Fast Identification of Urban Sprawl Based on K-Means Clustering with Population Density and Local Spatial Entropy
<p>Urban expansion diagrams based on gridded population distribution.</p> "> Figure 2
<p>Population Density Distribution Pattern of Land Unit and Neighbor Units.</p> "> Figure 3
<p>Batty’s Spatial Entropy and FCA local spatial Entropy.</p> "> Figure 4
<p>Elbow Method for determining the number of clusters.</p> "> Figure 5
<p>Location of Wuhan, Hubei province in China.</p> "> Figure 6
<p>Gridded Population Density Map.</p> "> Figure 7
<p>Calculation of Local Spatial Entropy.</p> "> Figure 8
<p>K-means Clustering in Group 3 and Group 5 of Population 2010.</p> "> Figure 9
<p>Pseudo F-Statistic Plot of Different Groups.</p> "> Figure 10
<p>K-means Clustering in Group 3 and Group 5 of population 2015.</p> "> Figure 11
<p>Pseudo F-Statistic Plot of Different Groups.</p> "> Figure 12
<p>Mean value of Population and Local Spatial Entropy.</p> "> Figure 13
<p>Comparison with Built-up area changes.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Urban Expansion Diagrams of Gridded Population
2.2. FCA Local Spatial Entropy
2.3. K-Means Clustering
3. Data
3.1. Study Area
3.2. Open Gridded Population Data of GeodataCn
3.3. Gridded Population Generated by Mobile Phone Data
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brueckner, J.K. Urban Sprawl: Diagnosis and Remedies. Int. Reg. Sci. Rev. 2000, 23, 160–171. [Google Scholar] [CrossRef]
- Vietz, J.G.; Rutherfurd, I.D.; Walsh, C.J.; Chee, Y.E.; Hatt, B.E. The Unaccounted Costs of Conventional Urban Development: Protecting Stream Systems in an Age of Urban Sprawl. In Proceedings of the Australian Stream Management Conference, Townsville, QLD, Australia, 31 July 2014. [Google Scholar]
- Heckman, C.J. Public Parks and Shady Areas in Times of Climate Change, Urban Sprawl, and Obesity. Am. J. Public Health 2017, 107, 1856–1858. [Google Scholar] [CrossRef] [PubMed]
- Frumkin, H. Urban Sprawl and Public Health. Public Health Rep. 2002, 117, 201. [Google Scholar] [CrossRef]
- Wu, F.; Xu, J.; Yeh, A.G. Urban Development in Post-Reform China: State, Market, and Space; Routledge: Abingdon, UK, 2006. [Google Scholar]
- Christiansen, P.; Loftsgarden, T. Drivers Behind Urban Sprawl in Europe. TØI Rep. 2011, 1136, 2011. [Google Scholar]
- Sturm, R.; Cohen, D.A. Suburban Sprawl and Physical and Mental Health. Public Health 2004, 118, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Burchell, W.R.; Mukherji, S. Conventional Development Versus Managed Growth: The Costs of Sprawl. Am. J. Public Health 2003, 93, 1534–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, M. The Effects of Urban Patterns on Ecosystem Function. Int. Reg. Sci. Rev. 2005, 28, 168–192. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Li, W. Analyses of Urban Ecosystem Based on Information Entropy. Ecol. Model. 2006, 197, 1–12. [Google Scholar] [CrossRef]
- Wang, H.; Ning, X.; Zhu, W.; Li, F. Comprehensive Evaluation of Urban Sprawl on Ecological Environment Using Multi-Source Data: A Case Study of Beijing. ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2015, XLI-B8, 1073-77. Available online: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B8/1073/2016/isprs-archives-XLI-B8-1073-2016.pdf (accessed on 29 July 2018).
- Encarnação, S.; Gaudiano, M.; Santos, F.C.; Tenedório, J.A.; Pacheco, J.M. Urban Dynamics, Fractals and Generalized Entropy. Entropy 2013, 15, 2679–2697. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, C.W.; Lovell, S.T. Improving the Visual Quality of Commercial Development at the Rural–Urban Fringe. Land. Urban Plan. 2006, 77, 152–166. [Google Scholar] [CrossRef]
- Burchell, W.R.; Shad, N.A.; Listokin, D.; Phillips, H.; Downs, A.; Seskin, S.; Davis, J.S.; Moore, T.; Helton, D.; Gall, M. The Costs of Sprawl-Revisited; Transportation Research Board: Washington, DC, USA, 1998. [Google Scholar]
- Ewing, R.H. Characteristics, Causes, and Effects of Sprawl: A Literature Review. In Urban Ecology; Springer: Boston, MA, USA, 2008; pp. 519–535. [Google Scholar]
- Frenkel, A.; Ashkenazi, M. The Integrated Sprawl Index: Measuring the Urban Landscape in Israel. Ann. Reg. Sci. 2008, 42, 99–121. [Google Scholar] [CrossRef]
- Knaap, G.; Talen, E.; Olshansky, R.; Forrest, C. Government Policy and Urban Sprawl; Illinois Department of Natural Resources, Office of Realty and Environmental Planning: Springfield, IL, USA, 2000. [Google Scholar]
- Tsai, Y.-H. Quantifying Urban Form: Compactness Versus ‘Sprawl’. Urban Stud. 2005, 42, 141–161. [Google Scholar] [CrossRef]
- Yue, W.; Zhang, L.; Liu, Y. Measuring Sprawl in Large Chinese Cities Along the Yangtze River Via Combined Single and Multidimensional Metrics. Habitat Int. 2016, 57, 43–52. [Google Scholar] [CrossRef]
- Bhatta, B. Analysis of Urban Growth and Sprawl from Remote Sensing Data, Advances in Geographic Information Science; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Galster, G.; Hanson, R.; Ratcliffe, M.R.; Wolman, H.; Coleman, S.; Freihage, J. Wrestling Sprawl to the Ground: Defining and Measuring an Elusive Concept. Hous. Policy Debate 2001, 12, 681–717. [Google Scholar] [CrossRef]
- Wilson, H.E.; Hurd, J.D.; Civco, D.L.; Prisloe, M.P.; Arnold, C. Development of a Geospatial Model to Quantify, Describe and Map Urban Growth. Remote Sens. Environ. 2003, 86, 275–285. [Google Scholar] [CrossRef]
- Bhatta, B.; Saraswati, S.; Bandyopadhyay, D. Quantifying the Degree-of-Freedom, Degree-of-Sprawl, and Degree-of-Goodness of Urban Growth from Remote Sensing Data. Appl. Geogr. 2010, 30, 96–111. [Google Scholar] [CrossRef]
- Singh, B. Urban Growth Using Shannon’s Entropy: A Case Study of Rohtak City. Int. J. Adv. Remote Sens. Gis 2014, 3, 544–552. [Google Scholar]
- Torrens, P.M. A Toolkit for Measuring Sprawl. Appl. Spat. Anal. Policy 2008, 1, 5–36. [Google Scholar] [CrossRef] [Green Version]
- Al-Sharif, A.A.A.; Pradhan, B.; Abdullahi, S. Urban Sprawl Assessment; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Batty, M. Spatial Entropy. Geogr. Anal. 1974, 6, 1–31. [Google Scholar] [CrossRef]
- Batty, M. Entropy in Spatial Aggregation. Geogr. Anal. 1976, 8, 1–21. [Google Scholar] [CrossRef]
- Batty, M.; Morphet, R.; Masucci, P.; Stanilov, K. Entropy, Complexity, and Spatial Information. J. Geogr. Syst. 2014, 16, 363–385. [Google Scholar]
- Cabral, P.; Augusto, G.; Tewolde, M.; Araya, Y. Entropy in Urban Systems. Entropy 2013, 15, 5223–5236. [Google Scholar] [CrossRef] [Green Version]
- Yeh, A.G.O. Measurement and Monitoring of Urban Sprawl in a Rapidly Growing Region Using Entropy. Photogramm. Eng. Remote Sens. 2001, 67, 83–90. [Google Scholar]
- Ewing, R.H. Characteristics, Causes, and Effects of Sprawl: A Literature Review. In Urban Ecology: An International Perspective on the Interaction between Humans and Nature; Marzluff, J.M., Shulenberger, E., Endlicher, W., Alberti, M., Bradley, G., Ryan, C., ZumBrunnen, C., Simon, U., Eds.; Springer: Boston, MA, USA, 2008; pp. 519–535. [Google Scholar]
- Angel, S.; Parent, J.; Civco, D. Urban Sprawl Metrics: An Analysis of Global Urban Expansion Using Gis. In Proceedings of the ASPRS 2007 Annual Conference, Tampa, FL, USA, 7–11 May 2007. [Google Scholar]
- Aurambout, P.J.; Barranco, R.; Lavalle, C. Towards a Simpler Characterization of Urban Sprawl across Urban Areas in Europe. Land 2018, 7, 33. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, P.; Yue, W.; Song, Y. Impacts of Land Finance on Urban Sprawl in China: The Case of Chongqing. Land Use Policy 2018, 72, 420–432. [Google Scholar] [CrossRef]
- Tian, L.; Li, Y.; Yan, Y.; Wang, B. Measuring Urban Sprawl and Exploring the Role Planning Plays: A Shanghai Case Study. Land Use Policy 2017, 67, 426–435. [Google Scholar] [CrossRef]
- Phelps, A.N.; Silva, C. Mind the Gaps! A Research Agenda for Urban Interstices. Urban Stud. 2018, 55. [Google Scholar] [CrossRef]
- Desalvo, S.J.; Su, Q. The Determinants of Urban Sprawl: Theory and Estimation. Int. J. Urban Sci. 2018, 1–17. [Google Scholar] [CrossRef]
- Batty, M. Fifty Years of Urban Modeling: Macro-Statics to Micro-Dynamics; Physica-Verlag HD: Heidelberg, Germany, 2008. [Google Scholar]
- Burgess, E.W. The Growth of the City: An Introduction to a Research Project. City 2008, 18, 71–78. [Google Scholar]
- Alonso, W. Location and Land Use; Harvard University Press: Cambridge, MA, USA, 1964. [Google Scholar]
- United States Federal Housing Administration; Hoyt, H. The Structure and Growth of Residential Neighborhoods in American Cities. Development 1941, 19, 453–454. [Google Scholar]
- Harris, D.C.; Ullman, E.L. The Nature of Cities. Ann. Am. Acad. Political Soc. Sci. 1945, 242, 7–17. [Google Scholar] [CrossRef]
- Dan, V.; Rees, P. Creating the Uk National Statistics 2001 Output Area Classification. J. R. Stat. Soc. 2007, 170, 379–403. [Google Scholar]
- Harris, R.; Sleight, P.; Webber, R. Geodemographics, Gis and Neighbourhood Targeting. J. Direct Data Digit. Mark. Pract. 2007, 8, 364–368. [Google Scholar]
- Everitt, S.B.; Dunn, G.; Everitt, B.S.; Dunn, G. Cluster Analysis; Wiley: New York, NY, USA, 2011. [Google Scholar]
- Ketchen, J.D.; Shook, C.L. The Application of Cluster Analysis in Strategic Management Research: An Analysis and Critique. Strateg. Manag. J. 1996, 17, 441–458. [Google Scholar] [CrossRef]
- Bai, Z.; Wang, J.; Wang, M.; Gao, M.; Sun, J. Accuracy Assessment of Multi-Source Gridded Population Distribution Datasets in China. Sustainability 2018, 10, 1363. [Google Scholar] [CrossRef]
- Wu, H.; Liu, L.; Yu, Y.; Peng, Z. Evaluation and Planning of Urban Green Space Distribution Based on Mobile Phone Data and Two-Step Floating Catchment Area Method. Sustainability 2018, 10, 214. [Google Scholar] [CrossRef]
- Liu, L.; Peng, Z.; Wu, H.; Jiao, H.; Yu, Y. Exploring Urban Spatial Feature with Dasymetric Mapping Based on Mobile Phone Data and Lur-2sfcae Method. Sustainability 2018, 10, 2432. [Google Scholar] [CrossRef]
- Burchfield, M.; Overman, H.G.; Puga, D.; Turner, M.A. Causes of Sprawl: A Portrait from Space. Q. J. Econ. 2006, 121, 587–633. [Google Scholar] [CrossRef]
- Takahashi, T. Location Competition in an Alonso–Mills–Muth City. Reg. Sci. Urban Econ. 2014, 48, 82–93. [Google Scholar] [CrossRef]
- Ge, W.; Yang, H.; Zhu, X.; Ma, M.; Yang, Y. Ghost City Extraction and Rate Estimation in China Based on Npp-Viirs Night-Time Light Data. ISPRS Int. J. Geo-Inf. 2018, 7, 219. [Google Scholar] [CrossRef]
Location | Population Density | ||||
---|---|---|---|---|---|
Land unit | Surrounding units | Local Evenness | Group 3 | Group 5 | |
CA | High/Middle | High/Middle | High | 1 | 1 |
EA | Middle | Middle /Low | Middle | 3 | 2 |
RA | Low | Low | High | 2 | 3 |
SA | High/Middle | Low | Low | 3 | 4 |
IA | Low | High/Middle/Low | Middle | 3 | 5 |
Population R2 = 0.88 | |||||
---|---|---|---|---|---|
Group | Mean | Std. Dev. | Min | Max | Share |
1 | 449.6209 | 412.15 | 1 | 6529 | 0.3741 |
2 | 764.2076 | 1335.67 | 1 | 10,834 | 0.6207 |
3 | 12,738.2156 | 2947.59 | 6529 | 17,453 | 0.6259 |
Total | 976.4951 | 2515.30 | 1 | 17,453 | 1.0000 |
Relative Entropy R2 = 0.68 | |||||
Group | Mean | Std. Dev. | Min | Max | Share |
1 | 0.9542 | 0.0416 | 0.8407 | 1.0000 | 0.2155 |
2 | 0.7293 | 0.1009 | 0.2610 | 0.8521 | 0.7999 |
3 | 0.9125 | 0.0780 | 0.5963 | 0.9999 | 0.9999 |
Total | 0.9141 | 0.1022 | 0.2610 | 1.0000 | 1.0000 |
Population R2 = 0.88 | |||||
---|---|---|---|---|---|
Group | Mean | Std. Dev. | Min | Max | Share |
1 | 449.7935 | 249.65 | 1 | 4087 | 0.2341 |
2 | 402.3769 | 567.8729 | 1 | 3693 | 0.2116 |
3 | 501.9186 | 760.2594 | 1 | 5689 | 0.3259 |
4 | 6880.2183 | 2224.644 | 3550 | 12,781 | 0.5289 |
5 | 14,278.1528 | 1757.8904 | 9700 | 17,453 | 0.4442 |
Total | 976.4951 | 2515.3013 | 1 | 17,453 | 1 |
Relative Entropy R2 = 0.68 | |||||
Group | Mean | Std. Dev. | Min | Max | Share |
1 | 0.9693 | 0.0251 | 0.9073 | 1.0000 | 0.1254 |
2 | 0.8455 | 0.0456 | 0.7414 | 0.9075 | 0.2248 |
3 | 0.6366 | 0.0885 | 0.261 | 0.7405 | 0.6489 |
4 | 0.8089 | 0.0832 | 0.3401 | 0.9913 | 0.8813 |
5 | 0.9454 | 0.0492 | 0.7684 | 0.9999 | 0.3133 |
Total | 0.9141 | 0.1022 | 0.261 | 1.0000 | 1.0000 |
Population R2 = 0.88 | |||||
---|---|---|---|---|---|
Group | Mean | Std. Dev. | Min | Max | Share |
1 | 599.6339 | 573.3265 | 1 | 6218 | 0.1901 |
2 | 1129.0176 | 1466.5203 | 1 | 7529 | 0.2302 |
3 | 11,069.4944 | 3536.1484 | 5664 | 32,708 | 0.8268 |
Total | 1190.7837 | 2524.6185 | 1 | 32,708 | 1 |
Relative Entropy R2 = 0.68 | |||||
Group | Mean | Std. Dev. | Min | Max | Share |
1 | 0.9748 | 0.0336 | 0.8309 | 1 | 0.1706 |
2 | 0.6904 | 0.1209 | 0.0091 | 0.8463 | 0.8449 |
3 | 0.8277 | 0.1294 | 0.3063 | 0.9973 | 0.6973 |
Total | 0.9336 | 0.112 | 0.0091 | 1 | 1 |
Population R2 = 0.88 | |||||
---|---|---|---|---|---|
Group | Mean | Std. Dev. | Min | Max | Share |
1 | 558.6441 | 397.6774 | 1 | 4578 | 0.1399 |
2 | 757.1577 | 821.7557 | 1 | 4048 | 0.1238 |
3 | 1345.1096 | 1883.1429 | 1 | 10,416 | 0.3184 |
4 | 7135.8354 | 1867.0962 | 3752 | 10,466 | 0.2053 |
5 | 13,846.3772 | 2696.6543 | 10,480 | 32,708 | 0.6796 |
Total | 1190.7837 | 2524.6185 | 1 | 32,708 | 1 |
Relative Entropy R2 = 0.68 | |||||
Group | Mean | Std. Dev. | Min | Max | Share |
1 | 0.9809 | 0.0217 | 0.8881 | 1 | 0.1129 |
2 | 0.7968 | 0.0611 | 0.6739 | 0.8917 | 0.2198 |
3 | 0.5585 | 0.1057 | 0.0091 | 0.6902 | 0.6873 |
4 | 0.8447 | 0.1045 | 0.5504 | 0.9983 | 0.452 |
5 | 0.8278 | 0.1335 | 0.3063 | 0.9973 | 0.6973 |
Total | 0.9336 | 0.112 | 0.0091 | 1 | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Peng, Z.; Wu, H.; Jiao, H.; Yu, Y.; Zhao, J. Fast Identification of Urban Sprawl Based on K-Means Clustering with Population Density and Local Spatial Entropy. Sustainability 2018, 10, 2683. https://doi.org/10.3390/su10082683
Liu L, Peng Z, Wu H, Jiao H, Yu Y, Zhao J. Fast Identification of Urban Sprawl Based on K-Means Clustering with Population Density and Local Spatial Entropy. Sustainability. 2018; 10(8):2683. https://doi.org/10.3390/su10082683
Chicago/Turabian StyleLiu, Lingbo, Zhenghong Peng, Hao Wu, Hongzan Jiao, Yang Yu, and Jie Zhao. 2018. "Fast Identification of Urban Sprawl Based on K-Means Clustering with Population Density and Local Spatial Entropy" Sustainability 10, no. 8: 2683. https://doi.org/10.3390/su10082683
APA StyleLiu, L., Peng, Z., Wu, H., Jiao, H., Yu, Y., & Zhao, J. (2018). Fast Identification of Urban Sprawl Based on K-Means Clustering with Population Density and Local Spatial Entropy. Sustainability, 10(8), 2683. https://doi.org/10.3390/su10082683