An Integrated Approach to Optimal Charging Scheduling of Electric Vehicles Integrated with Improved Medium-Voltage Network Reconfiguration for Power Loss Minimization
<p>Proposed algorithm flow chart.</p> "> Figure 2
<p>Electric vehicle (EV) mobility pattern.</p> "> Figure 3
<p>Daily load profile.</p> "> Figure 4
<p>IEEE 33-node medium-voltage network coupled with a low-voltage network.</p> "> Figure 5
<p>Impact of uncoordinated EV charging on system loading.</p> "> Figure 6
<p>Impact of uncoordinated EV charging on voltage profile.</p> "> Figure 7
<p>Impact of uncoordinated EV charging on system power loss.</p> "> Figure 8
<p>Impact of coordinated EV charging on system load demand.</p> "> Figure 9
<p>Impact of coordinated EV charging on voltage profile.</p> "> Figure 10
<p>Impact of coordinated EV charging on system power loss.</p> "> Figure 11
<p>A comparison of voltage variation with and without network reconfiguration.</p> "> Figure 12
<p>Comparison of system power loss with and without network reconfiguration.</p> ">
Abstract
:1. Introduction
2. Problem Formulation
3. Proposed Algorithm for Optimal Charging Scheduling Integrated with Network Reconfiguration
3.1. Optimal EV Charging Scheduling
3.2. BPSO Algorithm
4. Results and Discussion
4.1. Modified IEEE 33-Node Medium-Voltage Network
4.2. Uncoordinated EV Charging
4.3. Coordinated EV Charging
4.4. Coordinated EV Charging with Network Reconfiguration
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, Z.; Li, Z.; Guo, C.; Wang, J.; Ding, Y. Fully distributed robust reserve scheduling for coupled transmission and distribution systems. IEEE Trans. Power Syst. 2020. [Google Scholar] [CrossRef]
- Rafi, F.H.M.; Hossain, M.; Rahman, M.S.; Taghizadeh, S. An overview of unbalance compensation techniques using power electronic converters for active distribution systems with renewable generation. Renew. Sustain. Energy Rev. 2020, 125, 109812. [Google Scholar] [CrossRef]
- Yoro, K.O.; Daramola, M.O. CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in Carbon Capture; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–28. [Google Scholar]
- Zheng, Y.; He, X.; Wang, H.; Wang, M.; Zhang, S.; Ma, D.; Wang, B.; Wu, Y. Well-to-wheels greenhouse gas and air pollutant emissions from battery electric vehicles in China. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 355–370. [Google Scholar] [CrossRef]
- Tashviri, M.H.; Ghaffarzadeh, N. Method for EV charging in stochastic smart microgrid operation with fuel cell and renewable energy source (RES) units. IET Electr. Syst. Transp. 2020. [Google Scholar] [CrossRef]
- Tareen, W.U.K.; Aamir, M.; Mekhilef, S.; Nakaoka, M.; Seyedmahmoudian, M.; Horan, B.; Memon, M.A.; Baig, N.A. Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review. Energies 2018, 11, 1491. [Google Scholar] [CrossRef] [Green Version]
- Browne, D.; O’Mahony, M.; Caulfield, B. How should barriers to alternative fuels and vehicles be classified and potential policies to promote innovative technologies be evaluated? J. Clean. Prod. 2012, 35, 140–151. [Google Scholar] [CrossRef]
- Mancini, E.; Longo, M.; Yaici, W.; Zaninelli, D. Assessment of the Impact of Electric Vehicles on the Design and Effectiveness of Electric Distribution Grid with Distributed Generation. Appl. Sci. 2020, 10, 5125. [Google Scholar] [CrossRef]
- Tareen, W.U.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B. Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system. Renew. Sustain. Energy Rev. 2017, 70, 635–655. [Google Scholar] [CrossRef]
- Szinai, J.K.; Sheppard, C.J.; Abhyankar, N.; Gopal, A.R. Reduced grid operating costs and renewable energy curtailment with electric vehicle charge management. Energy Policy 2020, 136, 111051. [Google Scholar] [CrossRef]
- Einaddin, A.H.; Yazdankhah, A.S. A novel approach for multi-objective optimal scheduling of large-scale EV fleets in a smart distribution grid considering realistic and stochastic modeling framework. Int. J. Electr. Power Energy Syst. 2020, 117, 105617. [Google Scholar] [CrossRef]
- Kumar, R.; Saxena, D. Impact of Plug-In Electric Vehicles on Faulted Distribution System. Arab. J. Sci. Eng. 2020, 45, 1599–1614. [Google Scholar] [CrossRef]
- Dileep, G. A survey on smart grid technologies and applications. Renew. Energy 2020, 146, 2589–2625. [Google Scholar] [CrossRef]
- Rawat, T.; Niazi, K.R.; Gupta, N.; Sharma, S. Impact assessment of electric vehicle charging/discharging strategies on the operation management of grid accessible and remote microgrids. Int. J. Energy Res. 2019, 43, 9034–9048. [Google Scholar] [CrossRef]
- Alonso, M.; Amaris, H.; Germain, J.G.; Galan, J.M. Optimal charging scheduling of electric vehicles in smart grids by heuristic algorithms. Energies 2014, 7, 2449–2475. [Google Scholar] [CrossRef]
- Shaaban, M.F.; El-Saadany, E. Accommodating high penetrations of PEVs and renewable DG considering uncertainties in distribution systems. IEEE Trans. Power Syst. 2013, 29, 259–270. [Google Scholar] [CrossRef]
- Pantoš, M. Stochastic optimal charging of electric-drive vehicles with renewable energy. Energy 2011, 36, 6567–6576. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Aligholian, A.; Golshanfard, A. Stochastic energy modeling with consideration of electrical vehicles and renewable energy resources-A review. J. Energy Manag. Technol. 2020, 4, 13–26. [Google Scholar]
- Sanchez-Martin, P.; Sanchez, G.; Morales-España, G. Direct load control decision model for aggregated EV charging points. IEEE Trans. Power Syst. 2012, 27, 1577–1584. [Google Scholar] [CrossRef]
- Deilami, S.; Masoum, A.S.; Moses, P.S.; Masoum, M.A. Real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile. IEEE Trans. Smart Grid 2011, 2, 456–467. [Google Scholar] [CrossRef]
- Olatunde, O.; Hassan, M.Y.; Abdullah, M.P.; Rahman, H.A. Hybrid photovoltaic/small-hydropower microgrid in smart distribution network with grid isolated electric vehicle charging system. J. Energy Storage 2020, 31, 101673. [Google Scholar] [CrossRef]
- Davidson, S. Technical and regulatory failures driving higher electricity prices in Western Australia-case study. In WEC2019: World Engineers Convention 2019; Engineers Australia: Melbourne, Australia, 2019; p. 1439. [Google Scholar]
- Jakus, D.; Čađenović, R.; Vasilj, J.; Sarajčev, P. Optimal Reconfiguration of Distribution Networks Using Hybrid Heuristic-Genetic Algorithm. Energies 2020, 13, 544. [Google Scholar] [CrossRef] [Green Version]
- Rahman, I.; Vasant, P.; Singh, B.S.M.; Abdullah-Al-Wadud, M. Hybrid particle swarm and gravitational search optimization techniques for charging plug-in hybrid electric vehicles. In Sustainable Infrastructure: Breakthroughs in Research and Practice; IGI Global: Hershey, PA, USA, 2020; pp. 195–228. [Google Scholar]
- Zhang, Z.; Wang, J.; Zhong, H.; Ma, H. Optimal scheduling model for smart home energy management system based on the fusion algorithm of harmony search algorithm and particle swarm optimization algorithm. Sci. Technol. Built Environ. 2020, 26, 42–51. [Google Scholar] [CrossRef]
S.NO. | From Node | To Node | Switch | R (Ω) | X (Ω) | P (kW) | P.F |
---|---|---|---|---|---|---|---|
1 | 1 | 2 | S1 | 0.0922 | 0.0470 | 40 | 0.9 |
2 | 2 | 3 | S2 | 0.4930 | 0.2512 | 45 | |
3 | 3 | 4 | S3 | 0.3660 | 0.1864 | 60 | |
4 | 4 | 5 | S4 | 0.3811 | 0.1941 | 30 | |
5 | 5 | 6 | S5 | 0.8190 | 0.7070 | 60 | |
6 | 6 | 7 | S6 | 0.1872 | 0.6188 | 100 | |
7 | 7 | 8 | S7 | 1.7114 | 0.2351 | 100 | |
8 | 8 | 9 | S8 | 1.0300 | 0.7400 | 60 | |
9 | 9 | 10 | S9 | 1.0440 | 0.7400 | 60 | |
10 | 10 | 11 | S10 | 0.1966 | 0.0651 | 40 | |
11 | 11 | 12 | S11 | 0.3744 | 0.1298 | 60 | |
12 | 12 | 13 | S12 | 1.4680 | 1.1549 | 30 | |
13 | 13 | 14 | S13 | 0.5416 | 0.7129 | 60 | |
14 | 14 | 15 | S14 | 0.5910 | 0.5260 | 60 | |
15 | 15 | 16 | S15 | 0.7460 | 0.7462 | 60 | |
16 | 16 | 17 | S16 | 1.2890 | 1.2889 | 60 | |
17 | 17 | 18 | S17 | 0.7320 | 0.7320 | 45 | |
18 | 2 | 19 | S18 | 0.1640 | 0.1640 | 45 | |
19 | 19 | 20 | S19 | 1.5042 | 1.5042 | 45 | |
20 | 20 | 21 | S20 | 0.4095 | 0.4095 | 45 | |
21 | 21 | 22 | S21 | 0.7089 | 0.7089 | 45 | |
22 | 3 | 23 | S22 | 0.4512 | 0.4512 | 45 | |
23 | 23 | 24 | S23 | 0.8980 | 0.8980 | 100 | |
24 | 24 | 25 | S24 | 0.8960 | 0.8959 | 100 | |
25 | 6 | 26 | S25 | 0.2031 | 0.2031 | 30 | |
26 | 26 | 27 | S27 | 0.2842 | 0.2842 | 30. | |
27 | 27 | 28 | S28 | 1.0589 | 1.0589 | 30 | |
28 | 28 | 29 | S29 | 0.8043 | 0.8043 | 60 | |
29 | 29 | 30 | S30 | 0.5074 | 0.5074 | 100 | |
30 | 30 | 31 | S31 | 0.9745 | 0.9745 | 82.5 | |
31 | 31 | 32 | S32 | 0.3105 | 0.3105 | 100 | |
32 | 32 | 33 | S33 | 0.3411 | 0.3411 | 30 | |
Tie Switches (Normally open to maintain the radial topology of the network) | |||||||
S. No. | From Node | To Node | Tie Switches | ||||
1 | 8 | 21 | S33 | ||||
2 | 9 | 15 | S34 | ||||
3 | 12 | 22 | S35 | ||||
4 | 18 | 33 | S36 | ||||
5 | 25 | 29 | S37 |
Parameters | Uncoordinated Charging | Coordinated Charging without Network Reconfiguration | Coordinated Charging with Network Reconfiguration | ||||||
---|---|---|---|---|---|---|---|---|---|
Minimum Voltage Deviation (%) 100 | 1 | 0.96 | 4 | 1 | 0.96 | 4 | 1 | 0.97 | 3 |
Maximum Voltage deviation (%) 100 | 1 | 0.93 | 7 | 1 | 0.94 | 6 | 1 | 0.95 | 5 |
Current loading (p.u) | 0.86 | 0.86 | 0.85 | ||||||
Current loading (p.u) | 1.03 | 1.00 | 0.99 | ||||||
Power loss (kW) | 75 | 75 | 51 | ||||||
Power loss (kW) | 104 | 99 | 68 | ||||||
Energy loss (MWh) | 2.22 | 2.20 | 1.51 | ||||||
Open Switches | S33, S34, S35, S36, S37 | S33, S34, S35, S36, S37 | S7, S9, S14, S28, S31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, A.; Tareen, W.U.K.; Usman, M.; Memon, K.A.; Horan, B.; Mahmood, A.; Mekhilef, S. An Integrated Approach to Optimal Charging Scheduling of Electric Vehicles Integrated with Improved Medium-Voltage Network Reconfiguration for Power Loss Minimization. Sustainability 2020, 12, 9211. https://doi.org/10.3390/su12219211
Amin A, Tareen WUK, Usman M, Memon KA, Horan B, Mahmood A, Mekhilef S. An Integrated Approach to Optimal Charging Scheduling of Electric Vehicles Integrated with Improved Medium-Voltage Network Reconfiguration for Power Loss Minimization. Sustainability. 2020; 12(21):9211. https://doi.org/10.3390/su12219211
Chicago/Turabian StyleAmin, Adil, Wajahat Ullah Khan Tareen, Muhammad Usman, Kamran Ali Memon, Ben Horan, Anzar Mahmood, and Saad Mekhilef. 2020. "An Integrated Approach to Optimal Charging Scheduling of Electric Vehicles Integrated with Improved Medium-Voltage Network Reconfiguration for Power Loss Minimization" Sustainability 12, no. 21: 9211. https://doi.org/10.3390/su12219211
APA StyleAmin, A., Tareen, W. U. K., Usman, M., Memon, K. A., Horan, B., Mahmood, A., & Mekhilef, S. (2020). An Integrated Approach to Optimal Charging Scheduling of Electric Vehicles Integrated with Improved Medium-Voltage Network Reconfiguration for Power Loss Minimization. Sustainability, 12(21), 9211. https://doi.org/10.3390/su12219211