Design, Analysis and Implementation of Bidirectional DC–DC Converters for HESS in DC Microgrid Applications
<p>DC microgrid architecture.</p> "> Figure 2
<p>HESS and PV system in a DC microgrid design.</p> "> Figure 3
<p>Two-input bidirectional converter equivalent circuit. (<b>a</b>) Operating switches S<sub>2</sub>, S<sub>3</sub> and S<sub>5</sub>; (<b>b</b>) operating switches S<sub>2</sub>, S<sub>4</sub> and S<sub>5</sub>; (<b>c</b>) operating switches S<sub>1</sub>, S<sub>4</sub> and S<sub>6</sub> and (<b>d</b>) discharging mode steady-state waveforms.</p> "> Figure 4
<p>Two-input bi-directional converter equivalent circuit. (<b>a</b>) Operating switchesS<sub>1</sub>, S<sub>4</sub> and S<sub>6</sub>; (<b>b</b>) operating switches S<sub>2</sub>, S<sub>4</sub> and S<sub>5</sub>; (<b>c</b>) operating switches S<sub>2</sub>, S<sub>3</sub> and S<sub>5</sub> and (<b>d</b>) steady-state waveforms in discharging mode.</p> "> Figure 5
<p>HESS energy exchange method of operation: (<b>a</b>) equivalent circuit and (<b>b</b>) steady-state waveforms.</p> "> Figure 6
<p>Description of the overall control mechanism for the current bifurcation between the SC and the battery unit for the PI control scheme.</p> "> Figure 7
<p>Overall block diagram: (<b>a</b>) representation of supercapacitor control logic and (<b>b</b>) representation of battery control logic.</p> "> Figure 8
<p>With and without compensation, a Bode plot of the inner SC current logic.</p> "> Figure 9
<p>With and without correction, an open-loop Bode plot of battery current logic is shown.</p> "> Figure 10
<p>Bode diagram of the outer voltage logic in open loop with and without compensation.</p> "> Figure 11
<p>Block diagram representation of MPC for HESS.</p> "> Figure 12
<p>Change in PV generation using a PI control system simulation. (<b>a</b>) PV power, (<b>b</b>) output load power, (<b>c</b>) battery storage power, (<b>d</b>) SC storage power, (<b>e</b>) PV current, (<b>f</b>) DC microgrid voltage, (<b>g</b>) battery storage current and (<b>h</b>) SC storage current.</p> "> Figure 13
<p>The simulation findings for a change in load demand are as follows: (<b>a</b>) DC microgrid power, (<b>b</b>) battery storage power, (<b>c</b>) SC storage power, (<b>d</b>) SC SOC, (<b>e</b>) DC microgrid voltage, (<b>f</b>) DC microgrid current, (<b>g</b>) battery storage current and (<b>h</b>) SC storage current.</p> "> Figure 14
<p>Simulation findings for MPC control of a step change in PV generation (<b>a</b>) PV power generation, (<b>b</b>) load power demand, (<b>c</b>) battery storage power, (<b>d</b>) SC storage power, (<b>e</b>) PV current generation, (<b>f</b>) DC microgrid voltage, (<b>g</b>) battery storage current and (<b>h</b>) SC storage current.</p> "> Figure 15
<p>Simulation results for a load demand step change—(<b>a</b>) DC microgrid power demand, (<b>b</b>) battery storage power, (<b>c</b>) SC storage power, (<b>d</b>) SC SOC, (<b>e</b>) DC microgrid voltage, (<b>f</b>) DC grid current, (<b>g</b>) battery storage current and (<b>h</b>) SC current.</p> "> Figure 16
<p>Graphical comparison of PI controller performance over MPC: (<b>a</b>) settling time and (<b>b</b>) peak overshoot.</p> "> Figure 17
<p>Comparative performance of PI controller over MPC: (<b>a</b>) step change in PV, (<b>b</b>) battery current, (<b>c</b>) step change in load demand and (<b>d</b>) SC current.</p> "> Figure 18
<p>Hardware prototype developed for HESS.</p> "> Figure 19
<p>Experiments on a step change in PV production have yielded promising results. (<b>a</b>) Step increase in PV generation, (<b>b</b>) step decrease in PV generation and (<b>c</b>) step increase and decrease in PV generation.</p> "> Figure 20
<p>Experiments on a step change in load demand yielded the following findings: (<b>a</b>) step increase in load demand, (<b>b</b>) step decrease in load demand and (<b>c</b>) step increase and decrease in load demand.</p> ">
Abstract
:1. Introduction
2. Recent Research Works: A Brief Review
- less computational complexity,
- simple double-loop control structure with an outside voltage loop that generates dynamic references and an inner current control loop that splits the references without using low-pass filters and tracks them using MPC principles, and
- better dynamic performance and reduction in DC grid voltage variation compared to the conventional PI control method.
3. HESS-Supported RES Configuration
3.1. Power Transfer from HESS to the DC Grid
3.2. Power Transfer from DC Grid to HESS
3.3. Power Transfer from Battery Bank to SC (Energy Exchange Mode)
4. PI Control System Scheme of HESS
4.1. PI Controller Design for HESS
4.1.1. SC Current Control Loop Design
4.1.2. Design of Battery Current Control Loop
4.1.3. Overall Outer Voltage Control Loop
4.2. MPC Control Strategy
4.2.1. Outer Voltage Control Loop
4.2.2. Inner Current Control
5. Simulation Results and Discussion
5.1. PI Control System Results in a Step Change in PV Generation
5.2. Step Change in Load Demand Using PI Control Scheme
5.3. Step Change in PV Generation Using MPC
5.4. Step Change in Load Demand Using MPC
5.5. Comparative Performance Evaluation
6. Experimental Results
6.1. Step Change in PV Generation
6.2. Step Change in Load Demand
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
RES | Renewable energy source |
ANN | Artificial neural network |
PWM | Pulse width modulation |
EMS | Energy management scheme |
EV | Electric vehicle |
ESS | Energy storage systems |
PV | Photovoltaic |
HESS | Hybrid energy storage system |
HEV | Hybrid electric vehicle |
LPF | Low-pass filter |
MISO | Multi-input single output |
PI | Proportional integral |
SC | Supercapacitor |
SOC | State of charge |
References
- Hredzak, B.; Agelidis, V.G.; Jang, M. A Model Predictive Control System for a Hybrid Battery-Ultracapacitor Power Source. IEEE Trans. Power Electron. 2013, 29, 1469–1479. [Google Scholar] [CrossRef]
- Wee, K.W.; Choi, S.S.; Vilathgamuwa, D.M. Design of a Least-Cost Battery-Supercapacitor Energy Storage System for Realizing Dispatchable Wind Power. IEEE Trans. Sustain. Energy 2013, 4, 786–796. [Google Scholar] [CrossRef]
- Onar, O.C.; Khaligh, A. A novel integrated magnetic structure based DC/DC converter for hybrid battery/ultracapacitor energy storage systems. IEEE Trans. Smart Grid 2011, 3, 296–307. [Google Scholar] [CrossRef]
- Song, Z.; Li, J.; Han, X.; Xu, L.; Lu, L.; Ouyang, M.; Hofmann, H. Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles. Appl. Energy 2014, 135, 212–224. [Google Scholar] [CrossRef]
- Shen, J.; Dusmez, S.; Khaligh, A. Optimization of sizing and battery cycle life in battery/ultracapacitor hybrid energy storage systems for electric vehicle applications. IEEE Trans. Ind. Inform. 2014, 10, 2112–2121. [Google Scholar] [CrossRef]
- Chia, Y.Y.; Lee, L.H.; Shafiabady, N.; Isa, D. A load predictive energy management system for supercapacitor-battery hybrid energy storage system in solar application using the Support Vector Machine. Appl. Energy 2015, 137, 588–602. [Google Scholar] [CrossRef]
- Ma, T.; Yang, H.; Lu, L. Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems. Appl. Energy 2015, 153, 56–62. [Google Scholar] [CrossRef]
- Song, Z.; Hofmann, H.; Li, J.; Hou, J.; Han, X.; Ouyang, M. Energy management strategies comparison for electric vehicles with hybrid energy storage system. Appl. Energy 2014, 134, 321–331. [Google Scholar] [CrossRef]
- Torreglosa, J.P.; Garcia, P.; Fernández, L.M.; Jurado, F. Predictive control for the energy management of a fuel-cell–battery–supercapacitor tramway. IEEE Trans. Ind. Inform. 2013, 10, 276–285. [Google Scholar] [CrossRef]
- Laldin, O.; Moshirvaziri, M.; Trescases, O. Predictive algorithm for optimizing power flow in hybrid ultracapacitor/battery storage systems for light electric vehicles. IEEE Trans. Power Electron. 2012, 28, 3882–3895. [Google Scholar] [CrossRef]
- Nejabatkhah, F.; Li, Y.W. Overview of Power Management Strategies of Hybrid AC/DC Microgrid. IEEE Trans. Power Electron. 2015, 30, 7072–7089. [Google Scholar] [CrossRef]
- Karthikeyan, V.; Gupta, R. Multiple-Input Configuration of Isolated Bidirectional DC–DC Converter for Power Flow Control in Combinational Battery Storage. IEEE Trans. Ind. Inform. 2017, 14, 2–11. [Google Scholar] [CrossRef]
- Aktas, A.; Erhan, K.; Ozdemir, S.; Ozdemir, E. Experimental investigation of a new smart energy management algorithm for a hybrid energy storage system in smart grid applications. Electr. Power Syst. Res. 2017, 144, 185–196. [Google Scholar] [CrossRef]
- Kwon, M.; Choi, S. Control scheme for autonomous and smooth mode switching of bidirectional DC–DC converters in a DC microgrid. IEEE Trans. Power Electron. 2017, 33, 7094–7104. [Google Scholar] [CrossRef]
- Lai, C.-M.; Cheng, Y.-H.; Hsieh, M.-H.; Lin, Y.-C. Development of a Bidirectional DC/DC Converter with Dual-Battery Energy Storage for Hybrid Electric Vehicle System. IEEE Trans. Veh. Technol. 2017, 67, 1036–1052. [Google Scholar] [CrossRef]
- Deihimi, A.; Mahmoodieh, M.E.S.; Iravani, R. A new multi-input step-up DC–DC converter for hybrid energy systems. Electr. Power Syst. Res. 2017, 149, 111–124. [Google Scholar] [CrossRef]
- Punna, S.; Manthati, U.B. Optimum design and analysis of a dynamic energy management scheme for HESS in renewable power generation applications. SN Appl. Sci. 2020, 2, 495. [Google Scholar] [CrossRef] [Green Version]
- Kollimalla, S.K.; Mishra, M.K.; Narasamma, N.L. Design and analysis of novel control strategy for battery and supercapacitor storage system. IEEE Trans. Sustain. Energy 2014, 5, 1137–1144. [Google Scholar] [CrossRef]
- Punna, S.; Manthati, U.B.; Raveendran, A.C. Modeling, analysis, and design of novel control scheme for two-input bidirectional DC-DC converter for HESS in DC microgrid applications. Int. Trans. Electr. Energy Syst. 2021, 31, e12774. [Google Scholar] [CrossRef]
- Rupesh, M.; Shivalingappa, T.V. Evaluation of Optimum MPPT Technique for PV System using MATLAB/Simulink. Int. J. Eng. Adv. Technol. 2019, 8, 1403–1408. [Google Scholar]
- Rupesh, M.; Vishwanath, T.S. Intelligent Controllers to Extract Maximum Power for 10 KW Photovoltaic System. Int. J. Eng. 2022, 35, 784–793. [Google Scholar]
- Hintz, A.; Prasanna, U.R.; Rajashekara, K. Novel modular multiple-input bidirectional DC–DC power converter (MIPC) for HEV/FCV application. IEEE Trans. Ind. Electron. 2014, 62, 3163–3172. [Google Scholar] [CrossRef]
Time Scale | T1 | T2 | T3 |
---|---|---|---|
Operating switches | (S2–S3–S5) | (S2–S4–S5) | (S1–S4–S6) |
Time Scale | T1 | T2 | T3 |
---|---|---|---|
Operating switches | (S1–S4–S6) | (S2–S4–S5) | (S2–S3–S5) |
S. No | Mode of Operation | Transfer Function |
---|---|---|
1 | Power transfer from Battery–SC bank to the DC grid | |
2 | Power transfer from DC grid to Battery–SC | |
3 | Energy exchange mode |
S. No. | Parameter | Transfer Functions |
---|---|---|
1 | SC current transfer function control | |
2 | SC current to transfer function output voltage | |
3 | Control to battery current transfer function | |
4 | Inner SC current loop PI controller transfer function | |
5 | The transfer function of the battery current loop was controlled by a PI controller. | |
6 | Outer voltage control loop PI controller transfer function |
S. No | Parameters | Value |
---|---|---|
1 | MPPT voltage (Vmppt) | 31.95 V |
2 | MPPT current (Imppt) | 3.05 A |
3 | MPPT power (Pmppt) | 96.05 W |
4 | SC voltage (VSC) | 32 V |
5 | SC storage inductance (LS) | 0.365 mH |
6 | Battery voltage (VB) | 24 V |
7 | Battery storage inductance (LB) | 0.35 mH |
8 | Boost converter inductance (L) | 4.2 mH |
9 | Load resistance (R) | 24 Ω |
10 | DC grid voltage (VDC) | 48 V |
11 | Output capacitance (C) | 400 µF |
S. No | Parameters | Value |
---|---|---|
1 | SC component voltage (VSC) | 10 V |
2 | SC component inductance (LS) | 1.43 mH |
3 | Battery component voltage (VB) | 12 V |
4 | Battery inductance (LB) | 4.8 mH |
5 | Boost converter inductance (L) | 4.1 mH |
6 | Load resistance (R) | 25 Ω |
7 | DC microgrid voltage (VDC) | 20 V |
8 | Filter capacitance (C) | 150 µF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Punna, S.; Mailugundla, R.; Salkuti, S.R. Design, Analysis and Implementation of Bidirectional DC–DC Converters for HESS in DC Microgrid Applications. Smart Cities 2022, 5, 433-454. https://doi.org/10.3390/smartcities5020024
Punna S, Mailugundla R, Salkuti SR. Design, Analysis and Implementation of Bidirectional DC–DC Converters for HESS in DC Microgrid Applications. Smart Cities. 2022; 5(2):433-454. https://doi.org/10.3390/smartcities5020024
Chicago/Turabian StylePunna, Srinivas, Rupesh Mailugundla, and Surender Reddy Salkuti. 2022. "Design, Analysis and Implementation of Bidirectional DC–DC Converters for HESS in DC Microgrid Applications" Smart Cities 5, no. 2: 433-454. https://doi.org/10.3390/smartcities5020024
APA StylePunna, S., Mailugundla, R., & Salkuti, S. R. (2022). Design, Analysis and Implementation of Bidirectional DC–DC Converters for HESS in DC Microgrid Applications. Smart Cities, 5(2), 433-454. https://doi.org/10.3390/smartcities5020024