The Impact of Immunomodulatory Components Used in Clinical Nutrition—A Narrative Review
<p>Algorithm of action in clinical nutrition [<a href="#B3-nutrients-17-00752" class="html-bibr">3</a>].</p> "> Figure 2
<p>Simplified impact of immunonutrition. Immunonutrition plays a key role in modulating the immune response and reducing inflammation, which translates into improved clinical parameters for patients. Nutrients such as glutamine, arginine, omega-3 fatty acids, vitamins (E, D, and C), nucleotides, and microelements (selenium, zinc, and magnesium) have significant immunomodulatory effects, influencing the functioning of immune cells and inflammatory processes. Omega-3 fatty acids and vitamins E, D, C have the ability to reduce (as indicated by arrows) the activity of pro-inflammatory cytokines. Reducing inflammation through appropriate nutritional intervention translates into numerous clinical benefits, including reduced infection rates, improved immunological parameters in surgical patients, increased efficacy of anticancer therapies (radiotherapy and chemotherapy), and shortened hospitalization time. Consequently, immunonutrition is an important element of supportive therapy that can significantly improve treatment outcomes and quality of life of patients [<a href="#B68-nutrients-17-00752" class="html-bibr">68</a>,<a href="#B69-nutrients-17-00752" class="html-bibr">69</a>,<a href="#B70-nutrients-17-00752" class="html-bibr">70</a>,<a href="#B71-nutrients-17-00752" class="html-bibr">71</a>,<a href="#B72-nutrients-17-00752" class="html-bibr">72</a>,<a href="#B73-nutrients-17-00752" class="html-bibr">73</a>,<a href="#B74-nutrients-17-00752" class="html-bibr">74</a>,<a href="#B75-nutrients-17-00752" class="html-bibr">75</a>,<a href="#B76-nutrients-17-00752" class="html-bibr">76</a>].</p> ">
Abstract
:1. Introduction
2. Malnutrition
2.1. Types of Malnutrition
- -
- During precachexia, there is a loss of body weight less than or equal to 5% over a period of 6 months, chronic or temporary but recurrent inflammation (CRP > 5.0 mg/L), and symptoms such as loss of appetite and gastrointestinal problems, e.g., nausea or vomiting.
- -
- A patient with cachexia has a weight loss of more than 5% or a BMI below 20 and a weight loss of more than 2% and three out of five other indicators, such as fatigue, reduced muscle strength or mass, abnormal biochemical parameters, or anorexia [14].
2.2. Nutritional Status Assessment
2.3. Consequences of Malnutrition
3. Nutritional Treatment
- -
- expected inability to use an oral diet for more than 7 days;
- -
- patient’s malnutrition;
- -
- expected inability to provide more than 60% of the recommended daily intake for a period exceeding 10 days [3].
3.1. Oral Nutritional Supplements (ONS)
3.2. Enteral Nutrition
- -
- dysphagia, the etiology of which may be different (neurodegenerative and neurological diseases, myasthenia, and oncological diseases);
- -
- diseases of the head and neck as well as the upper digestive tract;
- -
- the digestive tract or its partial obstruction, also with the processes of digestion and absorption (diseases of the pancreas, intestines, liver, and allergies);
- -
- chemotherapy and radiotherapy (cachexia or inflammatory reaction);
- -
- chronic infections and diseases (COPD and organ failure);
- -
- -
- oligo- and polysaccharides derived mainly from starch but also from beets, corn, and cane;
- -
- long-chain triglycerides (LCT), MCT, and MUFA—vegetable oils;
- -
- casein and whey proteins, soy protein, and egg white—in varying degrees of hydrolysis.
3.3. Parenteral Nutrition
4. Inflammation
- -
- increased body temperature;
- -
- increased phagocytosis;
- -
- secretion of acute phase proteins (CRP and MBP);
- -
- opsonization action and complement system action.
5. Immunomodulating Ingredients
6. Research on Immunomodulatory Ingredients
7. Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szczygieł, B.; Kłęk, S.; Kapała, A.; Ukleja, A.; Cebulski, W.; Słodkowski, M. Lack of nutritional education is the main reason of hospital malnutrition, and increased costs of hospitalization. What every physician should know. Adv. Clin. Nutr. 2024, 19, 32–38. [Google Scholar]
- Kowalczuk, K.; Rutkowska, J.; Sobolewska, E.M. Niedożywienie u osób starszych. In Wybrane Choroby Cywilizacyjne XXI Wieku; T. 3: Praca, zbiorowa, Kowalczuk, K., Krajewska-Kułak, E., Cybulski, M., Eds.; Repository of Medical University of Bialystok: Bialystok, Poland, 2017; pp. 620–630. ISBN 978-83-946571-4-7. [Google Scholar]
- Kłęk, S.; Budnik-Szymoniuk, M.; Cebularski, W.; Czuczwar, M.; Grabowska-Woźniak, E.; Koczur- Szozda, E.; Folwarski, M.; Gajewska, D.; Górecka, A.; Jankowski, M.; et al. Standardy Żywienia Dojelitowego i Pozajelitowego; Krakowskie Wydawnictwo Scientifica Sp.z.o.o.: Karków, Poland, 2019. [Google Scholar]
- Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019, 20, 6008. [Google Scholar] [CrossRef] [PubMed]
- Kaminska, P.; Tempes, A.; Scholz, E.; Malik, A.R. Cytokines on the way to secretion. Cytokine Growth Factor Rev. 2024, 79, 52–65. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. (1 March 2024) Malnutrition. Available online: https://www.who.int/news-room/fact-sheets/detail/malnutrition (accessed on 28 December 2024).
- Sobotka, L.; Allison, S.P.; Forbes, A.; Meier, R.F.; Schneider, S.M.; Soeters, P.B.; Stanga, Z.; Van Gossum, A. Basics in Clinical Nutrition, 5th ed.; Galen: Prague, Czech Republic, 2019. [Google Scholar]
- White, J.V.; Guenter, P.; Jensen, G.; Malone, A.; Schofield, M.; the Academy Malnutrition Work Group; the A.S.P.E.N. Malnutrition Task Force; the A.S.P.E.N. Board of Directors. Consensus Statement: Academy of Nutrition and Dietetics and American Society for Parenteral and Enteral Nutrition: Characteristics Recommended for the Identification and Documentation of Adult Malnutrition (Undernutrition). J. Parenter. Enter. Nutr. 2012, 36, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Jensen, G.L.; Ballesteros-Pomar, M.D.; Blaauw, R.; Correia, M.I.T.D.; Cuerda, C.; Evans, D.C.; Fukushima, R.; Gautier, J.B.O.; Gonzalez, M.C.; et al. Guidance for assessment of the inflammation etiologic criterion for the GLIM diagnosis of malnutrition: A modified Delphi approach. Clin. Nutr. 2024, 43, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Dijkink, S.; Meier, K.; Krijnen, P.; Yeh, D.; Velmahos, G.C.; Schipper, I.B. Malnutrition and its effects in severely injured trauma patients. Eur. J. Trauma Emerg. Surg. 2020, 46, 993–1004. [Google Scholar] [CrossRef]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Goisser, S.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.C.; et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin. Nutr. 2019, 38, 10–47. [Google Scholar] [CrossRef] [PubMed]
- Ziętarska, M.; Małgorzewicz, S. Nutritional management among older people. Adv. Clin. Nutr. 2024, 19, 20–25. [Google Scholar]
- Królik, P.W.; Rudnicka-Drożak, E. Malnutrition in the elderly. Forum Med. Rodz. 2021, 15, 53–59. [Google Scholar]
- Muscaritoli, M.; Imbimbo, G.; Jager-Wittenaar, H.; Cederholm, T.; Rothenberg, E.; di Girolamo, F.G.; Amabile, M.I.; Sealy, M.; Schneider, S.; Barazzoni, R.; et al. Disease-related malnutrition with inflammation and cachexia. Clin. Nutr. 2023, 42, 1475–1479. [Google Scholar] [CrossRef] [PubMed]
- Onecia, B.; Lappin, S.L. (19 July 2022) Kwashiorkor. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507876/ (accessed on 30 July 2024).
- Gonzales, G.B.; Njunge, J.M.; Gichuki, B.M.; Wen, B.; Ngari, M.; Potani, I.; Thitiri, J.; Laukens, D.; Voskuijl, W.; Bandsma, R.; et al. The role of albumin and the extracellular matrix on the pathophysiology of oedema formation in severe malnutrition. eBioMedicine 2022, 79, 103991. [Google Scholar] [CrossRef]
- McNally, P.R. Chapter 59: Nutrition, Malnutrution and Probiotics. In GI/Liver Secrets; Mosby Elsevier: Philadelphia, PA, USA, 2010. [Google Scholar]
- Wnęk, D. (29 July 2021) Niedożywienie i Ocena Stanu Odżywienia Pacjenta. Available online: https://www.mp.pl/pacjent/dieta/niedozywienie/110018,niedozywienie-i-ocena-stanu-odzywienia-pacjenta (accessed on 30 July 2024).
- Kłęk, S.; Kapała, A. Nutritional treatment. Varia Medica 2019, 3, 77–87. [Google Scholar]
- Bonikowska, I.; Szwamel, K. Zespół słabości u osób w wieku podeszłym z cukrzycą typu 2 w kontekście demograficznego starzenia się społeczeństw europejskich. In Interdyscyplinarne Wyzwania Nauk o Zdrowiu; Cybulski, M., Łukaszuk, C., Krajewska-Kułak, E., Eds.; Uniwersytet Medyczny w Białymstoku: Białystok, Poland, 2022; Volume 2, pp. 312–328. ISBN 978-83-67454-11-7. [Google Scholar]
- Sato, Y.; Yoshisha, A.; Sugawara, Y.; Misaka, T.; Sato, T.; Kaneshiro, T.; Oikawa, M.; Kobayashi, A.; Yamaki, T.; Nakazato, K.; et al. Malnutrition stratifed by marasmus and kwashiorkor in adult patients with heart failure. Sci. Rep. 2024, 14, 19722. [Google Scholar] [CrossRef]
- Kadakia, K.C.; Symanowski, J.T.; Aktas, A.; Szafranski, M.L.; Salo, J.C.; Meadors, P.L.; Walsh, D. Malnutrition risk at solid tumor diagnosis: The malnutrition screening tool in a large US cancer institute. Support. Care Cancer 2022, 30, 2237–2244. [Google Scholar] [CrossRef] [PubMed]
- Kesari, A.; Noel, J.Y. Nutritional Assessment. 10 April 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK580496/ (accessed on 28 December 2024).
- Mziray, M.; Żuralska, R.; Książek, J.; Domagała, P. Malnutrition among the elderly, the methods of assessment, prevention and treatment. Ann. Acad. Med. Gedan 2016, 46, 95–105. [Google Scholar]
- Kondrup, J.; Rasmussen, H.H.; Hamberg, O.; Stanga, Z. Ad Hoc ESPEN Working Group. Nutritional risk screening (NRS 2002): A new method based on an analysis of controlled clinical trials. Clin. Nutr. 2003, 22, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.P.; Detsky, A.S.; Wesson, D.E.; Wolman, S.L.; Stewart, S.; Whitewell, J.; Langer, B.; Jeejeebhoy, K.N. Nutritional assessment: A comparison of clinical judgement and objective measurements. N. Engl. J. Med. 1982, 306, 969–972. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.; Pek, K.; Chew, J.; Lim, J.P.; Ismail, N.H.; Ding, Y.Y.; Cesari, M.; Lim, W.S. The Simplified Nutritional Appetite Questionnaire (SNAQ) as a Screening Tool for Risk of Malnutrition: Optimal Cutoff, Factor Structure, and Validation in Healthy Community-Dwelling Older Adults. Nutrients 2020, 12, 2885. [Google Scholar] [CrossRef] [PubMed]
- Domenech-Briz, V.; Gea-Caballero, V.; Czapla, M.; Chover-Sierra, E.; Juárez-Vela, R.; Santolalla Arnedo, R.; Villanueva-Blasco V., J.; Sánchez-González, J.L.; Martínez-Sabater, A. Importance of nutritional assessment tools in the critically ill patient: A systematic review. Front. Nutr. 2023, 30, 1073782. [Google Scholar] [CrossRef]
- Dymkowska-Malesa, M.; Swora-Cwynar, E.; Karczewski, J.; Grzymisławska, M.; Marcinkowska, E.; Grzymisławski, M. Nutrition status and body composition of elderly patients as indications for dietary management. Forum Zaburzeń Metab. 2017, 8, 29–35. [Google Scholar]
- Ostrowska, J.; Jeznach-Steinhagen, A. Hospital malnutrition. Methods for assessing nutritional status. Forum Med. Rodz. 2017, 11, 54–61. [Google Scholar]
- Serón-Arbeloa, C.; Labarta-Monzón, L.; Puzo-Foncillas, J.; Mallor-Bonet, T. Lafita-López, A.; Bueno-Vidales, N.; Montoro-Huguet, M. Malnutrition Screening and Assessment. Nutrients 2022, 14, 2392. [Google Scholar] [CrossRef] [PubMed]
- Keller, U. Nutritional Laboratory Markers in Malnutrition. J. Clin. Med. 2019, 8, 775. [Google Scholar] [CrossRef] [PubMed]
- Morales, F.; Montserrat-de la Paz, S.; Leon, M.J.; Rivero-Pino, F. Effects of Malnutrition on the Immune System and Infection and the Role of Nutritional Strategies Regarding Improvements in Children’s Health Status: A Literature Review. Nutrients 2024, 16, 1. [Google Scholar] [CrossRef]
- Pierzak, M.; Szczukiewicz-Markowska, G.; Głuszek, S. The problem of hospital malnutrition and its consequences. Med. Stud. 2020, 36, 46–50. [Google Scholar] [CrossRef]
- Grajeta, H. Malnutrition—Causes, consequences and treatment. Bromatol. Chem. Toksykol. 2021, 54, 133–147. [Google Scholar] [CrossRef]
- Cintoni, M.; Mele, M.C. The Role of Immunonutrition in Patients. Nutrients 2023, 15, 780. [Google Scholar] [CrossRef]
- Kłęk, S. Immunomodulating nutrition: New recommendations in the era of modern perioperative care. Adv. Clin. Nutr. 2023, 18, 9–15. [Google Scholar] [CrossRef]
- Mrozikiewicz-Rakowska, B.; Jawień, A.; Szewczyk, M.; Sopata, M.; Korzon-Burakowska, A.; Dziemidok, P.; Gorczyca-Siudak, D.; Tochman-Gawda, A.; Krasiński, Z.; Rowiński, O.; et al. Postępowanie z chorym z zespołem stopy cukrzycowej. Pol. J. Wound Manag. 2022, 19, 1–30. [Google Scholar] [CrossRef]
- Bartoszewska, L.; Majewska, K.; Matras, P.; Adryjanek, R.; Banań, E.; Brodkowicz-Król, M.; Burkacka, M.; Chrzanowska, U.; Fołtyn, I.; Goral, K.; et al. Żywienie Dojelitowe i Pozajelitowe; Wydawnictwo Lekarskie PZWL: Warszawa, Poland, 2023. [Google Scholar]
- Bechtold, M.L.; Grenda, B.; Johnston, T.; Kozeniecki, M.; Brown, P.M.; Escuro, A.; Limketkai, B.N.; Nelson, K.K.; Powers, J.; Ronan, A.; et al. When is enteral nutrition indicated? J. Enter. Parenter. Nutr. 2022, 46, 1470–1496. [Google Scholar] [CrossRef]
- Szczygieł, B.; Ukleja, A. Żywienie Kliniczne Chorych Leczonych na OIOM-ie. Omówienie Wytycznych ESPEN 2019. Available online: https://www.mp.pl/oit/wytyczne/246106,zywienie-kliniczne-chorych-leczonych-na-oiom-omowienie-aktualnych-wytycznych-espen (accessed on 16 September 2024).
- Fugazza, A.; Capogreco, A.; Cappello, A.; Nicoletti, R.; Da Rio, L.; Galtieri, P.A.; Maselli, R.; Carrara, S.; Pellegatta, G.; Spadaccini, M.; et al. Percutaneous endoscopic gastrostomy and jejunostomy: Indications and techniques. World J. Gastrointest. Endosc. 2022, 14, 250–266. [Google Scholar] [CrossRef] [PubMed]
- Szumilak, M.; Owczarek, J.; Nowak, K. Medical devices used in enteral nutrition. Farm. Szpit. 2021, 77, 571–580. [Google Scholar] [CrossRef] [PubMed]
- McClave, S.A.; DiBaise, J.K.; Mullin, G.E.; Martindale, R.G. ACG Clinical Guideline: Nutrition Therapy in the Adult Hospitalized Patient. Am. J. Gastroenterol. 2016, 111, 315–334. [Google Scholar] [CrossRef] [PubMed]
- Kłęk, S. Nutrition in the periooperative period. Adv. Clin. Nutr. 2024, 19, 79–84. [Google Scholar] [CrossRef]
- Sobocki, J.; Kunecki, M.; Zmarzły, A.; Rudzki, S. Standardy Żywienia Dojelitowego Dorosłych Pacjentów w Warunkach Domowych; Via Medica: Gdańsk, Poland, 2019. [Google Scholar]
- Berlana, D. Parenteral Nutrition Overview. Nutrients 2022, 14, 4480. [Google Scholar] [CrossRef]
- Berger, M.M.; Pichard, C. When is parenteral nutrition indicated? J. Intensive Med. 2022, 2, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, J.S.V.; Seres, D.S.; Sabino, K.; Adams, S.C.; Berdahl, G.J.; Citty, S.W.; Cober, M.P.; Evans, D.C.; Greaves, J.R.; Gura, K.M.; et al. ASPEN Consensus Recommendations for Refeeding Syndrome. Nutr. Clin. Pract. 2020, 35, 178–195. [Google Scholar] [CrossRef] [PubMed]
- Lydyard, P.M.; Whelan, A.; Fanger, M.W. Instant Notes. In Immunology, 2nd ed.; Wydawnictwo Naukowe PWN.: Warszawa, Poland, 2012. [Google Scholar]
- Stankov, S.V. Definition of Inflammation, Causes of Inflammation and Possible Anti-inflammatory Strategies. Open Inflamm. J. 2012, 5, 1–9. [Google Scholar] [CrossRef]
- El-Benna, J.; Hurtado-Nedelec, M.; Marzaioli, V.; Marie, J.-C.; Gougerot-Pocidalo, A.-M.; My-Chan Dang, P. Priming of the neutrophil respiratory burst: Role in host defense and inflammation. Immunol. Rev. 2016, 273, 180–193. [Google Scholar] [CrossRef]
- Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Gajewski, A.Ł.; Kowalski M.L.; Chałubiński, M. Wykrywanie Patogenów Przez Komórki Odporności Wrodzonej. 2023. Available online: https://www.mp.pl/podrecznik/alergologia/chapter/B77.132.1.3.1 (accessed on 9 September 2024).
- Li, H.; Wu, M.; Zhao, X. Role of chemokine systems in cancer and inflammatory diseases. MedComm 2022, 3, e147. [Google Scholar] [CrossRef] [PubMed]
- Briukhovetska, D.; Dörr, J.; Endres, S.; Dinarello, C.A.; Kobold, S. Interleukins in cancer: From biology to therapy. Nat. Rev. Cancer 2021, 21, 481–499. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, M.; Mohammed, N. A Review on Inflammatory Bowel Diseases: Recent Molecular Pathophysiology Advances. Biol. Targets Ther. 2022, 16, 129–140. [Google Scholar] [CrossRef]
- Forcina, L.; Franceschi, C.; Musaro, A. The hormetic and hermetic role of IL-6. Ageing Res. Rev. 2022, 80, 101697. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014, 6, a016295. [Google Scholar]
- Schmidt-Arras, D.; Rose-John, S. IL-6 pathway in the liver: From physiopathology to therapy. J. Hepatol. 2016, 64, 1403–1415. [Google Scholar] [CrossRef] [PubMed]
- Saha, P.; Smith, A. TNF-α (Tumor Necrosis Factor-α) A Paradox in Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 2542–2543. [Google Scholar] [CrossRef] [PubMed]
- Skonieczna-Żydecka, K.; Łoniewski, I.; Maciejewska, D.; Marlicz, W. Intestinal microbiota and nutrients as determinants of nervous system function. Part, I. Gastrointestinal microbiota. Curr. Neurol. 2017, 17, 181–188. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef]
- Oziom, J.; Budrewicz, S. Rola mikrobioty jelitowej w patogenezie i przebiegu wybranych schorzeń układu nerwowego. Pol. Przegląd Neurol. 2019, 15, 1–11. [Google Scholar] [CrossRef]
- Gałęcka, M.; Basińska, A.M.; Bartnicka, A. The importance of intestinal microbiota in shaping human health—Implications in the practice of the family physician. Forum Med. Rodz. 2018, 12, 50–59. [Google Scholar]
- Ferenc, K.; Sokal-Dembowska, A.; Helma, K.; Motyka, E.; Jarmakiewicz-Czaja, S.; Filip, R. Modulation of the Gut Microbiota by Nutrition and Its Relationship to Epigenetics. Int. J. Mol. Sci. 2024, 25, 1228. [Google Scholar] [CrossRef] [PubMed]
- Ubeda, C.; Djukovic, A.; Isaac, S. Roles of the intestinal microbiota in pathogen protection. Clin. Transl. Immunol. 2017, 6, e128. [Google Scholar] [CrossRef]
- Szefel, J.; Kruszewski, W.; Ciesielski, M. Immunonutrition in oncology. Contemp. Oncol. Współczesna Onkol. 2009, 13, 9–15. [Google Scholar]
- Kaźmierczak-Siedlecka, K.; Daca, A.; Folwarski, M.; Makarewicz, W.; Lebidzińska, A. Immunonutritional support as an important part of multidisciplinary anti-cancer therapy. Cent. Eur. J. Immunol. 2020, 45, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Kłęk, S.; Jankowski, M.; Kruszewski, W.J.; Fijuth, J.; Kapała, A.; Kabata, P.; Wysocki, P.; Krzakowski, M.; Rutkowski, P. Clinical nutrition in oncology: Polish recommendations. Oncol. Clin. Pract. 2015, 11, 172–188. [Google Scholar]
- Brewczyński, A.; Jabłońska, B.; Mrowiec, S.; Składowski, K.; Rutkowski, T. Nutritional Support in Head and Neck Radiotherapy Patients Considering HPV Status. Nutrients 2021, 13, 57. [Google Scholar] [CrossRef]
- Zdrojewicz, Z.; Winiarski, J.; Buczko, K.; Michalik, T.; Popowicz, E.; Szyca, M.; Śmieszniak, B. Rola argininy w organizmie człowieka. Zesz. Nauk. Państwowej Wyższej Szkoły Zawodowej Im. Witelona Legn. 2019, 30, 164–165. [Google Scholar]
- Sibilska, M.; Markowska, D.; Zadka, K.; Terlicka, G.; Knapczyk, W. The use of an immunomodulating diet enriched with arginine, omega-3 fatty acids, and nucleotides in the treatment of pressure ulcers—A case report. Pol. J. Wound Manag. 2022, 19, 37–41. [Google Scholar] [CrossRef]
- Andrulewicz, M. Impact of selected nutritional components and lifestyle on human intestinal barrier function. Med. Og Nauk. Zdr. 2021, 27, 265–271. [Google Scholar] [CrossRef]
- Oldani, M.; Sandini, M.; Nespoli, L.; Coppola, S.; Bernasconi, D.P.; Gianotti, L. Glutamine Supplementation in Intensive Care Patients. Medicine 2015, 94, e1319. [Google Scholar] [CrossRef]
- Banaszak, M.; Dobrzynska, M.; Kawka, A.; Gorna, I.; Wozniak, D.; Przysławski, J.; Drzymała-Czyż, S. Role of Omega-3 fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA) as modulatory and anti-inflammatory agents in noncommunicable diet-related diseases—Reports from the last 10 years. Clin. Nutr. ESPEN 2024, 63, 240e258. [Google Scholar] [CrossRef]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef] [PubMed]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and Inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef]
- Busse, W.W. Leukotrienes and Inflammation. Am. J. Respir. Crit. Care Med. 1998, 157, S210–S213. [Google Scholar] [CrossRef] [PubMed]
- Sicińska, P.; Pytel, E.; Kurowska, J.; Koter-Michalak, M. Supplementation with omega fatty acids in various diseases. Adv. Hyg. Exp. Med. 2015, 69, 838–852. [Google Scholar] [CrossRef]
- Weia, L.; Wua, Z.; Chen, Y.Q. Multi-targeted therapy of cancer by omega-3 fatty acids-an update. Cancer Lett. 2022, 526, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Seong, H.J.; Kim, G.; Jeong, G.H.; Kim, J.Y.; Park, H.; Jung, E.; Kronbichler, A.; Eisenhut, M.; Stubbs, B.; et al. Consumption of Fish and ω-3 Fatty Acids and Cancer Risk: An Umbrella Review of Meta-Analyses of Observational Studies. Adv. Nutr. 2020, 11, 1134–1149. [Google Scholar] [CrossRef] [PubMed]
- Haghravan, S.; Keshavarz, S.A.; Mazaheri, R.; Alizadeh, Z.; Mansournia, M.A. Effect of Omega-3 PUFAs Supplementation with Lifestyle Modification on Antropometric Indices and Vo2 max in Overweight Woman. Arch. Iran. Med. 2016, 19, 342–347. [Google Scholar] [PubMed]
- Ao, T.; Kikuta, J.; Ishii, M. The Effects of Vitamin D on Immune System and Inflammatory Diseases. Biomolecules 2021, 11, 1624. [Google Scholar] [CrossRef]
- Łupińska, A.; Michałus, I.; Zygmunt, A.; Stawerska, R.; Lewiński, A. Vitamin D and omega-3 fatty acids, the immune system, and prevention of neoplasms. Gen. Pract. 2022, 8, 339–345. [Google Scholar]
- Charoenngam, N.; Holick, M.F. Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef]
- Lewis, E.D.; Meydani, S.N.; Wu, D. Regulatory Role of Vitamin E in the Immune System and Inflammation. Int. Union Biochem. Mol. Biol. 2018, 71, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.Y.; Han, S.N. The Role of Vitamin E in Immunity. Nutrients 2018, 10, 1614. [Google Scholar] [CrossRef] [PubMed]
- Zielińska-Pisklak, M.; Szeleszczuk, Ł.; Kuras, M. The role of vitamin C and zinc in supporting the immune system. Drug Pol. 2013, 23, 271–272. [Google Scholar]
- Postuła, M. Why should vitamin C not be forgotten? Cardiol. Pract. 2020, 14, 60–62. [Google Scholar]
- Kuna, A.; Wrońska, A.K. Minerals and their role in the optimal functioning of the immune system—Literature review. Pol. J. Sports Med. 2023, 39, 95–104. [Google Scholar] [CrossRef]
- Souza, A.C.R.; Vasconcelos, A.R.; Dias, D.D.; Komoni, G.; Name, J.J. The Integral Role of Magnesium in Muscle Integrity and Aging: A Comprehensive Review. Nutrients 2023, 15, 5127. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, M.; Veronese, N.; Dominguez, L.J. Magnesium in Aging, Health and Diseases. Nutrients 2021, 13, 463. [Google Scholar] [CrossRef]
- Mojadadi, A.; Au, A.; Salah, W.; Witting, P.; Ahmad, G. Role for Selenium in Metabolic Homeostasis and Human Reproduction. Nutrients 2021, 13, 3256. [Google Scholar] [CrossRef]
- Faghfouri, A.H.; Baradaran, B.; Khabbazi, A.; Bishak, Y.K.; Zarezadeh, M.; Tavakoli-Rouzbehani, O.M.; Faghfuri, E.; Payahoo, L.; Alipour, M.; Alipour, B. Profiling inflammatory cytokines following zinc supplementation: A systematic review and meta-analysis of controlled trials. Br. J. Nutr. 2021, 126, 1441–1450. [Google Scholar] [CrossRef] [PubMed]
- Knez, M.; Glibetic, M. Zinc as a Biomarker of Cardiovascular Health. Front. Nutr. 2021, 8, 686078. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P.M.; Lalla, R.V. Glutamine for Amelioration of Radiation and Chemotherapy Associated Mucositis during Cancer Therapy. Nutrients 2020, 12, 1675. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Saha, A.; Azam, M.; Mukherjee, A.; Sur, P.K. Role of oral glutamine in alleviation and prevention of radiation-induced oral mucositis: A prospective randomized study. South Asian J. Cancer 2020, 3, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Tsujimoto, T.; Yamamoto, Y.; Wasa, M.; Takenaka, Y.; Nakahara, S.; Takagi, T.; Tsugane, M.; Hayashi, N.; Maeda, K.; Inohara, H.; et al. L-glutamine decreases the severity of mucositis induced by chemoradiotherapy in patients with locally advanced head and neck cancer: A double-blind, randomized, placebo-controlled trial. Oncol. Rep. 2015, 33, 33–39. [Google Scholar] [CrossRef]
- Durante, W. The Emerging Role of l-Glutamine in Cardiovascular Health and Disease. Nutrients 2019, 11, 2092. [Google Scholar] [CrossRef]
- Mansour, A.; Mohajeri-Tehrani, M.R.; Qorbani, M.; Heshmat, R.; Larijani, B.; Hosseini, S. Effect of glutamine supplementation on cardiovascular risk factors in patients with type 2 diabetes. Nutrition 2015, 31, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, R.J.; Farooqi, I.S.; Keogh, J.M.; Henning, E.; Habib, A.M.; Blackwood, A.; Reimann, F.; Holst, J.J.; Gribble, F.M. Oral glutamine increases circulating glucagon-like peptide 1, glucagon, and insulin concentrations in lean, obese, and type 2 diabetic subjects. Am. J. Clin. Nutr. 2009, 89, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Heianza, Y.; Huang, T.; Wang, T.; Sun, D.; Zheng, Y.; Hu, F.B.; Rexrode, K.M.; Manson, J.E.; Qi, L. Dietary glutamine, glutamate and mortality: Two large prospective studies in US men and women. Int. J. Epidemiol. 2018, 47, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Arribas-López, E.; Zand, N.; Ojo, O.; Snowden, M.J.; Kochhar, T. The Effect of Amino Acids on Wound Healing: A Systematic Review and Meta-Analysis on Arginine and Glutamine. Nutrients 2021, 13, 2498. [Google Scholar] [CrossRef] [PubMed]
- Van Zanten, A.R.H.; Dhaliwal, R.; Garrel, D.; Heyland, D.K. Enteral glutamine supplementation in critically ill patients: A systematic review and meta-analysis. Crit. Care 2015, 19, 294. [Google Scholar] [CrossRef]
- Dong, S.; Zhao, Z.; Li, X.; Chen, Z.; Jiang, W.; Zhou, W. Efficacy of Glutamine in Treating Severe Acute Pancreatitis: A Systematic Review and Meta-Analysis. Front. Nutr. 2022, 9, 865102. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Liu, Y.; Li, F.; Zhuo, W.; Huang, L.; Xu, C.; Li, W.; Qin, J.; Sun, X.; Tian, H.; et al. Evidence-based guideline on immunonutrition in patients with cancer. Precis. Nutr. 2023, 2, e00031. [Google Scholar] [CrossRef]
- Skulas-Ray, A.C. Omega-3 fatty acids and inflammation: A perspective on the challenges of evaluating efficacy in clinical research. Prostaglandins Other Lipid Mediat. 2015, 116, 104–111. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Bilotto, S.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Devi, K.M.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Omega-3 polyunsaturated fatty acids and cancer: Lessons learned from clinical trials. Cancer Metastasis Rev. 2015, 34, 359–380. [Google Scholar] [CrossRef] [PubMed]
Preparation | Characteristic | |
---|---|---|
Hypocaloric | about 0.5–0.9 kcal/mL | |
Classification according to caloric value | Isocaloric | in the range of 0.9–1.2 kcal/mL |
Hypercaloric | about 1.3–2.4 kcal/mL | |
Classification depending on the amount of macronutrients | High energy High protein | fat content increased by about 30% protein content increased by at least 20% |
Mixed | - | |
Polymeric | polypeptides | |
Classification depending on the degree of protein hydrolysis | Oligomeric and monomeric | oligopeptides and amino acids |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raczyńska, A.; Leszczyńska, T.; Skotnicki, P.; Koronowicz, A. The Impact of Immunomodulatory Components Used in Clinical Nutrition—A Narrative Review. Nutrients 2025, 17, 752. https://doi.org/10.3390/nu17050752
Raczyńska A, Leszczyńska T, Skotnicki P, Koronowicz A. The Impact of Immunomodulatory Components Used in Clinical Nutrition—A Narrative Review. Nutrients. 2025; 17(5):752. https://doi.org/10.3390/nu17050752
Chicago/Turabian StyleRaczyńska, Aleksandra, Teresa Leszczyńska, Piotr Skotnicki, and Aneta Koronowicz. 2025. "The Impact of Immunomodulatory Components Used in Clinical Nutrition—A Narrative Review" Nutrients 17, no. 5: 752. https://doi.org/10.3390/nu17050752
APA StyleRaczyńska, A., Leszczyńska, T., Skotnicki, P., & Koronowicz, A. (2025). The Impact of Immunomodulatory Components Used in Clinical Nutrition—A Narrative Review. Nutrients, 17(5), 752. https://doi.org/10.3390/nu17050752