Assessment of Energy Systems Using Extended Fuzzy AHP, Fuzzy VIKOR, and TOPSIS Approaches to Manage Non-Cooperative Opinions
<p>Flow chart for the energy systems selection decision procedure.</p> "> Figure 2
<p>The intersection between M<sub>1</sub> and M<sub>2</sub> convex fuzzy numbers.</p> "> Figure 3
<p>Energy systems investment ranking by fuzzy VIKOR and TOPSIS approaches.</p> "> Figure 4
<p>Comparison of energy system alternatives under different minimum regret cases of <span class="html-italic">v</span>.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Method and Methodologies
3.1. Fuzzy AHP Methodology for Determining Experts’ Weights for Criteria
3.2. FAHP Algorithm of Fuzzy Synthetic Extent
3.3. Fuzzy VIKOR Method
3.4. Fuzzy TOPSIS Method
4. Results and Findings
4.1. Results and Findings by the Fuzzy VIKOR Approach
4.2. Results and Findings By Fuzzy TOPSIS Approach
4.3. Comparison with Existing Methods
5. Sensitivity Analysis
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Sarkodie, S.A.; Strezov, V.; Weldekidan, H.; Asamoah, E.F.; Owusu, P.A.; Doyi, I.N.Y. Environmental sustainability assessment using dynamic autoregressive-distributed lag simulations-nexus between greenhouse gas emissions, biomass energy, food and economic growth. Sci. Total Environ. 2019, 668, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.B.; Ghanegaonkar, P.M. Biogas generation from floral waste using different techniques. Glob. J. Environ. Sci. Manag.-GJESM 2019, 5, 17–30. [Google Scholar]
- Li, Y.; Chiu, Y.H.; Lin, T.Y. Research on new and traditional energy sources in OECD countries. Int. J. Environ. Res. Public Health 2019, 16, 1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cederberg, C.; Persson, U.M.; Schmidt, S.; Hedenus, F.; Wood, R. Beyond the borders-burdens of Swedish food consumption due to agrochemicals, greenhouse gases and land -use change. J. Clean. Prod. 2018, 214, 644–652. [Google Scholar] [CrossRef]
- Perera, F.P. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist. Int. J. Environ. Res. Public Health 2017, 15, 16. [Google Scholar] [CrossRef] [Green Version]
- Budak, G.; Chen, X.; Celik, S.; Ozturk, B. A systematic approach for assessment of renewable energy using analytic hierarchy process. Energy Sustain. Soc. 2019, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Seyfried, C.; Palko, H.; Dubbs, L. Potential local environmental impacts of salinity gradient energy: A review. Renew. Sustain. Energy Rev. 2019, 102, 111–120. [Google Scholar] [CrossRef]
- Demirbas, A.; Taylan, O.; Kaya, D. Biogas production from municipal sewage sludge (MSS). Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 3027–3033. [Google Scholar] [CrossRef]
- Taylan, O.; Kaya, D.; Bakhsh, A.A.; Demirbas, A. Bioenergy life cycle assessment and management in energy generation. Energy Explor. Exploit. 2018, 36, 166–181. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Abdelgader, A. Renewable energy advantages and disadvantages. Int. J. Res. Sci. Manag. 2016, 3, 7–9. [Google Scholar]
- Rahman, S.M.; Khondaker, A.N. Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia. Renew. Sustain. Energy Rev. 2012, 16, 2446–2460. [Google Scholar] [CrossRef]
- Olabemiwo, F.A.; Danmaliki, G.I.; Oyehan, T.A.; Tawabini, B.S. Forecasting CO2 emissions in the Persian Gulf States. Glob. J. Environ. Sci. Manag.-GJESM 2017, 3, 1–10. [Google Scholar]
- Dong, J.; Liu, D.; Wang, D.; Zhang, Q. Identification of key influencing factors of sustainable development for traditional power generation groups in a market by applying an extended MCDM model. Sustainability 2019, 11, 1754. [Google Scholar] [CrossRef] [Green Version]
- Chapman, A.J.; McLellan, B.C.; Tezuka, T. Prioritizing mitigation efforts considering co-benefits, equity and energy justice: Fossil fuel to renewable energy transition pathways. Appl. Energy 2018, 219, 187–198. [Google Scholar] [CrossRef]
- Hhurlimann, C.; Bengoa, D.S. Valuating renewable energy investments within transactions: A comparative review among practitioners. In Proceedings of the Global and National Business Theories and Practice: Bridging the Past with the Future. Euromed Academy of Business Conference Book of Proceedings, Rome, Italy, 13–15 September 2017; pp. 720–739. [Google Scholar]
- Perez, I.J.; Cabrerizo, F.J.; Alonso, S.; Dong, C.; Chiclana, F.; Herrera Viedma, E. On dynamic consensus processes in group decision making problems. Inf. Sci. 2018, 459, 20–35. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Kou, G.; Peng, Y.; Alsaadi, F.E. Aggregation of the nearest consistency matrices with the acceptable consensus in AHP-GDM. Ann. Oper. Res. 2020. [Google Scholar] [CrossRef] [Green Version]
- Erdin, C.; Ozkaya, G. Turkey’s 2023 energy strategies and investment opportunities for renewable energy sources: Site selection based on ELECTRE. Sustainability 2019, 11, 2136. [Google Scholar] [CrossRef] [Green Version]
- Perez, I.J.; Cabrerizo, F.J.; Alonso, S.; Herrera-Viedma, E. A new consensus model for group decision making problems with non-homogeneous experts. IEEE Trans. Syst. Man Cybern. 2014, 44, 494–498. [Google Scholar] [CrossRef]
- Cabrerizo, F.J.; Chiclana, F.; Al-Hmouz, R.; Morfeq, A.; Balamash, A.S.; Herrera-Viedma, E. Fuzzy decision making and consensus: Challenges. J. Intell. Fuzzy Syst. 2015, 29, 1109–1118. [Google Scholar] [CrossRef] [Green Version]
- Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Abu Taha, R.; Daim, T. Multi-criteria applications in renewable energy analysis, a literature review. Res. Technol. Manag. 2013, 2, 17–30. [Google Scholar]
- Mousavi-Nasab, S.H.; Sotoudeh-Anvari, A. A comprehensive MCDM-based approach using TOPSIS. COPRAS and DEA as an auxiliary tool for material selection problems. Mater. Des. 2017, 121, 237–253. [Google Scholar] [CrossRef]
- Sindhu, S.P.; Nehra, V.; Luthra, S. Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook. Energy 2016, 100, 332–348. [Google Scholar]
- Choudhary, D.; Shankar, R. An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India. Energy 2012, 42, 510–521. [Google Scholar] [CrossRef]
- Uyan, M. GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region, Konya/Turkey. Renew. Sust. Energy Rev. 2013, 28, 11–17. [Google Scholar] [CrossRef]
- Papalexandrou, M.A.; Pilavachi, P.A.; Chatzimouratidis, A.I. Evaluation of liquid bio-fuels using the analytic hierarchy process. Process Saf. Environ. Prot. 2008, 86, 360–374. [Google Scholar] [CrossRef]
- Chang, D. Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 1996, 95, 649–655. [Google Scholar] [CrossRef]
- Mardani, A.; Jusoh, A.; Zavadskas, E.K.; Cavallaro, F.; Khalifah, Z. Sustainable and renewable energy: An overview of the application of multiple criteria decision making techniques and approaches. Sustainability 2015, 7, 13947–13984. [Google Scholar] [CrossRef] [Green Version]
- Balin, A.; Baracli, H. A fuzzy multi-criteria decision making methodology based upon the interval type-2 fuzzy sets for evaluating renewable energy alternatives in Turkey. Technol. Econ. Dev. Econ. 2017, 23, 742–763. [Google Scholar] [CrossRef] [Green Version]
- Vishnupriyan, J.; Manoharan, P.S. Multi-criteria decision analysis for renewable energy integration: A southern India focus. Renew. Energy 2018, 121, 474–488. [Google Scholar] [CrossRef]
- Siksnelyte, I.; Zavadskas, E.K.; Streimikiene, D.; Sharma, D. An overview of multi-criteria decision-making methods in dealing with sustainable energy development issues. Energies 2018, 11, 2754. [Google Scholar] [CrossRef] [Green Version]
- Krishankumar, R.; Mishra, A.R.; Ravichandran, K.S.; Peng, X.; Zavadskas, E.K.; Cavallaro, F.; Mardani, A. A group decision framework for renewable energy source selection under interval-valued probabilistic linguistic term set. Energies 2020, 13, 986. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, R.; Soltanisehat, L.; Lund, P.D.; Zamanisabzi, H. Improving renewable energy policy planning and decision-making through a hybrid MCDM method. Energy Policy 2020, 137, 111174. [Google Scholar] [CrossRef]
- Zhang, H.; Kou, G.; Peng, Y. Soft consensus cost models for group decision making and economic interpretations. Eur. J. Oper. Res. 2019, 277, 964–980. [Google Scholar] [CrossRef]
- Ilbahar, E.; Cebi, S.; Kahraman, C. A state-of-the-art review on multi-attribute renewable energy decision making. Energy Strategy Rev. 2019, 25, 18–33. [Google Scholar] [CrossRef]
- Strantzali, E.; Aravossis, K. Decision making in renewable energy investments: A review. Renew. Sustain. Energy Rev. 2016, 55, 885–898. [Google Scholar] [CrossRef]
- Krishankumar, R.; Ravichandran, K.S.; Kar, S.; Cavallaro, F.; Zavadskas, E.K.; Mardani, A. Scientific decision framework for evaluation of renewable energy sources under q-rung orthopair fuzzy set with partially known weight information. Sustainability 2019, 11, 4202. [Google Scholar] [CrossRef] [Green Version]
- Shmelev, S.E.; Bergh, J.C. Optimal diversity of renewable energy alternatives under multiple criteria: An application to the UK. Renew. Sustain. Energy Rev. 2016, 60, 679–691. [Google Scholar] [CrossRef]
- Kaya, T.; Kahraman, C. Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul. Energy 2010, 35, 2517–2527. [Google Scholar]
- Lee, H.; Chang, C. Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan. Renew. Sustain. Energy Rev. 2018, 92, 883–896. [Google Scholar] [CrossRef]
- Yazdani-Chamzini, A.Y.; Fouladgar, M.M.; Zavadskas, E.K.; Moini, S.H.H. Selecting the optimal renewable energy using multi criteria decision making. J. Bus. Econ. Manag. 2013, 14, 957–978. [Google Scholar] [CrossRef]
- Yazdani, M.; Chatterjee, P.; Zavadskas, E.K.; Streimikiene, D. A novel integrated decision-making approach for the evaluation and selection of renewable energy technologies. Clean Technol. Environ. Policy 2018, 20, 403–420. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I. Review and evaluation of hydrogen production options for better environment. J. Clean. Prod. 2018, 218, 835–849. [Google Scholar] [CrossRef]
- Dincer, H.; Yuksel, S. Multidimensional evaluation of global investments on the renewable energy with the integrated fuzzy decision-making model under the hesitancy. Int. J. Energy Res. 2019, 43, 1775–1784. [Google Scholar] [CrossRef]
- Dincer, H.; Yuksel, S. Balanced scorecard-based analysis of investment decisions for the renewable energy alternatives: A comparative analysis based on the hybrid fuzzy decision-making approach. Energy 2019, 175, 1259–1270. [Google Scholar] [CrossRef]
- Carrico, N.J.G.; Goncalves, F.V.; Covas, D.I.C.; do Ceu Almeida, M.; Alegre, H. Multi-criteria analysis for the selection of the best energy efficient option in urban water systems. Procedia Eng. 2014, 70, 292–301. [Google Scholar] [CrossRef] [Green Version]
- Bhowmik, C.; Baruah, A.; Bhowmik, S.; Ray, A. Green energy sources selection for sustainable energy planning using multi-criteria decision-making approach. In Proceedings of the International Conference on Mechanical, Materials and Renewable Energy, Sikkim, India, 8–10 December 2017; pp. 1–8. [Google Scholar]
- Rani, P.; Mishra, A.R.; Mardani, A.; Cavallaro, F.; Alrasheedi, M.; Alrashidi, A. A novel approach to extended fuzzy TOPSIS based on new divergence measures for renewable energy sources selection. J. Clean. Prod. 2020, 257, 120352. [Google Scholar] [CrossRef]
- Celikbilek, Y.; Tuysuz, F. A fuzzy multi criteria decision making approach for evaluating renewable energy sources. In Proceedings of the 4th International Fuzzy Systems Symposium, Istanbul, Turkey, 5–6 November 2015. [Google Scholar]
- Cristobal, J.R.S. Contractor selection using multicriteria decision making methods. J. Constr. Eng. Manag. 2011, 138, 751–758. [Google Scholar] [CrossRef]
- Solangi, Y.A.; Tan, Q.; Mirjat, N.Y.; Valasai, G.D.; Ali Khan, M.W.; Ikram, M. An integrated delphi-AHP and fuzzy TOPSIS approach toward ranking and selection of renewable energy resources in Pakistan. Processes 2019, 7, 118. [Google Scholar] [CrossRef] [Green Version]
- Colak, M.; Kaya, I. Prioritization of renewable energy alternatives by using an integrated fuzzy MCDM model: A real case application for Turkey. Renew. Sustain. Energy Rev. 2017, 80, 840–853. [Google Scholar] [CrossRef]
- Ren, J.Z. Selection of sustainable prime mover for combined cooling, heat, and power technologies under uncertainties: An interval multicriteria decision making approach. Int. J. Energy Res. 2018, 42, 2655–2669. [Google Scholar] [CrossRef]
- Kahraman, C.; Kaya, I.; Cebi, S. A comparative analysis for multi attribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process. Energy 2009, 34, 1603–1616. [Google Scholar] [CrossRef]
- Lee, S.K.; Mogi, G.; Li, Z.; Hui, K.S.; Lee, S.K.; Hui, K.; Park, S.Y.; Ha, Y.J.; Kim, J.W. Measuring the relative efficiency of hydrogen energy technologies for implementing the hydrogen economy: An integrated fuzzy AHP/DEA approach. Int. J. Hydrog. Energy 2011, 36, 12655–12663. [Google Scholar] [CrossRef]
- Sánchez-Lozano, J.M.; Teruel-Solano, J.; Soto-Elvira, P.L.; García-Cascales, M.S. Geographical information systems (GIS) and multi-criteria decision making (MCDM) methods for the evaluation of solar farms locations: Case study in southeastern Spain. Renew. Sustain. Energy Rev. 2013, 24, 544–556. [Google Scholar] [CrossRef]
- Yunna, W.; Geng, S. Multi-criteria decision making on selection of solar–wind hybrid power station location: A case of China. Energy Convers. Manag. 2014, 81, 527–533. [Google Scholar] [CrossRef]
- Rezaei, J.; Ortt, R. Multi-criteria supplier segmentation using a fuzzy preference relations based AHP. Eur. J. Oper. Res. 2013, 225, 75–84. [Google Scholar] [CrossRef]
- Kim, J.H.; Ahn, B.S. Extended VIKOR method using incomplete criteria weights. Expert Syst. Appl. 2019, 126, 124–132. [Google Scholar] [CrossRef]
- Dong, Y.C.; Li, C.C.; Xu, Y.F.; Gu, X. Consensus-based group decision making under multi-granular unbalanced 2-tuple linguistic preference relations. Group Decis. Negot. 2015, 24, 217–242. [Google Scholar] [CrossRef]
- Rani, P.; Mishra, A.R.; Pardasani, K.R.; Mardani, A.; Liao, H.; Streimikienef, D. A novel VIKOR approach based on entropy and divergence measures of Pythagorean fuzzy sets to evaluate renewable energy technologies in India. J. Clean. Prod. 2019, 238, 117936. [Google Scholar] [CrossRef]
- Cui, F.B.; You, X.Y.; Hua, S.; Liu, H.C. Optimal siting of electric vehicle charging stations using pythagorean fuzzy VIKOR approach. Math. Probl. Eng. 2018, 2018, 9262067. [Google Scholar] [CrossRef]
- Liao, H.C.; Xu, Z.S.; Zeng, X.J. Hesitant fuzzy linguistic VIKOR method and its application in qualitative multiple criteria decision making. IEEE Trans. Fuzzy Syst. 2015, 23, 1343–1355. [Google Scholar] [CrossRef]
- Yazdani, M.; Payam, A.F. A comparative study on material selection of microelectromechanical systems electrostatic actuators using Ashby, VIKOR and TOPSIS. Mater. Des. 2015, 65, 328–334. [Google Scholar] [CrossRef]
- Taylan, O.; Bafail, A.O.; Abdulaal, R.M.S.; Kabli, M.R. Construction projects selection and risk assessment by fuzzy AHP and fuzzy TOPSIS methodologies. Appl. Soft Comput. J. 2014, 17, 105–116. [Google Scholar] [CrossRef]
- Taylan, O.; Kaya, D.; Demirbas, A. An integrated multi attribute decision model for compressor selection in petrochemical industry applying fuzzy set theory. Energy Convers. Manag. Energy 2016, 117, 501–512. [Google Scholar] [CrossRef]
- Taylan, O.; Alidrisi, H.; Kabli, M. A multi-criteria decision-making approach that combines fuzzy TOPSIS and DEA methodologies. S. Afr. J. Ind. Eng. 2014, 25, 39–56. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, M.; Gitinavard, H.; Mousavi, S. A soft computing based-modified ELECTRE model for renewable energy policy selection with unknown information. Renew. Sustain. Energy Rev. 2017, 68, 774–787. [Google Scholar] [CrossRef]
- Kaya, T.; Kahraman, C. Multicriteria decision making in energy planning using a modified fuzzy TOPSIS methodology. Expert Syst. Appl. 2011, 38, 6577–6585. [Google Scholar] [CrossRef]
- Aramco, S. Saudi Aramco, Annual Review 2016; Saudi Aramco: Dhahran, Saudi Arabia, 2017. [Google Scholar]
- Al-sasi, B.; Taylan, O.; Demirbas, A. The impact of oil price volatility on economic growth. Energy Sources Part B Econ. Plan. Policy 2017, 12, 847–852. [Google Scholar] [CrossRef]
- Demirbas, A.; Coban, V.; Taylan, O.; Kabli, M.R. Aerobic digestion of sewage sludge for waste treatment. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 1056–1062. [Google Scholar] [CrossRef]
- Taylan, O.; Demirbas, A. Forecasting and Analysis of Energy Consumption for Transportation in Kingdom of Saudi Arabia. Energy Sources Part B Econ. Plan. Policy 2016, 11, 1150–1157. [Google Scholar] [CrossRef]
- Wen, M.; Li, H. Fuzzy data envelopment analysis (DEA): Model and ranking method. J. Comput. Appl. Math. 2009, 223, 872–878. [Google Scholar] [CrossRef] [Green Version]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Rojas-Zerpa, J.C.; Yusta, J.M. Application of multicriteria decision methods for electric supply planning rural and remote areas. Renew. Sustain. Energy Rev. 2015, 52, 557–571. [Google Scholar] [CrossRef]
- Kou, G.; Ergu, D.; Lin, C.; Chen, Y. Pairwise comparison matrix in multiple criteria decision making. Technol. Econ. Dev. Econ. 2016, 22, 738–765. [Google Scholar] [CrossRef] [Green Version]
- Chatterjeea, P.; Chakraborty, S. A comparative analysis of VIKOR method and its variants. Decis. Sci. Lett. 2016, 5, 469–486. [Google Scholar] [CrossRef]
Main Criteria | Sub-Criteria |
---|---|
Technical Criteria | Power Generation |
Active Operation Time | |
Efficiency | |
Energy System Reliability and Security | |
Storability | |
Location | |
Know How | |
R&D Capability | |
Environmental Criteria | Safety |
Air Pollution | |
Noise Pollution | |
Land Usage | |
PM2.5/10 | |
Water Pollution | |
Gas Emission | |
Economic Criteria | Return on Investment |
Initial Investment Cost | |
Payback Period | |
Total Annual Cost | |
Depletable | |
Net Present Value | |
Enhanced Local Economic Development | |
Taxes and Tariff | |
Economic Lifetime | |
Social Criteria | Social Acceptability |
Job Creation | |
Social Benefits | |
Governmental Support | |
Social Awareness | |
Social Trust & Fairness |
Fuzzy Linguistic Terms | Fuzzy Scores |
---|---|
Extremely Important (EI) | (9, 9, 9) |
Very Important (VI) | (7, 8, 9) |
Important (I) | (6, 7, 8) |
Moderately Important (MI) | (5, 6, 7) |
Intermediate Important (II) | (4, 5, 6) |
Lower Intermediate Important (LI) | (3, 4, 5) |
Slightly More Important (SI) | (1, 2, 3) |
Equally Important (EQ) | (1, 1, 1) |
Criteria | c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8 | c9 |
---|---|---|---|---|---|---|---|---|---|
c1 | (1,1,1) | MI, SI, I | I, I, EQ | SI, EQ, 1/MI | LI, II, VI | I, I, LI | VI, I, 1/II | EQ, SI, 1/SI | SI, 1/LI, 1/VI |
c2 | 1/MI,1/SI, 1/I | (1,1,1) | EQ, I, 1/MI | EQ, 1/SI, 1/EI | SI, II, MI | EQ, I, VI | I, I, 1/VI | MI, EQ, 1/SI | VI, 1/LI, 1/EI |
c3 | 1/I, 1/I, EQ | EQ,1/I, MI | (1,1,1) | EQ, 1/VI, 1/II | MI, SI, VI | I, EI, SI | MI, 1/LI, 1/EI | LI, 1/I, SI | VI, 1/I, 1/I |
c4 | 1/SI, EQUATION MI | EQ, SI, EI | EQ, VI, II | (1,1,1) | I, SI, I | SI, MI, I | MI, EQ, 1/LI | I, SI, EI | I, 1/SI, EQ |
c5 | 1/LI, 1/II, 1/VI | 1/SI, 1/II, 1/MI | 1/MI, 1/SI, 1/VI | 1/I, 1/SI, 1/I | (1,1,1) | I, MI, 1/SI | I, 1/SI, 1/VI | SI, 1/SI, 1/MI | LI, 1/VI, 1/EI |
c6 | 1/I, 1/I, 1/LI | EQ, 1/I, 1/VI | 1/I, 1/EI, 1/SI | 1/SI, 1/MI, 1/I | 1/I, 1/MI, SI | (1,1,1) | 1/MI, 1/I, 1/I | II, 1/SI, SI | II, 1/SI, 1/MI |
c7 | 1/VI, 1/I, II | 1/I, 1/I, VI | 1/MI, LI, EI | 1/MI, EQ, LI | 1/I, SI, VI | MI, I, I | (1,1,1) | II, EQ, II | 1/I, 1/SI, SI |
c8 | EQ, 1/SI, SI | 1/MI, EQ, SI | 1/LI, I, 1/SI | 1/I, 1/SI, 1/EI | 1/SI, SI, MI | 1/II, SI, 1/SI | 1/II, EQ, 1/II | (1,1,1) | 1/I, 1/SI, 1/VI |
c9 | 1/SI, LI, VI | 1/VI, LI, EI | 1/VI, I, I | 1/I, SI, EQ | 1/LI, VI, EI | 1/II, SI, 1/MI | I, SI, 1/SI | I, SI, VI | (1,1,1) |
Criteria | c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8 | c9 |
---|---|---|---|---|---|---|---|---|---|
c1 | (1, 1, 1) | (4, 5, 6) | (4.33, 5, 5.66) | (0.71, 1.05, 1.4) | (4.66, 5.66, 6.66) | (5, 6, 7) | (4.37, 5.04, 5.71) | (0.77, 1.16, 1.66) | (0.43, 0.79, 1.15) |
c2 | (0.17, 0.2, 0.25) | (1, 1, 1) | (2.38, 2.72, 3.06) | (0.48, 0.53, 0.7) | (3.33, 4.33, 5.33) | (4.66, 5.33, 6) | (4.03, 4.7, 5.38) | (2.11, 2.5, 3) | (2.43, 2.78, 3.14) |
c3 | (0.18, 0.2, 0.23) | (0.33, 0.37, 0.42) | (1, 1, 1) | (0.42, 0.44, 0.46) | (4.33, 5.33, 6.33) | (5.33, 6, 6.66) | (1.77, 2.12, 2.48) | (1.37, 2.04, 2.72) | (2.41, 2.76, 3.11) |
c4 | (0.71, 0.95, 1.41) | (1.43, 1.89, 2.08) | (2.17, 2.27, 2.38) | (1, 1, 1) | (4.33, 5.33, 6.33) | (4, 5, 6) | (2.06, 2.41, 2.77) | (5.33, 6, 6.66) | (2.44, 2.83, 3.33) |
c5 | (0.15, 0.18, 0.21) | (0.19, 0.23, 0.3) | (0.16, 0.19, 0.23) | (0.16, 0.19, 0.23) | (1, 1, 1) | (3.77, 4.5, 5.33) | (2.14, 2.54, 3.04) | (0.49, 0.88, 1.4) | (1.07, 1.41, 1.75) |
c6 | (0.14, 0.17, 0.20) | (0.17, 0.19, 0.21) | (0.15, 0.17, 0.19) | (0.17, 0.2, 0.25) | (0.19, 0.22, 0.27) | (1, 1, 1) | (0.13, 0.15, 0.17) | (1.77, 2.5, 3.33) | (1.49, 1.88, 2.4) |
c7 | (0.18, 0.2, 0.23) | (0.19, 0.21, 0.25) | (0.4, 0.47, 0.56) | (0.36, 0.41, 0.49) | (0.33, 0.39, 0.47) | (5.88, 6.67, 7.69) | (1, 1, 1) | (3.3, 3.66, 4.33) | (0.48, 0.88, 1.38) |
c8 | (0.6, 0.62, 1.3) | (0.33, 0.4, 0.47) | (0.37, 0.49, 0.73) | (0.15, 0.17, 0.19) | (0.71, 1.14, 2.04) | (0.3, 0.4, 0.56) | (0.23, 0.27, 0.3) | (1, 1, 1) | (0.18, 0.25, 0.43) |
c9 | (0.87, 1.27, 2.33) | (0.32, 0.36, 0.41) | (0.32, 0.36, 0.41) | (0.3, 0.35, 0.41) | (0.57, 0.71, 0.93) | (0.42, 0.53, 0.67) | (0.72, 1.14, 2.08) | (2.33, 4, 5.56) | (1, 1, 1) |
Criteria | Crisp Criteria Weights |
---|---|
c1 | (25.27, 31.15, 36.24) |
c2 | (20.59, 24.09, 27.86) |
c3 | (17.13, 20.26, 23.41) |
c4 | (23.48, 27.68, 31.96) |
c5 | (9.12, 11.11, 13.5) |
c6 | (5.2, 6.47, 8.02) |
c7 | (12.12, 13.9, 16.4) |
c8 | (4.58, 4.74, 7.03) |
c9 | (6.85, 9.72, 13.81) |
Criteria | Fuzzy Criteria Weights |
---|---|
(c1) | (0.14179, 0.20889, 0.29147) |
(c2) | (0.11551, 0.16155, 0.22407) |
(c3) | (0.09614, 0.13585, 0.18829) |
(c4) | (0.13173, 0.18564, 0.25707) |
(c5) | (0.05119, 0.07452, 0.10855) |
(c6) | (0.02920, 0.04341, 0.06448) |
(c7) | (0.06799, 0.0932, 0.13188) |
(c8) | (0.02567, 0.03177, 0.05653) |
(c9) | (0.03843, 0.06517, 0.11104) |
V (Degree of Possibility for all Values) | c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8 | c9 |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
0.63478 | 1 | 1 | 0.79312 | 1 | 1 | 1 | 1 | 1 | |
0.38897 | 0.73903 | 1 | 0.53184 | 1 | 1 | 1 | 1 | 1 | |
0.83212 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
0 | 0 | 0.16837 | 0 | 1 | 1 | 0.68472 | 1 | 1 | |
0 | 0 | 0 | 0 | 0.29929 | 1 | 0 | 1 | 0.54488 | |
0 | 0.19319 | 0.45595 | 0.00161 | 1 | 1 | 1 | 1 | 1 | |
0 | 0 | 0 | 0 | 0.11103 | 0.70135 | 0 | 1 | 0.35153 | |
0 | 0 | 0 | 0 | 0.86489 | 0 | 0.60571 | 0 | 1 | |
min V | 0 | 0 | 0 | 0 | 0.11103 | 0 | 0 | 0 | 0.35153 |
Normalized Weight | 0 | 0 | 0 | 0 | 0.24003 | 0 | 0 | 0 | 0.75997 |
Fuzzy Linguistic Terms | Abbreviations | Numerical Values |
---|---|---|
Very Poor | (VP) | (0,0,1) |
Poor | (P) | (0,1,3) |
Medium Poor | (MP) | (1,3,5) |
Fair | (F) | (3,5,7) |
Medium Good | (MG) | (5,7,9) |
Good | (G) | (7,9,10) |
Very Good | (VG) | (9,9,10) |
Criteria for Energy System Selection | Abbreviations of Criteria |
---|---|
Power Generation Capacity (PGC) | c1 |
Efficiency (E) | c2 |
Storability (ST) | c3 |
Safety (SF) | c4 |
Air Pollution (AP) | c5 |
Depletable (DP) | c6 |
Net Present Value (NPV) | c7 |
Enhanced Local Economic Development (ELED) | c8 |
Governmental Support (GS) | c9 |
Decision Makers (DMs) | Alternative Energy Systems | c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8 | c9 |
---|---|---|---|---|---|---|---|---|---|---|
DM # 1 | E1 | F | MP | VP | G | F | VG | F | F | G |
E2 | G | MG | VG | F | VP | VP | P | VG | VG | |
E3 | P | MP | F | G | VP | P | MP | VG | P | |
E4 | F | F | P | VG | VG | VP | VG | G | VG | |
E5 | G | G | MP | VG | VG | VG | VG | G | VG | |
E6 | F | F | F | G | VG | VP | G | G | MP | |
E7 | VG | VG | P | P | VP | P | VP | VG | VG | |
E8 | G | G | G | VG | VG | G | VG | VG | VG | |
DM # 2 | E1 | MP | P | MG | G | MG | F | F | MP | MG |
E2 | VG | G | VG | MP | VP | MG | MP | F | G | |
E3 | MP | P | F | MG | G | F | MP | MG | G | |
E4 | F | F | P | VG | VG | VP | MP | MG | VG | |
E5 | F | F | MP | VG | VG | P | MP | G | VG | |
E6 | F | F | MP | MG | G | P | MG | G | G | |
E7 | VG | VG | MP | VP | P | VP | P | MP | G | |
E8 | F | F | G | G | MP | F | F | G | VG | |
DM # 3 | E1 | MP | G | G | G | G | F | F | F | G |
E2 | G | G | G | P | VP | VP | F | F | G | |
E3 | MP | VP | F | VG | VG | VG | VG | F | G | |
E4 | MP | F | F | VG | VG | VG | VG | F | G | |
E5 | MP | G | G | VG | VG | VG | VG | MG | G | |
E6 | VG | G | G | VP | VP | VG | VP | F | F | |
E7 | VG | VG | F | VP | MP | MP | VP | G | F | |
E8 | P | F | VP | MP | VP | P | VG | VP | P |
uij | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |
---|---|---|---|---|---|---|---|---|---|
E1 | (1.667, 3.667, 5.667) | (2.667, 4.333, 6) | (4, 5.333, 6.67) | (7, 9, 10) | (5, 7, 8.667) | (5.33, 6, 8) | (3, 5, 7) | (2.33, 4.33, 6.33) | (6.33, 8.33, 9.67) |
E2 | (7.667, 9, 10) | (6.333, 8.333, 9.667) | (8.33, 9, 10) | (1.33, 3, 5) | (0, 0, 1) | (1.67, 2.333, 3.667) | (1.333, 3, 5) | (5, 6.33, 8) | (7.67, 9, 10) |
E3 | (0.667, 2.33, 4.33) | (0.33, 1.33, 3) | (3, 5, 7) | (7, 8.33, 9.67) | (5.333, 6, 7) | (4, 5, 6.67) | (3.667, 5, 6.667) | (5.67, 7, 8.67) | (4.67, 6.33, 7.67) |
E4 | (2.33, 4.33, 6.33) | (3, 5, 7) | (1, 2.33, 4.33) | (9, 9, 10) | (9, 9, 10) | (3, 3, 4) | (6.333, 7, 8.333) | (5, 7, 8.67) | (8.33, 9, 10) |
E5 | (3.667, 5.667, 7.33) | (5,667, 7.667, 9) | (3, 5, 6.67) | (9, 9, 10) | (9, 9, 10) | (6, 6.33, 7.67) | (6.333, 7, 8.333) | (6.33, 8.33, 9.67) | (8.33, 9, 10) |
E6 | (5, 6.333, 8) | (4.333, 6.333, 8) | (3.67, 5.67, 7.33) | (4, 5.33, 6.67) | (5.333, 6, 7) | (3, 3.33, 4.67) | (4, 5.333, 6.667) | (5.67, 7.67, 9) | (3.67, 5.67, 7.33) |
E7 | (9, 9, 10) | (9, 9, 10) | (1.33, 3, 5) | (0, 0.33, 1.67) | (0.333, 1.333, 3) | (0.33, 1.33, 3) | (0, 0.333, 1.667) | (5.67, 7, 8.33) | (6.33, 7.67, 9) |
E8 | (3.33, 5, 6.667) | (4.333, 6.333, 8) | (4.67, 6, 7) | (5.67, 7, 8.33) | (3.333, 4, 5.333) | (3.33, 5, 6.67) | (7, 7.667, 9) | (5.33, 6, 7) | (6, 6.33, 7.67) |
f* | (9, 9, 10) | (9, 9, 10) | (8.33, 9, 10) | (9, 9, 10) | (9, 9, 10) | (6, 6.33, 7.67) | (7, 7.667, 9) | (6.33, 8.33, 9.67) | (8.33, 9, 10) |
(0.667, 2.33, 4.33) | (0.33, 1.33, 3) | (1, 2.33, 4.33) | (0, 0.33, 1.67) | (0, 0, 1) | (0.33, 1.33, 3) | (0, 0.333, 1.667) | (2.33, 4.33, 6.33) | (3.67, 5.67, 7.33) | |
W | (0.142, 0.209, 0.291) | (0.116, 0.162, 0.224) | (0.096, 0.136, 0.188) | (0.132, 0.186, 0.257) | (0.051, 0.075, 0.109) | (0.029, 0.043, 0.065) | (0.068, 0.093, 0.132) | (0.026, 0.032, 0.057) | (0.038, 0.065, 0.111) |
uij | c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8 | c9 |
---|---|---|---|---|---|---|---|---|---|
E1 | (0.125, 0.167, 0.223) | (0.084, 0.098, 0.128) | (0.057, 0.075, 0.111) | (0.029, 0, 0) | (0.023, 0.017, 0.016) | (0.005, 0, 0) | (0.039, 0.034, 0.036) | (0.026, 0.032, 0.057) | (0.016, 0.013, 0.014) |
E2 | (0.023, 0, 0) | (0.036, 0.014, 0.011) | (0, 0, 0) | (0.112, 0.129, 0.154) | (0.051, 0.075, 0.109) | (0.022, 0.035, 0.056) | (0.055, 0.059, 0.072) | (0.009, 0.016, 0.028) | (0.005, 0, 0) |
E3 | (0.142, 0.209, 0.291) | (0.116, 0.162, 0.224) | (0.07, 0.082, 0.1) | (0.029, 0.014, 0.01) | (0.021, 0.025, 0.036) | (0.01, 0.012, 0.017) | (0.032, 0.034, 0.042) | (0.004, 0.011, 0.017) | (0.03, 0.051, 0.097) |
E4 | (0.113, 0.146, 0.189) | (0.08, 0.084), 0.096) | (0.096, 0.136, 0.188) | (0, 0, 0) | (0, 0, 0) | (0.015, 0.029, 0.052) | (0.006, 0.008, 0.012) | (0.009, 0.011, 0.017) | (0, 0, 0) |
E5 | (0.091, 0.104, 0.137) | (0.044, 0.028, 0.032) | (0.07, 0.082, 0.111) | (0, 0, 0) | (0, 0, 0) | (0, 0, 0.004) | (0.006, 0.008, 0.012) | (0, 0, 0) | (0, 0, 0) |
E6 | (0.068, 0.084, 0.103) | (0.062, 0.056, 0.064) | (0.061, 0.068, 0.089) | (0.073, 0.079, 0.103) | (0.021, 0.025, 0.036) | (0.015, 0.026, 0.043) | (0.029, 0.03, 0.042) | (0.004, 0.005, 0.011) | (0.038, 0.065, 0.111) |
E7 | (0, 0, 0) | (0, 0, 0) | (0.092, 0.122, 0.166) | (0.132, 0.186, 0.257) | (0.049, 0.063, 0.084) | (0.029. 0.043, 0.064) | (0.068, 0.093, 0.132) | (0.004, 0.011, 0.023) | (0.016, 0.026, 0.042) |
E8 | (0.096, 0.125, 0.171) | (0.062, 0.056, 0.064) | (0.048, 0.061, 0.1) | (0.049, 0.043, 0.051) | (0.032, 0.041, 0.056) | (0.014, 0.012, 0.017) | (0, 0, 0) | (0.006, 0.019, 0.045) | (0.019, 0.052, 0.097) |
Alternative Energy Systems | Si | Ri |
---|---|---|
E1, Hydrogen | (0.404, 0.435, 0.584) | (0.125, 0.167, 0.223) |
E2, Fossil fuels | (0.313, 0.327, 0.430) | (0.112, 0.129, 0.154) |
E3, Hydropower | (0.455, 0.599, 0.835) | (0.142, 0.209, 0.291) |
E4, Wind | (0.320, 0.414, 0.553) | (0.113, 0.146, 0.189) |
E5, Solar PV | (0.212, 0.223, 0.296) | (0.091, 0.104, 0.137) |
E6, Geothermal | 0.373, 0.437, 0.602) | (0.073, 0.084, 0.111) |
E7, Nuclear | (0.391, 0.545, 0.768) | (0.132, 0.186, 0.257) |
E8, Biomass | (0.327, 0.409, 0.602) | (0.096, 0.125, 0.171) |
S* | (0.2116, 0.22252, 0.29622) |
S- | (0.4545, 0.59927, 0.83497) |
R* | (0.0732, 0.08356, 0.11104) |
R- | (0.1418, 0.20889, 0.29147) |
Alternative Energy Systems | Defuzzification of Merit Function (Qi) | Ranking Order of Energy Systems | |||
---|---|---|---|---|---|
v = 0.2 | v = 0.5 | v = 0.7 | v = 0.9 | ||
E1, Hydrogen | 0.6580631 | 0.63552 | 0.730428 | 0.6054565 | 6, 6, 7, 6 |
E2, Fossil fuels | 0.3582436 | 0.33481 | 0.4251562 | 0.3035732 | 3, 3, 3, 2 |
E3, Hydropower | 1 | 1 | 1 | 1 | 8, 8, 8, 8 |
E4, Wind | 0.5008926 | 0.4981 | 0.4494203 | 0.4943866 | 5, 5, 4, 4 |
E5, Solar PV | 0.1423239 | 0.08895 | 0.0597323 | 0.0177905 | 2, 1, 1, 1 |
E6, Geothermal | 0.1170105 | 0.29253 | 0.4645139 | 0.5265473 | 1, 2, 5, 5 |
E7, Nuclear | 0.8238515 | 0.82952 | 0.7153496 | 0.8370739 | 7, 7, 6, 7 |
E8, Biomass | 0.3684189 | 0.41934 | 0.4118616 | 0.487243 | 4, 4, 2, 3 |
Vij | c1 | c2 | ... | c8 | c9 |
---|---|---|---|---|---|
E1 | (0.024, 0.077, 0.165) | (0.031, 0.07, 0.134) | (0.006, 0.014, 0.036) | (0.024, 0.054, 0.107) | |
E2 | (0.109, 0.188, 0.291) | (0.073, 0.135, 0.217) | (0.013, 0.02, 0.046) | (0.029, 0.059, 0.111) | |
E3 | (0.010, 0.050, 0.13) | (0.004, 0.022, 0.069) | … | (0.015, 0.023, 0.051) | (0.018, 0.043, 0.088) |
E4 | (0.033, 0.09, 0.184) | (0.035, 0.081, 0.157) | (0.013, 0.022, 0.049) | (0.032, 0.059, 0.111) | |
E5 | (0.052, 0.118, 0.213) | (0.066, 0.124, 0.202) | (0.016, 0.027, 0.055) | (0.032, 0.059, 0.111) | |
E6 | (0.079, 0.147, 0.259) | (0.056, 0.114, 0.199) | … | (0.016, 0.027, 0.057) | (0.016, 0.041, 0.09) |
E7 | (0.128, 0.188, 0.291) | (0.104, 0.146, 0.224) | (0.015, 0.022, 0.047) | (0.024, 0.05, 0.1) | |
E8 | (0.053, 0.116, 0.215) | (0.056, 0.114, 0.199) | (0.015, 0.021, 0.044) | (0.025, 0.046, 0.095) |
Energy Systems | CCi | |||
---|---|---|---|---|
E1 | 23.3854 | 0.2263 | 23.6117 | 0.00958271 |
E2 | 23.2339 | 0.3044 | 23.5382 | 0.01253043 |
E3 | 23.8503 | 0.1859 | 24.0362 | 0.0077351 |
E4 | 23.2082 | 0.249 | 23.4572 | 0.01061442 |
E5 | 22.5627 | 0.313 | 22.8758 | 0.01368314 |
E6 | 22.9832 | 0.2747 | 23.2578 | 0.01180911 |
E7 | 23.9857 | 0.2494 | 24.2351 | 0.0102896 |
E8 | 22.853 | 0.2843 | 23.1373 | 0.01289718 |
Authors | Ranking Order | Optimal Ranking |
---|---|---|
Rani et al. [49] | Wind, solar, biomass, nuclear, combined heat and power, hydroelectric, geothermal energy | Wind |
Mousavi et al. [69] | Wind, solar, combine heat and power, biomass, hydroelectric, nuclear, geothermal energy | Wind |
Kaya and Kahraman [70] | Wind, biomass, solar, combined heat and power, hydroelectric, nuclear, geothermal energy | Wind |
Kaya and Kahraman [40] | Wind, solar, biomass, combined heat and power, hydroelectric, nuclear, geothermal energy | Wind |
Our proposed method by fuzzy VIKOR | Solar PV, geothermal, fossil fuels, biomass, wind, hydrogen, nuclear, hydropower | Solar PV |
Our proposed method by fuzzy TOPSIS | Solar PV, biomass, fossil fuels, geothermal, wind, nuclear, hydrogen, hydropower | Solar PV |
Energy Systems | Fuzzy VIKOR Scores | Efficiency Scores by DEA | Final Score (fuzzy VIKOR /fuzzy DEA) | Optimal Ranking |
---|---|---|---|---|
Hydrogen (E1) | 0.636 | 0.839 | 0.758 | 6 |
Fossil fuels (E2) | 0.335 | 1 | 0.335 | 2 |
Hydropower (E3) | 1 | 0.499 | 2.004 | 8 |
Wind (E4) | 0.498 | 1 | 0.498 | 5 |
Solar PV (E5) | 0.089 | 0.766 | 0.116 | 1 |
Geothermal (E6) | 0.293 | 0.671 | 0.437 | 4 |
Nuclear (E7) | 0.83 | 0.896 | 0.926 | 7 |
Biomass (E8) | 0.42 | 1 | 0.420 | 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylan, O.; Alamoudi, R.; Kabli, M.; AlJifri, A.; Ramzi, F.; Herrera-Viedma, E. Assessment of Energy Systems Using Extended Fuzzy AHP, Fuzzy VIKOR, and TOPSIS Approaches to Manage Non-Cooperative Opinions. Sustainability 2020, 12, 2745. https://doi.org/10.3390/su12072745
Taylan O, Alamoudi R, Kabli M, AlJifri A, Ramzi F, Herrera-Viedma E. Assessment of Energy Systems Using Extended Fuzzy AHP, Fuzzy VIKOR, and TOPSIS Approaches to Manage Non-Cooperative Opinions. Sustainability. 2020; 12(7):2745. https://doi.org/10.3390/su12072745
Chicago/Turabian StyleTaylan, Osman, Rami Alamoudi, Mohammad Kabli, Alawi AlJifri, Fares Ramzi, and Enrique Herrera-Viedma. 2020. "Assessment of Energy Systems Using Extended Fuzzy AHP, Fuzzy VIKOR, and TOPSIS Approaches to Manage Non-Cooperative Opinions" Sustainability 12, no. 7: 2745. https://doi.org/10.3390/su12072745
APA StyleTaylan, O., Alamoudi, R., Kabli, M., AlJifri, A., Ramzi, F., & Herrera-Viedma, E. (2020). Assessment of Energy Systems Using Extended Fuzzy AHP, Fuzzy VIKOR, and TOPSIS Approaches to Manage Non-Cooperative Opinions. Sustainability, 12(7), 2745. https://doi.org/10.3390/su12072745