Climatology and Dynamical Evolution of Extreme Rainfall Events in the Sinai Peninsula—Egypt
<p>The location of the study area showing the Sinai Peninsula and its orography. Credits: ESRI World Imagery.</p> "> Figure 2
<p>Watersheds of study area (Source: Elsayed et al., 2013).</p> "> Figure 3
<p>Climatology of Egypt, including the Sinai Peninsula, evaluated over the period 1981–2010. Monthly mean precipitation (in mm) and air temperature (in °K) at 2 m. (Data Source: European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis).</p> "> Figure 4
<p>Mean air Temperature at 850 hPa: anomaly over the period 2010–2018 relative to the base period 1979–2000 (Data Source: ECMWF ERA-Interim reanalysis, available at: <a href="https://climatereanalyzer.org" target="_blank">https://climatereanalyzer.org</a>).</p> "> Figure 5
<p>Annual and seasonal mean (top panel) and anomalies (bottom panel) of air temperature at 2 m over the Sinai Peninsula for the period 1979–2018, evaluated in the domain (27°–32° N, 32°–35° E). Base period for anomalies (1979–2000). (Data Source: ECMWF ERA-Interim reanalysis, available at: <a href="https://ClimateReanalyzer.org" target="_blank">https://ClimateReanalyzer.org</a>).</p> "> Figure 6
<p>Annual Total Precipitation over the Sinai Peninsula for the period 1979–2018, evaluated in the domain (27°–32° N, 32°–35° E). (Data Source: ECMWF ERA-Interim reanalysis, available at: <a href="https://ClimateReanalyzer.org" target="_blank">https://ClimateReanalyzer.org</a>).</p> "> Figure 7
<p>Annual Total Precipitation in North, Middle, and South Sinai Peninsula with linear decreasing trend superimposed. (Data Source: Global Precipitation Climate Center data (GPCC) —<a href="https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html" target="_blank">https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html</a>).</p> "> Figure 8
<p>Episode 7–10 March 2014. Storm evolution over Sinai and surrounding region. (Source: TRMM satellite data).</p> "> Figure 9
<p>Geopotential height at 700 hPa for the selected episodes: 8 January 2013 and 9 March 2014. (Source: NCEP-NCAR reanalysis).</p> "> Figure 10
<p>Temperature. Results from an ensemble of nine GCM, for RCP4.5 scenario. Ensemble mean (mm/day) for the control period (1971–2000) (upper left panel-color scale on the upper left). Change in Ensemble mean (%-color scale at the bottom), for 2011–2040 (upper right), 2041–2070 (bottom left) and 2071–2100 (bottom right) compared with 1971–2000. (Source: <a href="https://cordex.org/" target="_blank">https://cordex.org/</a>).</p> "> Figure 11
<p>Precipitation. Results from an ensemble of nine Global Circulation Models (GCMs), for RCP4.5 scenario. Ensemble mean (mm/day) for the control period (1971–2000) (upper left panel-color scale on the upper left). Change in Ensemble mean (%-color scale at the bottom), for 2011–2040 (upper right), 2041–2070 (bottom left) and 2071–2100 (bottom right) compared with 1971–2000. (Source: <a href="https://cordex.org/" target="_blank">https://cordex.org/</a>).</p> "> Figure 12
<p>Temperature. Results from an ensemble of three GCMs for RCP4.5 scenario. Change in Ensemble mean monthly (C) for the future period 2041–2070 (2050s) compared with 1971–2000. January, April, July, and October are examples presenting winter, spring, summer, and autumn, respectively.</p> "> Figure 13
<p>Temperature. Results from an ensemble of three GCMs for RCP4.5 scenario. Change in Ensemble mean monthly (C) for the future period 2071–2100 (2080s) compared with 1971–2000. January, April, July, and October are examples presenting winter, spring, summer, and autumn, respectively.</p> "> Figure 14
<p>Precipitation. Results from an ensemble of three GCMs for RCP4.5 scenario. Change in ensemble mean monthly (no sign where the change is produced by dividing future by baseline) for the future period 2041–2070 (2050s) compared with baseline period 1971–2000. January, April, July, and October are examples present winter, spring, summer, and autumn, respectively. (White color indicates that baseline value equals zero).</p> "> Figure 15
<p>Precipitation. Results from an ensemble of three GCMs for RCP4.5 scenario. Change in ensemble mean monthly (no sign where the change is produced by dividing future by baseline) for the future period 2071–2100 (2080s) compared with baseline period 1971–2000. January, April, July, and October are examples present winter, spring, summer, and autumn, respectively. (White color indicates that baseline value equals zero).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Methods
2.2. Study Area
3. Results
3.1. Climate Variability in the Sinai Peninsula
3.2. Extreme Rainfall Events in Sinai
3.3. Expected Future Climate Changes
- To better understand relevant regional/local climate phenomena, their variability, and changes, through downscaling.
- To evaluate and improve regional climate downscaling models and techniques.
- To produce coordinated sets of regional downscaled projections worldwide.
- To foster communication and knowledge exchange with users of regional climate information.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Al Zayed, I.S.; Ribbe, L.; Al Salhi, A. Water harvesting and flashflood mitigation-wadi watier case study (South Sinai, Egypt). Int. J. Water Resour. Arid Environ. 2013, 2, 102–109. [Google Scholar]
- Idowu, O.; Gawusu, S.; Mugo, V.; Bilal, A.; Buumba, M.; Kamga, M.A.; Komassi, A.; Awovi, S.; Al Zayed, I.S.; Khalifa, M.; et al. GEO-6 for Youth Africa: A Wealth of Green Opportunities—Global Environment Outlook; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2019. [Google Scholar]
- Baldi, M.; Amin, D.; Al Zayed, I.S.; Dalu, G.A. Extreme rainfall events in the Sinai Peninsula. In Proceedings of the EGU General Assembly Conference Abstracts 2017, Vienna, Austria, 23–28 April 2017; Volume 19, p. 13971. [Google Scholar]
- Al Zayed, I.S. Observing flash flood in arid and semi-arid regions from space: Wadi Watier of Egypt as a case study. In Proceedings of the Second International Symposium on Flash Floods in Wadi Systems, El Gouna Campus, Hurghada, Egypt, 25–27 October 2016. [Google Scholar]
- Attia, K.; Al Zayed, I.S. Water harvesting in Sinai Peninsula, Egypt. In Proceedings of the International Forum on Water Scarcity and Harvesting in the Arid and Semiarid Areas (IFWSH-ASA-2015), Hurghada, Egypt, 23–26 November 2015. [Google Scholar]
- Baldi, M. Climate Change, Water availability, and Cultural Heritage in Egypt. In Sciences and Technologies Applied to Cultural Heritage—STACH 1; Baldi, M., Vittozzi, G.C., Eds.; Cnr Edizioni: Roma, Italy, 2019; ISBN 978 88 8080 347 8. Available online: https://iiccairo.esteri.it/iic_ilcairo/it/istituto/centro-archeologico/link-utili (accessed on 25 July 2020).
- FloodList. Eastern Mediterranean—Deadly Flash Floods After Heavy Rain. Available online: http://floodlist.com/asia/eastern-mediterranean-egypt-israel-floods-april-2018 (accessed on 25 July 2020).
- FloodList. Egypt—Heavy Rain Causes Flood Chaos in Cairo. Available online: http://floodlist.com/africa/egypt-cairo-floods-october-2019 (accessed on 25 July 2020).
- FloodList. Egypt—5 Dead After Storms Trigger Floods. Available online: http://floodlist.com/africa/egypt-storm-floods-march-2020 (accessed on 25 July 2020).
- BBC New. Egypt Experiences Worst Flooding in 35 Years. 2020. Available online: https://www.bbc.co.uk/programmes/w172wn3b49zcw4h (accessed on 25 July 2020).
- El-Rakaiby, M.L. Drainage Basins and Flash Flood Hazard in Selected Parts of Egypt. Egypt. J. Geol. 1989, 33, 307–323. [Google Scholar]
- Elmoustafa, A.M.; Mohamed, M.M. Flash Flood Risk Assessment Using Morphological Parameters in Sinai Peninsula. Open J. Mod. Hydrol. 2013, 3, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Prama, M.; Omran, A.; Schröder, D.; Abouelmagd, A. Vulnerability assessment of flash floods in Wadi Dahab Basin, Egypt. Environ. Earth Sci. 2020, 79, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Dayan, U.; Ziv, B.; Margalit, A.; Morin, E.; Sharon, D. A severe autumn storm over the Middle-East: Synoptic and mesoscale convection analysis. Theor. Appl. Climatol. 2001, 69, 103–122. [Google Scholar] [CrossRef]
- Dayan, U.; Nissen, K.; Ulbrich, U. Review article: Atmospheric conditions inducing extreme precipitation over the eastern and western Mediterranean. Nat. Hazards Earth Syst. Sci. 2015, 15, 2525–2544. [Google Scholar] [CrossRef] [Green Version]
- De Vries, A.J.; Tyrlis, E.; Edry, D.; Krichak, S.O.; Steil, B.; Lelieveld, J. Extreme precipitation events in the Middle East: Dynamics of the Active Red Sea Trough. J. Geophys. Res. Atmos. 2013, 118, 7087–7108. [Google Scholar] [CrossRef]
- Kahana, R.; Ziv, B.; Dayan, U.; Enzel, Y. Atmospheric predictors for major floods in the Negev Desert, Israel. Int. J. Climatol. 2004, 24, 1137–1147. [Google Scholar] [CrossRef]
- Ziv, B.; Dayan, U.; Sharon, D. A mid-winter, tropical extreme flood producing storm in southern Israel: Synoptic scale analysis. Meteorol. Atmos. Phys. 2005, 88, 53–63. [Google Scholar] [CrossRef]
- Cools, J.; Vanderkimpen, P.; El Afandi, G. An early warning system for flash floods in hyper-arid Egypt. Nat. Hazards Earth Syst. Sci. 2012, 12, 443–457. [Google Scholar] [CrossRef]
- El Afandi, G.; Morsy, M.; El Hussieny, F. Heavy Rainfall Simulation over Sinai Peninsula Using the Weather Research and Forecasting Model. Int. J. Atmos. Sci. 2013, 2013, 11. [Google Scholar] [CrossRef] [Green Version]
- El Afandi, G.; Morsy, M. Developing an Early Warning System for Flash Flood in Egypt: Case Study Sinai Peninsula. In Flash Floods in Egypt; Negm, A.M., Ed.; Springer: Cham, Switzerland, 2020; pp. 45–60. [Google Scholar]
- Kalnay, E.; Kanamitsu, M.; Kistier, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR Reanalysis 40-year Project. Bull. Am. Meteor. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Dee, D.P.; UPPALA, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Zahran, M.A.; Willis, A.J. Egypt: The Gift of the Nile. In The Vegetation of Egypt; Springer: Dordrecht, The Netherlands, 2009; Volume 2, pp. 1–3. [Google Scholar]
- Elsayad, M.A.; Sanad, A.M.; Kotb, G.; Eltahan, A.H. Flood Hazard Mapping in Sinai Region. In Global Climate Change, Biodiversity, and Sustainability Conference; Arab Academy for Science, Technology and Maritime Transport: Cairo, Egypt, 2013; Volume 15. [Google Scholar]
- Sharon, D. The spottiness of rainfall in a desert area. J. Hydrol. 1972, 17, 161–175. [Google Scholar] [CrossRef]
- Baldi, M. Climate of Egypt between dryness and torrential rainfall: Patterns of climate variability. In AHMES-Egyptian Curses Vol. 2—A Research on Ancient Catastrophes; Capriotti Vittozzi, C., Ed.; Cnr Edizioni: Roma, Italy, 2015; pp. 255–264. ISBN 978 88 8080 140 5. [Google Scholar]
- Krichak, S.O.; Breitgand, J.S.; Feldstein, S.B. A conceptual model for the identification of the Active Red Sea Trough Synoptic events over the southeastern Mediterranean. J. App. Meteorol. Climatol. 2012, 51, 962–971. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Jones, C.; Asrar, G.R. Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull. 2009, 58, 175–183. [Google Scholar]
- Bucchignani, E.; Mercogliano, P.; Panitz, H.-J.; Montesarchio, M. Climate change projections for the Middle East—North Africa domain with COSMO-CLM at different spatial resolutions. Adv. Clim. Chang. Res. 2018, 9. [Google Scholar] [CrossRef]
- Bucchignani, E.; Cattaneo, L.; Panitz, H.-J.; Mercogliano, P. Sensitivity analysis with the regional climate model COSMO-CLM over the CORDEX-MENA domain. Meteorol. Atmos. Phys. 2016, 128, 73–95. [Google Scholar] [CrossRef]
- Abuzied, M.; Mansour, B.M. Geospatial hazard modeling for the delineation of flash flood-prone zones in Wadi Dahab basin, Egypt. J. Hydroinformatics 2019, 21, 180–206. [Google Scholar] [CrossRef] [Green Version]
- Saber, M.; Abdrabo, K.I.; Habiba, O.M.; Kantosh, S.A.; Sumi, T. Impacts of Triple Factors on Flash Flood Vulnerability in Egypt: Urban Growth, Extreme Climate, and Mismanagement. Geosciences 2020, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- El Osta, M.M.; El Sabri, M.S.; Masoud, M.H. Estimation of flash flood using surface water model and GIS technique in Wadi El Azariq, East Sinai, Egypt. Nat. Hazards Earth Syst. Sci. Discuss. 2016, 1–51. [Google Scholar] [CrossRef]
- Al Zayed, I.S.; Keshta, E.; Attia, K. Rainwater Harvesting as an Adaptation Measure to Climate Change: A Case Study of Mamora Beach Area, Egypt. Int. Water Technol. J. 2018, 8, 72–77. [Google Scholar]
ID | Basin Name | Area (km2) | Basin Length (m) | Basin Slope (m/m) | Perimeter (m) | Max. Stream Length (m) | Max. Stream Slope (m/m) | Mean Basib Elevation (m) |
---|---|---|---|---|---|---|---|---|
1 | Al Arish | 23,784.9 | 238,040 | 0.0469 | 1,213,900 | 354,250 | 0.0037 | 499.23 |
2 | Watier | 3521 | 76,110 | 0.1446 | 483,620 | 118,450 | 0.0122 | 912 |
3 | Al Grafee | 2610 | 84,713 | 0.0334 | 412,010 | 114,110 | 0.0051 | 640 |
4 | Dhab | 2070 | 56,686 | 0.2217 | 353,930 | 93,238 | 0.02 | 1062.9 |
5 | Al Awag | 1941 | 55,070 | 0.1967 | 278,530 | 75,529 | 0.0082 | 549.1 |
6 | Fieran | 1780 | 80,341 | 0.1949 | 420,050 | 132,660 | 0.0177 | 1015 |
7 | Wardan | 1180 | 59,345 | 0.1025 | 273,720 | 86,222 | 0.0113 | 523 |
8 | Ghrandal | 1074.1 | 78,119 | 0.1536 | 340,680 | 105,380 | 0.0134 | 801.73 |
9 | Kied | 1045.9 | 47,766 | 0.3465 | 258,500 | 679.14 | 0.0206 | 928.8 |
10 | Sidry | 868.6 | 56,292 | 0.1438 | 243,580 | 82,224 | 0.0107 | 570.24 |
11 | Paapaa | 712.7 | 54,971 | 0.1386 | 232,620 | 71,005 | 0.0154 | 600.24 |
12 | Sidr | 623.45 | 54,196 | 0.0862 | 205,660 | 79,078 | 0.0073 | 417 |
13 | Al Rahaa | 452 | 42,466 | 0.105 | 181,690 | 51,580 | 0.0134 | 488 |
14 | Om Adwy | 367.6 | 35,744 | 0.2589 | 151,320 | 47,503 | 0.0282 | 659.75 |
15 | Tieba | 333.9 | 43,354 | 0.303 | 158,240 | 51,471 | 0.0311 | 999.5 |
16 | Lehataa | 276.44 | 31,331 | 0.0571 | 114,790 | 43,528 | 0.0142 | 214.64 |
Flash Flood Events in South Sinai 1 1990–2015 | |||
---|---|---|---|
Ras Sedr (32°43′00″ E, 29°35′00″ N) | Ras Sedr (Elmelha) (32°59′54″ E, 29°44′23″ N) | Saint Katherin (33°56′58″ E, 28°33′43″ N) | Newabaa (34°41′13″ E, 28°58′57″ N) |
02/03/1997 | 07/12/2000 | 22/03/1991 | 17/01/2010 |
07/02/1999 | 04/12/2001 | 17/10/1993 | 27/01/2013 |
07/12/2000 | 06/01/2003 | 20/10/1993 | 09/03/2014 |
10/01/2002 | 14/12/2003 | 01/01/1994 | 08/05/2014 |
16/12/2003 | 22/01/2004 | 18/01/2010 | 12/09/2015 |
14/01/2004 | 05/02/2004 | 08/01/2013 | 26/10/2015 |
04/02/2004 | 04/04/2011 | 25/01/2013 | |
18/01/2010 | 31/12/2013 | 27/01/2013 | |
25/02/2010 | 09/03/2014 | 09/03/2014 | |
09/01/2013 | 08/05/2014 | ||
01/02/2013 | 12/09/2015 | ||
09/03/2014 | 25/10/2015 | ||
07/05/2014 |
Flash Flood Events in North Sinai 1990–2015 | |
---|---|
Godirat (34°24′35″ E, 30°38′28″ N) | Maghara (34°32′ E, 30°23′ N) |
22/03/1991 | 27/10/2005 |
05/01/2001 | 21/10/2007 |
29/01/2004 | 18/01/2010 |
17/04/2006 | 09/01/2013 |
10/12/2009 | 09/05/2014 |
17/01/2010 | 29/10/2015 |
09/03/2014 | |
09/05/2014 | |
25/10/2015 | |
29/10/2015 |
Amount of Precipitation Observed in the Upper Egypt, the Red Sea, and Sinai Peninsula during the 7–9 March 2014 Event | ||
---|---|---|
Station | Precipitation mm | |
UPPER EGYPT | Aswan | 29 |
Luxor | 29 | |
Asyut | 9 | |
RED SEA | Hurgada | 21 |
SINAI | Sharm El-Sheikh | 27 |
Dahab | 30 | |
Saint Cathrene | 29 | |
El Tor | 17 | |
Nuwaibaa | 8 | |
Nekhel | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldi, M.; Amin, D.; Al Zayed, I.S.; Dalu, G. Climatology and Dynamical Evolution of Extreme Rainfall Events in the Sinai Peninsula—Egypt. Sustainability 2020, 12, 6186. https://doi.org/10.3390/su12156186
Baldi M, Amin D, Al Zayed IS, Dalu G. Climatology and Dynamical Evolution of Extreme Rainfall Events in the Sinai Peninsula—Egypt. Sustainability. 2020; 12(15):6186. https://doi.org/10.3390/su12156186
Chicago/Turabian StyleBaldi, Marina, Doaa Amin, Islam Sabry Al Zayed, and Giovannangelo Dalu. 2020. "Climatology and Dynamical Evolution of Extreme Rainfall Events in the Sinai Peninsula—Egypt" Sustainability 12, no. 15: 6186. https://doi.org/10.3390/su12156186
APA StyleBaldi, M., Amin, D., Al Zayed, I. S., & Dalu, G. (2020). Climatology and Dynamical Evolution of Extreme Rainfall Events in the Sinai Peninsula—Egypt. Sustainability, 12(15), 6186. https://doi.org/10.3390/su12156186