
2011–2012 | 31.2 | 24.6 | 20.0 | 47.6 | 61.0 | 30.9 | 215.2 | 31.7 | 101.1 | 77.4 | 53.4 | 62.8 | 0 | 41.3 | 308.0 | 523.0 |
2012–2013 | 23.4 | 15.2 | 26.3 | 4.0 | 73.5 | 30.5 | 173.0 | 25.7 | 85.9 | 41.8 | 89.0 | 4.6 | 67.6 | 40.5 | 355.8 | 528.7 |
2013–2014 | 29.0 | 31.6 | 37.5 | 41.1 | 38.3 | 36.0 | 213.4 | 15.8 | 62.9 | 85.9 | 47.6 | 93.4 | 0 | 43.6 | 31.7.0 | 530.4 |
2014–2015 | 23.4 | 25.4 | 29.0 | 18.7 | 21.1 | 15.1 | 132.6 | 30.5 | 77.4 | 86.8 | 4.4 | 56.5 | 10.4 | 31.4 | 297.4 | 297.9 |
Average | 26.7 | 24.2 | 28.2 | 27.8 | 48.5 | 28.1 | 183.6 | 25.9 | 81.8 | 73.0 | 48.6 | 54.3 | 19.5 | 39.2 | 319.5 | 503.0 |
Annual | Rabi Season | Kharif Season | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nov. | Dec. | Jun. | Feb. | Mar. | 1–15 Apr. | Total Rabi | 16–30 Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Total Kharif | Total Annual | |
2011–2012 | 45.8 | 36.1 | 29.4 | 70.0 | 89.7 | 45.4 | 316.5 | 46.6 | 148.7 | 113.9 | 78.6 | 92.3 | 0 | 60.7 | 452.9 | 769.0 |
2012–2013 | 34.4 | 22.4 | 38.7 | 5.8 | 108.1 | 44.9 | 254.4 | 37.9 | 126.3 | 61.4 | 130.8 | 6.8 | 99.4 | 59.5 | 523.2 | 777.6 |
2013–2014 | 42.6 | 46.4 | 55.2 | 60.4 | 56.4 | 52.9 | 313.9 | 23.3 | 92.6 | 126.4 | 70.0 | 137.3 | 0 | 64.1 | 466.1 | 780.0 |
2014–2015 | 34.3 | 37.4 | 42.6 | 27.5 | 31.0 | 22.2 | 194.9 | 44.8 | 133.8 | 127.6 | 6.5 | 83.2 | 15.3 | 46.1 | 437.3 | 632.3 |
Average | 39.3 | 35.6 | 41.5 | 40.9 | 71.3 | 41.4 | 269.9 | 38.1 | 120.3 | 107.3 | 71.5 | 79.9 | 28.7 | 57.6 | 469.9 | 739.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohsin Waqas, M.; Waseem, M.; Ali, S.; Kebede Leta, M.; Noor Shah, A.; Khalid Awan, U.; Hamid Hussain Shah, S.; Yang, T.; Ullah, S. Evaluating the Spatio-Temporal Distribution of Irrigation Water Components for Water Resources Management Using Geo-Informatics Approach. Sustainability 2021, 13, 8607. https://doi.org/10.3390/su13158607
Mohsin Waqas M, Waseem M, Ali S, Kebede Leta M, Noor Shah A, Khalid Awan U, Hamid Hussain Shah S, Yang T, Ullah S. Evaluating the Spatio-Temporal Distribution of Irrigation Water Components for Water Resources Management Using Geo-Informatics Approach. Sustainability. 2021; 13(15):8607. https://doi.org/10.3390/su13158607
Chicago/Turabian StyleMohsin Waqas, Muhammad, Muhammad Waseem, Sikandar Ali, Megersa Kebede Leta, Adnan Noor Shah, Usman Khalid Awan, Syed Hamid Hussain Shah, Tao Yang, and Sami Ullah. 2021. "Evaluating the Spatio-Temporal Distribution of Irrigation Water Components for Water Resources Management Using Geo-Informatics Approach" Sustainability 13, no. 15: 8607. https://doi.org/10.3390/su13158607
APA StyleMohsin Waqas, M., Waseem, M., Ali, S., Kebede Leta, M., Noor Shah, A., Khalid Awan, U., Hamid Hussain Shah, S., Yang, T., & Ullah, S. (2021). Evaluating the Spatio-Temporal Distribution of Irrigation Water Components for Water Resources Management Using Geo-Informatics Approach. Sustainability, 13(15), 8607. https://doi.org/10.3390/su13158607